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Financial Market Risk

What is financial market risk? How is it measured and analyzed? Is all financial
market risk dangerous? If not, which risk is hedgeable?

These questions, and more, are answered in this comprehensive book written
by Cornelis A. Los. The text covers such issues as:

competing financial market hypotheses;

degree of persistence of financial market risk;

time—frequency and time—scale analysis of financial market risk;
chaos and other nonunique equilibrium processes;
consequences for term structure analysis.

This important book challenges the conventional statistical ergodicity paradigm
of global financial market risk analysis. As such it will be of great interest to
students, academics and researchers involved in financial economics, international
finance and business. It will also appeal to professionals in international banking
institutions.

Cornelis A. Los is Associate Professor of Finance at Kent State University, USA.
In the past he has been a Senior Economist of the Federal Reserve Bank of
New York and Nomura Research Institute (America), Inc., and Chief Economist
of ING Bank, New York. He has also been a Professor of Finance at Nanyang
Technological University in Singapore and at Adelaide and Deakin Universities in
Australia. His PhD is from Columbia University in the City of New York.
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Preface

In the spring semester of 2000, I was asked to teach a new course on Risk
Theory III for 15 third- and fourth-year undergraduate students and 2 postgraduate
Masters students at the School of Economics of Adelaide University, in Adelaide,
South Australia.! I could have chosen an existing textbook on Risk Theory for
actuarialists,” and that would have saved me countless hours of research and
writing, but, instead, I decided to be courageous and develop a new course from
scratch and to focus on (1) the measurement, and (2) the analysis of financial mar-
ket risk, and, perhaps, to discuss some of the implications for financial portfolio
management.

Previous professional experiences had widened my perception of financial
market risk, both of financial crises and of financial turbulence, when I was a Senior
Economist for Nomura Research Institute (America), Inc. between the years of
1987 and 1990. An example of this being the following event: on November 19,
1987, the Dow Jones Industrial Average plunged 508.32 points, losing 22.6 percent
of its total value. That drawdown far surpassed the one-day loss of 12.9 percent that
began the great stock market crash of 1929 and foreshadowed the Great Depres-
sion. The Dow’s 1987 plunge also triggered panic selling and similar drops in
stock markets worldwide. But the US stock market recovered, after the Fed first
pumped in a massive amount of liquidity and then drained it two weeks later in
a classic monetary action, that prevented an already persistent, and now rapidly
becoming illiquid, stockmarket to grind to a screeching halt. Although this was a
massive market failure, it was a financial crisis without many consequences thanks
to the rapid successful monetary engineering action by the Fed (in contrast to the
Fed’s bungling in the 1930s!).

On Friday January 20, 1990, as a Senior Economist of Nomura Research
Institute (America), Inc., the research arm of the Japanese global securities firm
Nomura Securities, Inc., I predicted on CNBC TV, in response to a question by
the Chief Economist of Business Week, that the Tokyo stock market would decline
by 40 + percent. I stated that, because the Japanese stock market was an “admin-
istered” market, it would happen in carefully controlled phases, in the first- and
third quarter of that year. This would happen in response to a slight tightening of
the money supply by the Bank of Japan in December 1989, which attempted to
deflate Japan’s asset “bubble.” The Japanese stock market actually lost 69 percent
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of its value in 1990, in the respective predicted quarters. Until now, it never fully
recovered from that financial crisis, because Japan’s banks were determined not
to restructure and to write off any book value of their financial institutions. These
financial institutions obstructed the free working of the market system and became
“zombies,” or “living dead,” which continued to destroy global capital for more than
a decade thereafter. For more than ten years, Japan’s financial system operated as
a black hole for capital flows, retarding global economic development. Even the
availability of free money (= money available at zero interest) did not induce any
domestic activity in what had become a pure Keynesian liquidity gap. The Bank of
Japan was pushing on a string. Why the difference between the US stock market
and the Japanese stock market?

In 1991-1993, as Chief Economist of ING Bank, Inc., later ING Capital, Inc.,
in New York City, I became familiar with the trading of distressed debt of the
Latin American and domestic US markets, resulting from the collapses of credit
worthiness and the increases in the respective country and regional risk premia. At
that time I wrote sales revenue generating country risk reports on Latin American
emerging markets, e.g., my report on Mexico, in July 1993, generated $21 million
in sales of Mexican distressed debt for ING Bank with one week.? In 1992-1993,
I also monitored the European Financial Crisis, when the European Monetary
System became undone and accelerated the rush into the overvalued Euro, which
subsequently after January 1, 1999 depreciated by more than 15 percent in value
versus the US dollar. It’s only recently that the Euro is returning to par with the
US dollar.

Finally, in 1995-1999, when I was an Associate Professor in Banking and
Finance at the Nanyang Business School of the Nanyang Technological Univer-
sity (NTU), from my vantage point in Singapore, I closely monitored the Asian
Financial Crisis in 1997, i.e., the collapse of the Asian bank loan, stock and cur-
rency markets, closely followed by the Russian Financial Crisis of 1998, i.e., the
default of Russian government debt, which led, via the implosion of the German
bond market to the $500 billion collapse — and subsequent bail-out by the Fed —
of Long Term Capital Management, Inc.*

Primarily in reaction to the Asian Financial Crisis of 1997-1998, I designed
and supervised a Masters thesis research project on the Wavelet Multiresolution
Analysis (MRA) of Asian foreign exchange markets (Karuppiah and Los, 2000),
to demonstrate that most of the Asian currency markets were antipersistent and
had continued their regular trading. There was a sharp discontinuity in the Thai
baht on July 2, 1997, the day after the handover of Hong Kong back to the People’s
Republic of China, followed by considerable financial turbulence. But there was no
collapse of the other Asian FX markets, which continued to function properly, as
shown by our analysis.” In fact, for the first time we could measure the differences
in the degrees of persistence of the various Asian FX markets and show that some
markets operated faster and more efficiently than others.

I'had become deeply involved in that fascinating Asian FX project and, with the
assistance of Dr Er Meng Hwa’s Center for Signal Processing at NTU, I became
convinced that financial market risk should not only be measured in terms of
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its frequency distributions, as the conventional Markowitz’—Jorion Value-at-Risk
approach suggested, but that it should be completely analyzed in terms of its
long-term time dependencies, preferably in the all-encompassing time—frequency
domain.

The fundamental characteristic of financial time series, such as FX rates or
asset returns, is that they are nonstationary (stationarity is a precondition for clas-
sical correlation, spectral and harmonic analysis) and singular (non-singularity
is still a precondition for Gabor’s Windowed Fourier analysis). This insight was
reinforced when I learned from signal processing engineers about the technologi-
cal advance made by Mallat’s wavelet multiresolution analysis (MRA) in 1989. It
demonstrated that time—frequency visualization and analysis of non-differentiable,
singular, nonstationary and non-ergodic financial time series is possible by wavelet
MRA. Simultaneous analysis of many frequency and time dependencies is made
possible because the new wavelet MRA operates as a gigantic data microscope that
can be fine-tuned to any level of analytic resolution one wants to use for research.

I obtained further inspiration in Adelaide from the provocative 1994 book
Fractal Market Analysis of Edgar Peters, Manager of PanAgora Management,
who substitutes his Fractal Market Hypothesis (FMH) for the 1970 Efficient Market
Hypothesis (EMH) of Eugene Fama. A foray into the rapidly expanding field of
parametric stable distributions brought me in contact with Nolan’s clear expla-
nations of their Zolotarev parametrization. In October 2000, at an international
conference at the University of Konstanz, I noted that some of my European col-
leagues had also made progress in that direction, in the context of the emerging
Extreme Value Theory.

All these efforts helped me to sort out the confusing array of critical expo-
nents in Chapter 4. Additional reading of Benoit Mandelbrot’s awe-inspiring 1982
monograph, The Fractal Geometry of Nature, and the compilations of his articles
in his recent books, on Fractals and Scaling in Finance and Multifractals and 1/f
Noise, immeasurably influenced the direction of my research. They also stimulated
many of the computer graphics and other illustrations of this book.

Finally, a relearning, and drastic upgrading, of my rudimentary secondary
school knowledge of fluid dynamics at Adelaide University, supported my original
“hydrological ” or “meteorological” interpretation of global cash flow dynamics
and the measurement and modeling of financial turbulence and of financial crises.®
Of course, there exists the well-known historical precedent of an economist apply-
ing hydrological concepts to Economics. In the 1950s, in the basement of the
London School of Economics (LSE), the New Zealand economist A. W. Phillips, of
elusive Phillips curve fame, engineered an actual water flow model of the National
Income Accounts of an economy.’ Many introductory textbooks of Economics still
refer to this model by way of National Income flow diagrams. Also in Finance, the
dynamic cash flow theory finds some resonance. For example, James van Horne of
Stanford University has a (5th) edition introductory finance textbook on Financial
Market Rates and Flows.

However, following Mandelbrot, my book applies hydrological concepts to
Finance, in particular to the identification from inexact data of models for stable
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financial risk, financial turbulence and financial crises, that can quantitatively
assist in the time—frequency analysis and optimal management of such financial
market risks.

I thank Dean Colin Rogers and Professors Jonathan Pincus, Kym Anderson
and Richard Pomfret in the School of Economics of Adelaide University in South
Australia, for providing me with a rustic, but productive research environment
in the year 2000 to develop a series of three new courses in Finance: (1) “Com-
putational Finance: A Scientific Perspective,” which resulted in my eponymous
book published in 2001 by the World Scientific Publishing Co. in Singapore; (2)
“Financial Risk: Measurement and Management,” which forms the basis for this
book published by Routledge; and (3) “Dynamic Valuation and Hedging,” which
is used for parts of courses in the new Master of Science in Financial Engineer-
ing program at Kent State University and which may develop further into a third
book. My Honors students at Adelaide University provided the necessary stimulus,
raised lots of questions, produced self-correcting feedback and did helpful library
research and computations during my series of lectures.

In the southern hemisphere Fall Semester of 2001, Dean Garry Carnegie and
Professors Jonathan Batten and Stewart Jones of Deakin University in Burwood,
a suburb of Melbourne, Victoria, Australia, provided me a second place to work
on this book, while, as a Visiting Associate Professor of Finance, I taught a course
on Business Finance Decision Making and tutored students on the finer points of
Finance and Financial Markets.

My employment as a tenure-track Associate Professor of Finance by Kent State
University in Ohio allowed me to finish this book and to ready it for production. In
particular, I would like to express my deepest thanks to Dean George Stevens and
Associate Dean Rick Schroath, who both have been unwavering in their support
of my tenuous position in Kent State’s Business School. At Kent State, I interacted
with and enjoyed the excellent services of the library and I received the highly desir-
able computational assistance and error corrections of my postgraduate students
Kyaw Nyonyo from Burma, Joanna Lipka from Poland, Kang Zhixing (Richard),
Zong Sijing and Chen Xiaoying from the People’s Republic of China, Rossitsa
Yalamova from Bulgaria, who found new relevant articles and checked a large
number of bibliographic references, and Sutthisit Jamdee from Thailand, who
worked with me to produce a movie of a colorized dynamic scalogram for real-
time high frequency financial data. Doctoral candidates Kyaw and Zong prepared
the scalograms and scalegrams of the Financial Crises in Mexico, Brazil and Chile
in Chapter 8, using interactive software available on the web. All these students
actively participated in my doctoral seminars on Research in Finance in the Fall
terms of 2001 and 2002.

I also enjoyed the exchanges about my research with Mohammed Kazim Khan
and Chuck Gartland, both Professors of Mathematics, Richard Kent, Professor
of Economics, Jim Boyd, Associate Professor of Finance, who hired me, and my
colleague Mark Holder, Assistant Professor of Finance and Director of Kent State’s
new Master of Science in Financial Engineering program, which we together
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helped to give birth to. This program is one of 38 such programs in the world and
the only one devoted to derivatives, in particular, energy and weather derivatives.

It’s also high time that I acknowledge a lifelong debt of intellectual trust and
encouragement to the late Mr P. Kéhne, the Head of the Nicolaas Beets School, ano
longer existent elementary school in Heiloo, North-Holland, The Netherlands, who
in the early 1960s, conducted a unique socio-economic experiment with four boys
and four girls. Mr Kohne selected two boys and two girls from poor to low moderate
socio-economic background (I was one of them) and two boys and two girls from
high-moderate to high socio-economic background and gave them a dedicated
preparation for the entrance exam to the Gymnasium, the former Dutch prep school
for university level education, to prove that meritorious education and not socio-
economic background mattered for individual success. He proved to be right: all
eight boys and girls passed their entrance exam and successfully completed their
Gymnasium education. Later on, all eight students received university degrees
and became very successful in their respective professions, unfortunately, after
Mr Kohne had already passed away.

I dedicate this book to Mr Kohne, and I dedicate it also to my parents and
my mother-in-law and (now late) father-in-law for maintaining their faith in me
throughout my life, but in particular during the past critical six years, when I was
an Associate Professor of Banking and Finance in the Australasian region. The
coming years may be just as turbulent, but, hopefully, not as catastrophic as the
Asian Financial Crisis of 1997, which originally inspired this book.

Finally, I want to acknowledge my debt to Robert Langham, Editor — Economics
of Routledge, who invited me to publish this book in Routledge’s International
Studies in Money and Banking; to Terry Clague, his Editorial Assistant, who kept
me on track when we moved back to the States and when my wife underwent her
lung cancer operation; to Moira Eminton, Editor for Taylor & Francis Books, who
kept this and many other projects on track during a merger by her publisher, and
who had to move from London to New York; and to Vincent Antony, project man-
ager of Newgen Imaging Systems (P) Ltd., in India, who was able to accomodate
my math and figures in a beautiful typesetting.

As always, I'm very grateful to my beautiful and very dapper wife Rosie, who
prevents me from making the most serious grammatical errors and who, despite
major setbacks, continues to brighten my days with love and laughter.

Cornelis A. Los
Kent State University

Notes

1 That is, in the spring semester of 2000 in the northern hemisphere, which was the actual
Fall semester for Australia in the southern hemisphere.

2 Such as Biihlmann, Hans (1970) Mathematical Methods in Risk Theory, Springer-Verlag,
New York, NY.

3 That was before the Mexican Financial Crisis of 1994!
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Cf. Jorion (1999) “How Long-Term Lost Its Capital,” RISK, September, and Dunbar, N.
(2000) Inventing Money: The Story of Long-Term Capital Management and the Legends
Behind It, John Wiley & Sons, Chichester, UK.

The Asian Financial Crisis did not originate in the antipersistent Asian FX markets, but
in the non-transparent and persistent Asian bank loan markets and in the government
controlled, illiquid and persistent Asian stock markets.

Contained in my Dutch Doctorandus (= MPhil) thesis of 1976.

I was a Research Student at the University of London in 1975-1976, when I first
learned about system identification and control theory and about Phillips’ interesting
hydrodynamic contraption.



Introduction

Probabilitatem Non Esse Delendam, Esse Deducendam!

This book covers the latest theories and empirical findings of financial market
risk, its measurement, analysis and management, and its applications in finance,
e.g., for dynamic asset valuation, derivatives pricing and for hedging and portfolio
management. A special and rather unique part of this book is devoted to measuring
when financial turbulence can occur and when financial catastrophes are probable.

To gain a basic understanding of financial market risk, we must ask at least four
fundamental questions:

(1) What is financial market risk?

(2) How do we measure financial market risk? For example, which frequency and
timing distributions of financial market risk do we actually measure?

(3) Is all financial market risk dangerous or can we distinguish between “safe”
financial market risk and “dangerous” financial market risk? For example,
which financial market risk is diversifiable, which is hedgeable and which is
non-diversifiable and non-hedgeable?

(4) How can we manage financial market risk to our advantage? For example,
how much financial market risk is hedgeable?

These four questions will be answered, or at least discussed in technical detail,
in the four consecutive Parts of this book.

In Part I on Risk Processes, we discuss the four different concepts of measuring
risk, such as uncertainty, randomness, irregularity and probability. We discuss risk
invariants, in particular, against time and frequency, called self-similarity, or, more
precisely, self-affinity. We highlight the statistical invariants of stationarity and
time—frequency scaling and provide various descriptors of serial time dependence,
of discontinuity and of concentration. Our objective is to determine the periodicity,
aperiodic cyclicity, turbulence, intermittence and arrhythmias of the financial time
series currently produced in great abundance by the global financial markets.

This detailed analysis of financial time series helps us to determine what is the
best way of measuring financial market risk. In this book, we find that the best way
of measuring risk is as a residual, unexplained irregularity. For that purpose we
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analyze the fractality, or self-affinity, of speculative and cash market pricing, and
propose various forms of measurement and visualization of long-term dependence,
in particular, of market persistence or antipersistence, using wavelet Multiresolu-
tion Analysis (MRA). As Yves Meyer comments in his interesting series of lecture
notes: “The study of profound problems is often influences by the available instru-
ments and techniques.”> We put these concepts of financial risk within the context
of two major market hypotheses: the Efficient Market Hypothesis of Eugene Fama
and the Fractal Market Hypothesis of Benoit Mandelbrot and Edgar Peters.

In Part IT on Risk Measurement we discuss the various ways of measuring finan-
cial market risk in both its time and frequency, c.q., scale, dimensions. The basic
tool for such inexact model identification of financial market risk is “correlation”
or, slightly more specific, “convolution.” Thus, in this book, we compute the “res-
onance” coefficients both for Fourier Transforms and for Wavelet Transforms. For
the measurement of the irregularity of financial time series, we compute critical
Lipschitz—Holder exponents, in particular the Hurst Exponent, and the Lévy Sta-
bility Alpha, and relate them to Hoskings fractional difference operators, e.g., the
Fractional Brownian Motion model, which will be our benchmark model.

We use three techniques of nonstationary time series analysis to measuring
time-varying financial market risk: Range/Scale analysis, windowed Fourier anal-
ysis, and wavelet MRA, and we mathematically relate these powerful analytic
techniques to classical Box—Jenkins time series analysis and Pearson’s spectral fre-
quency analysis, which both rely on the assumption of stationarity and ergodicity.
By empirical examples, we demonstrate the superiority of these advanced tech-
niques, which can deal with the occurrence of non-stationarity and non-ergodicity.
The modeling focus will be again on Hoskings’ fractionally differenced time series,
in particular, on Fractional Brownian Motion.

Part IIT on Term Structure Dynamics is the most adventurous part of the book,
delving into the transient phenomena of chaotic risk and of financial turbulence. It
defines financial chaos and demonstrates how such chaos can develop in financial
markets. For the first time, we develop a theory of dynamic cash flow analysis,
which allows the modeling of the transient phenomena of financial chaos and of
turbulence within an adapted financial framework of term structure analysis and
which allows the measurement of such phenomena by wavelet MRA.

Financial turbulence is not necessarily a bad phenomenon. We learn that it is
actually an efficiency enhancing phenomenon that only occurs in the antipersistent,
most liquid anchor currency markets. Financial turbulence should, therefore, be
sharply distinguished from the real bogey of financial managers: financial catas-
trophe or crisis. A financial crisis is measured as a discontinuity or singularity in
a persistent financial time series. It is unpredictable and occurs only in persistent
financial markets with low liquidity.

Now, some financial crises are more dangerous than others. For example, it
may not be dangerous to speed up the trading and price formation activity in a
financial market and encounter a crisis, because the financial market may move
through a so-called safe financial crisis. Whereas slowing down trading and price
formation may lead to an unsafe financial “blue sky catastrophe.” It may cause
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a financial crisis in which the pricing system close to an attractor suddenly heads
for the attractor at infinity: the market pricing process breaks down and can’t
IECOVer.

Thus, ultimately, this Part III is laying the groundwork for an ongoing, but not
yet completed, search for integrity measures for financial markets, to quantify the
margin of safety between a financial market’s attractor and the fractal boundary of
its safety basin. The Lipschitz ¢ and the Hurst H-exponent discussed in Part IT
can be viewed as such an integrity measures. I’ve already observed that these
measures change very dramatically by basin erosion at a point on the solution path
at which a realistic, inexact financial pricing system is liable to escape. This is
now known by system safety engineers as the “Dover cliff” effect. However, a
complete quantification of the margin of safety for financial markets is not covered
by this book. It will probably have to wait for still more detailed empirical and
theoretical research.

Still, we find that the statistician’s averaging spectral decomposition, which is
based on the ergodic stationarity assumption, has inhibited and slowed down scien-
tific progress regarding the investigation of transient structures, such as turbulence
vortices in financial markets. It is also clear that financial analysis is currently
shifting from the study of the steady-state solutions of financial markets to the
study of their transient behavior. This book is intended to help this transition in
finance (and economics) along and to speed it up.

For the first time in financial-economic analysis, we are looking to measure
and engineer the true empirical conditions that ensure the safe and continuous
working of our financial market pricing systems time locally and not on (time)
average. Financial market systems are the complex institutional arrangements
that guarantee the optimal allocation and most effective and efficient use of our
scarce financial resources. They are crucial for the proper projection, adoption and
integration of new financial technology and thereby for the growth in productivity
that raises the living standards of all humankind.

Part IV contains one chapter on Financial Risk Management: the stable kind,
the cyclical kind, the turbulent kind and the critical kind. It discusses Extreme
Value Theory and some consequences for the popular Value-at-Risk approach to
portfolio and bank management. Insurers try to reduce financial risk at a cost, by
diversification, using fund management portfolios to reduce the unsystematic risk
and by hedging to reduce the systematic risk.

But sometimes financial market risk cannot be reduced because of its peculiar
empirical characteristics of long-term time-dependence and non-stationarity, a
phenomenon already studied in the 1960s by Fama and by Samuelson, a winner
of the Nobel Memorial Prize in Economics. Sometimes, we want to have more
financial market risk, because we speculate that more financial risk may lead to
higher average returns on our investments. Thus, financial risk management is not
only about reducing risk!

Indeed, the Chinese pictograph for risk in the following Figure 1 consist of two
symbols: the first Chinese symbol “Wei” represents danger, the second symbol “Ji”
stands for opportunity.®> Thus, the Chinese define risk as a combination of danger
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Figure I Risk = Danger (Wei) + Opportunity (Ji).

and opportunity. Greater risk, according to the Chinese, means we have greater
opportunity to do well, but also greater danger of doing badly. Interestingly, we
will see that Fourier analysis mathematically teaches us that, in a similar fashion:

risk = volatility = energy = power

We’ll use Value-at-Risk (VaR) as an initial organizing paradigm for financial
risk management, contrast it with a few alternative risk paradigms and trace the
implications of L-stable, heavy tail distributions of market pricing for portfolio
risk management. We also show the importance of long-term time dependence
for Value-at-Risk and for modern portfolio management and relate our findings to
the latest results in Extreme Value Theory. This properly measured approach to
financial risk is of crucial interest to senior financial risk managers of global banks,
insurance and pension funds.

Much of the illustrative material throughout this book has been drawn from rather
recent research papers in economics, finance, physics and signal processing. It is
a feature of advanced financial market risk measurement and analysis — probably
more than in most branches of finance — that the details of rather simply specified
topics — like the cash flow dynamics or the frequency of trading in the financial
markets — are complex and still imperfectly understood. It has been my personal
experience that I’ve had difficulty in convincing postgraduate students that some
topics I proposed to them have not been fully explained decades ago. It is thus often
appropriate to use even for introductory purposes (e.g. Chapters 1-2) topics that
are still the subject of research. This attractive feature of an only partially explored
subject also makes it easier for this book to serve both as a (challenging) senior
undergraduate text in economics and finance and as a source of relevant technical
information for postgraduate financial researchers and practising professionals in
the financial services industry.

The descriptions of the figures often contain details that are intended for the
more advanced reader who wants to know the particular conditions to which the
data refer. I hope they are detailed enough to convey something of the flavor
of empirical financial market risk measurement and analysis. The book is fully
referenced. Some of the references indicate sources of material — of illustrations
or ideas. Other references have been included for the reader who will use the book
as an information source and wishes to follow up a topic in detail. No attempt at
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completeness of references has been made, since that would involve far too many
references. I've tried to give appropriate entries into the literature of the various
topics, more often a recent review or significant paper, but also sometimes the
pioneering research paper, because it was so well written.

Since the primary purpose of this book is to be pedagogical, in the Chapter
Exercises readers can prepare different cases of financial market risk and loss,
catastrophe and disaster, and trace the implications for their respective manage-
ment. All Exercises are preceded by short suggestions of the most appropriate
software for the measurement of financial risk. All Exercises were tested by senior,
master and doctoral students in Tutorials in the School of Economics of Adelaide
University and in the Graduate School of Management of Kent State Univer-
sity. Together with graduate students Melin Kassabov and Rossitsa Yalamora I've
prepared a solutions manual for all these Chapter Exercises which will be made
available via a web site. We have included in Appendix B a simple data set based
on daily prices of the S&P500 stock market index for 1988. Other data sets can
easily be downloaded from the Internet. For example, on his web site, John Hull
of the University of Toronto has made available the daily prices of the TSE300,
S&P500, FTSE100, CAC40 and Nikkei225 stock market indices for the period
July 5, 1994-July 10, 1998.

The combined theoretical and practical approach of this book helps the readers
(1) to select relevant frameworks for analysis, concepts, tools and techniques
applied to real financial market data, and (2) to distinguish between information,
knowledge and wisdom in this rapidly adjusting domain of new knowledge.

Notes

1 Latin translated: “Probability should not be deleted, it should be deduced.” The Latin
phrase was formulated by Dr Rudolf E. Kalman, when, on May 3, 1993, he delivered
his lecture on “Stochastic Modeling Without Probability” at the Sixth International Sym-
posium on Applied Stochastic Models and Data Analysis at the University in Chania,
Crete, Greece. There Dr Kalman proved that there is very little, if any, scientific basis
for Haavelmo’s 1944 presumption of the empirical existence of Kolmogorov probabil-
ity. Such an empirical existence has to be deduced from the data to be established as
a scientific fact. Kolmogorov’s probability theory is still only a theory and has not yet
a scientifically established support in empirical reality. Science cannot accept Plato’s
dichotomy between “true reality”” and the world we perceive, because if it did, it would
become quickly a religion. True science accepts Aristotles’ objectivist epistemology.

2 Meyer, Yves (1993) Wavelets: Algorithms & Applications (Translated and revised by
Robert D. Ryan), Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, p. 119)

3 As I was informed by two of my MBA students at Kent State University: Kang Zhixing
(Richard), who was one of my Research Assistants, and Wang Zhengjun.
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Financial risk processes






1 Risk - asset class, horizon
and time

1.1 Introduction

1.1.1 Classical market returns assumptions

Most investors, portfolio managers, corporate financial analysts, investment
bankers, commercial bank loan officers, security analysts and bond-rating agencies
are concerned about the uncertainty of the returns on their investment assets, caused
by the variability in speculative market prices (market risk) and the instability of
business performance (credit risk) (Alexander, 1999).!

Derivative instruments have made hedging of such risks possible. Hedging
allows the selling of such risks by the hedgers, or suppliers of risk, to the
speculators, or buyers of risk, but only when such risks are systematic, i.e., when
they show a certain form of inertia or stability. Indeed, the current derivative
markets are regular markets where “stable,” i.e., systematic risk is bought and sold.

Unfortunately, all these financial markets suffer from three major deficiencies:

(1) Risk is insufficiently measured by the conventional second-order moments
(variances and standard deviations). Often one thinks it to be sufficient to
measure risk by only second-order moments, because of the facile, but erro-
neous, assumption of normality (or Gaussianness) of the price distributions
produced by the market processes of shifting demand and supply curves.

(2) Risk is assumed to be stable and all distribution moments are assumed to be
invariant, i.e., the distributions are assumed to be stationary.

(3) Pricing observations are assumed to exhibit only serial dependencies, which
can be simply removed by appropriate transformations, like the well-known
Random Walk, Markov and ARIMA, or (G)ARCH models.

Based on these simplifying assumptions, investment analysis and portfolio theory
have conventionally described financial market risk as a function of asset class
only (Greer, 1997; Haugen, 2001, pp. 178-184). In a simplifying representation:

portfolio return volatility o;,, = f (asset class )

Figure 1.1 shows the familiar presentation of risk as a function of asset class by
Ibbotson and Sinquefield, who have collected annual rates of return as far back
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Geometric Arithmetic ~ Standard
mean (%) mean (%) deviation (%) Distribution

Large company stocks 10.2 12.2 20.3 [ lIIlIIlI.I.._._
Small company stocks 12.2 17.4 34.6 IIIII |I Il .
Long-term corporate bonds 5.4 5.7 8.4 .III..
Long-term government bonds 4.8 5.2 8.8 II|II| 'R
Intermediate-term
government bonds 5.1 5.2 5.7 o
US Treasury bills 3.7 3.7 3.3 |I_
Inflation 3.1 3.2 4.6 I||

* The 1933 small company stock total return was 142.9 percent. -90% 0% 90%

Figure 1.1 Historical average annual returns and return volatility, 1926-1995.

Source: Stocks, Bonds, Bills and Inflation 1996 Yearbook,™ Ibbotson Associates, Chicago (annually
updates work by Roger G. Ibbotson and Rex A. Sinquefield). Used with permission. All rights reserved.

as 1926 (Ibbotson and Sinquefield, 1999). The dispersion of the return distribu-
tions, measured by the respective standard deviations, differs by six different asset
classes:

(1) common stocks of large companies;

(2) common stocks of small firms;

(3) long-term corporate bonds;

(4) long-term US government bonds;

(5) intermediate-term US government bonds;
(6) US Treasury bills.

When an investor wants a higher return combined with more risk, he invests in
small stocks. When he wants less risk and accepts a lower return, he is advised to
invest in cash.

For example, Tobin (1958) made two strong assumptions, which were believed
to be true by many followers: first, that the distributions of portfolio returns are all
normally distributed and, second, that the relationship between the investors’ port-
folio wealth and the utility they derive it from is quadratic of form.> Under these
two conditions, Tobin proves that investors were allowed to choose between port-
folios solely on the basis of expected return and variance. Moreover, his liquidity
preference theory, shows that any investment risk level (as defined by the second
moment of asset returns) can be attained by a linear combination of the market
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portfolio and cash, combined with the ability to hold short (borrow) and to hold
long (invest). The market portfolio contains all the non-diversifiable systematic
risk, while the cash represents the “risk-free” asset, of which the return compen-
sates for depreciation of value caused by inflation. The linear combination of the
market portfolio and cash can create any average return and any risk-premium one
wants or needs, under the assumption that the distributions of these investment
returns are mutually independent over time.

1.1.2  What’s empirically wrong?

Regrettably, there are many things wrong with this oversimplified conceptualiza-
tion and modeling of the financial markets and one has now become alarmingly
obvious. Financial disasters are much more common and occur with much higher
frequencies than they should be according to the classical assumptions. An
incomplete but rather convincing listing of financial disasters can be found in
Kindleberger (1996). Bernstein (1996) and Bassi et al. (1998) mention many
additional instances.

The world’s financial markets exhibit longer term pricing dependencies, which
show, in aggregated and low frequency trading observations, devastating, but
essentially unpredictable aperiodic cyclicity, like the Plagues of the Old Testa-
ment or sharp and disastrous discontinuities, like Noah’s Flood. On the other
hand, they show, in high frequency trading frequencies, turbulence structures and
“eddie” like condensation and rarefaction patterns. Analysts are now applying
highly sophisticated mathematical measurement methods from particle physics to
identify such empirical structures. In fact, quite a few finance articles regarding
this topic have recently appeared in physics journals, such as Nature (Potters et al.,
1998; Kondor and Kertesz, 1999; Mantegna and Stanley, 2000).

First, we’ll quickly learn that the uncertainty of the investment returns is a much
wider concept than just the volatility of the prices as measured by second-order
moments. Higher order moments, like skewness and kurtosis, play an under-
estimated, but a very important role. For example, the distributions of investment
returns exhibit positive biases, because of the termination of nonperforming busi-
nesses and the continuing life of performing ones. There is a financial need to
succeed and not to fail. Thus, the return distributions are positively skewed. In
addition, the tails of the rate of return distribution returns are fatter, i.e., the outlying
returns are more prevalent, than normally expected.

Second, we will observe that the stationarity of the investment returns can-
not be so easily assumed, since we empirically observed that the distributions of
investment returns change over time. Overwhelming empirical evidence has now
accumulated that volatility, i.e., the standard deviation of price or rate of return
changes, which in Modern Portfolio Theory (MPT) measures the risk of assets
and portfolios, is not time-invariant. Even worse, it also does not exhibit trends
or any form of stability! As Peters (1994, pp. 143-158) shows: both realized
and implied volatilities are antipersistent. An antipersistent time series reverses
itself more often than a normal or neutral time series. This phenomenon may occur
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because markets develop their institutional frameworks and mature, thereby chang-
ing the constraints of their financial pricing processes. These cash flow constraints
determine the behavioral regimes of the dynamic pricing processes of which the
volatilities become turbulent.

Third, we find that intertemporal dependencies cannot easily be filtered out of the
observed pricing series by simple serial correlation (ARIMA) models. The random
pricing processes cannot be so easily reduced to independent white noise series,
since financial pricing series exhibit global dependencies, due to an intricate pat-
tern of widely differing investment horizons of financial institution. For example,
do long-term or short-term bonds have the largest variance of return? The answer
to this question depends on the time horizon of investors. Commercial banks have
short-term liabilities in the form of deposits. These institutions minimize risk by
matching these liabilities with short-term investments. On the other hand, pension
funds and life insurance companies have long-term liabilities. If they are concerned
at all about their survival, they will immunize their portfolios and view invest-
ments in long-term bonds as less risky than short-term investments (Haugen, 2001,
pp- 358-359). Such scaling patterns of differing investment horizons introduce
long-term dependencies among the rates of return of the various asset classes.

Consequently, Mann and Wald’s (1943) conventional econometric assumption
of serial dependence for time series can be shown to be empirically false. Global,
long-term dependence plays a pervasive and important role. Thus, it is more
comprehensive and justifiable to present financial market risk, in a simplifying
representation, as follows.

asset return distribution P = f(asset class w, horizon t, time t)

Not only is the rate of return distribution produced by speculative markets depen-
dent on the asset classes and on the time horizons T of the investors, but this
distribution function may be time-varying, as indicated by the time 7-argument.
This empirical reality, which only now starts to become properly modeled
(Bouchaud and Potters, 2000), has serious consequences for portfolio manage-
ment and investment analysis. Tobin’s (1958) liquidity preference theory is clearly
too simple to adequately reflect all these dimensions of risk. The simple, static,
2-dimensional return-risk tradeoff, on which classical MPT is based, will have to
be replaced by multidimensional and dynamic return-risk tradeoffs, as was earlier
suggested in Los (1998, 2000b).

Example 1 A fine example of the time-dependence of price distributions is the
well-documented strong time-dependence of the standard deviation or volatility of
stock price changes (Schwert, 1989).

This first chapter contains many concepts and definitions to acquire a proper ana-
Iytic and technical lingo for the remainder of this book, and to review basic
statistical analysis. It forms the prolegomena of the main body of our discus-
sion. In particular, we’ll review Kolmogorov’s axiomatic (set-theoretic) definition
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of probability and of random processes, the real world definition of frequency
distributions and of observed time series, and the summarizing characterization of
these time series by their moments and cumulants.

1.2 Uncertainty

There is no doubt in the mind of physicists that uncertainty, like relativity, is of
an absolutely fundamental nature, that admits no exceptions. The world could not
even physically exist without uncertainty:

One of the fundamental consequences of uncertainty is the very size of atoms,
which, without it, would collapse to an infinitesimal point.
(Schroeder, 1991, p. 113)

In mathematics, the theory of Hilbert bases and (linear) operator algebra led
to the formulation of the Uncertainty Principle (Meyer, 1985), which we judi-
ciously and fruitfully exploited in our preceding book on Computational Finance:
A Scientific Perspective (Los, 2001). But for the development of financial risk
theory we may need a somewhat broader definition.

According to Webster’s New Universal Unabridged Dictionary (Deluxe Second
Edition, Dorset and Baber, 1983, p. 1990):

un-cér ’tain-ty=the quality or state of being uncertain; lack of certainty; doubt

and

un-cér ’tain
(1) not certainly known; questionable; problematical;
(2) vague; not definite or determined;
(3) doubtful; not having certain knowledge; not sure;
(4) ambiguous;
(5) not steady or constant; varying;
(6) liable to change or vary; not dependable or reliable.

Similarly, in modern risk theory, we distinguish three different, but closely
related concepts: randomness, chaos and probability.* Let’s explain what each of
these concepts mean and discuss their limitations.

1.2.1 Randomness = irregularity

Essentially, from Webster’s Dictionary, we have the following informal definition
for randomness:’

randomness = the state of being haphazard, not unique, irregular

Thus, these definitions are based on the regular use of the word “randomness” in
the English language (cf. Bernstein, 1996).
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1.2.1.1 Degree of irregularity

What is regular is defined and fixed and clearly determined. But how irregular
is the absence of determinedness? Recently, Pincus and Singer (1996) asked the
question: what is the degree of irregularity and how do we measure it? One extreme
is the certainty of being fixed, of being unique, a constant, and having thus no spec-
trum at all. The other extreme, the ultimate state of irregularity, is when something
is indistinguishable from background noise, that has no spectral features, i.e., noise
that covers the whole spectrum.

For example, white noise has a flar spectrum. Thus, it exhibits a specific, dis-
tinguished spectral feature and, therefore, cannot be called irregular or random
background noise. In between these two extremes we find degrees of irregularity
that can be described by variously shaped spectra. Each irregular series has its own
spectrum, be it a Fourier spectrum for a stationary series; or a changing spectrum
for a nonstationary series, to be analyzed by either windowed Fourier Transforms
or by Wavelet Transforms, depending on how fast the changes occur. One now
computes even a singularity spectrum for observational series, which show many
discontinuities or jumps, as we will discuss in Chapter 8.

1.2.1.2  Measures of sequential irregularity

In financial risk theory we are not interested in irregularity per se, but in dynamic
irregularity, i.e., in irregularity as it manifests itself over time. For example,
how irregular are the prices produced by a market pricing mechanism over time?
Figure 1.2 provides some examples of financial market price series and their rates
of return (Mittnik et al., 1998, p. 84):

(1) the daily AMEX Composite index from September 1, 1988 to July 28, 1994,
with T = 1,810 observations;

(2) the daily AMEX OIL Composite index from September 1, 1988 to July 28,
1994, with T = 1,810 observations; and

(3) the daily DEM/USD Exchange Rate from January 2, 1973 to July 28, 1994
with T = 5,401 observations.

For the past hundred years, since Bachelier’s PhD thesis of 1900, in which he
described speculative price formation as a Random Walk, people have attempted
to describe the degree of irregularity of market pricing and of related investment
returns (Bachelier, 1900). The currently best known rational measures of such
irregularity are the Lipschitz exponents (such as the Holder—Hurst exponents),
which will be discussed in Chapter 4.

1.2.2 Pseudorandomness versus genuine randomness

People working with computers often sloppily talk about their system’s “random
number generator” and the “random numbers” it produces. But numbers calculated
by a computer through a deterministic process, cannot, by definition, be random.
Given knowledge of the algorithm used to create the numbers and its original
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state or seed, you can predict all the numbers returned by subsequent calls to the
algorithm, whereas with genuinely random numbers, knowledge of one number
or of an arbitrarily long sequence of numbers is of no use whatsoever in predicting
the next number to be generated.

Computer-generated “random” numbers are more properly referred to as
pseudorandom numbers, and pseudorandom sequences of such numbers
(Goldreich, 1999). A variety of clever algorithms have been developed that gener-
ate sequences of numbers which pass every statistical test used to distinguish ran-
dom sequences from those containing some pattern or internal order. A high-quality
pseudorandom sequence generator generates data that are indistinguishable from a
sequence of bytes chosen at random. Indistinguishable, but not genuinely random!

We no longer have to use pseudorandom number generators. There are now
systems to collect genuine random numbers, generated by a process fundamentally
governed by the inherent uncertainty in the quantum mechanical laws of nature,
directly to your computer in a variety of forms.

Example 2 Hotbits are random numbers generated by timing successive pairs
of radioactive decay electrons or beta particles. These particles are produced
by the spontaneous transformation of neutrons (with charge 0) in the nucleus of
Krypton-85 into pairs of protons (with charge +1) and free electrons (= beta
particles with charge —1). The free electrons, or “beta rays,” are then detected
by a Geiger-Miiller tube in a simple radiation monitor (Figure 1.3) interfaced to
a computer. The unstable nucleus of the radioactive Krypton-85 (the 85 means
there are a total of 85 protons and neutrons in the atom) spontaneously turns into
the stable nucleus of the non-radioactive Rubidium-85, which still has a sum of
85 protons and neutrons, and a beta particle is emitted with an energy of 687
kiloelectron volts (keV), resulting in no net difference in charge:

BKr —PRb+8" +y (1.1)

In this case, a gamma ray is also emitted with an energy of 514 keV, carrying away
some of the energy. “Gamma rays” are nothing other than photons — particles of
light, just carrying a lot more energy than visible light. Krypton-85 has a half-life
of 10.73 years. This is called its half-life, since every 10.73 years half of a very
large number of Krypton-85 nuclei present at the start of the period have decayed
into Rubidium-85. But there is no way, even in principle, to predict when a given
atom of Krypton-85 will decay into Rubidium-85. It has a 50/50 chance of doing
so in the next 10.73 years, but that’s all we can say. The inherent uncertainty of
such decay time is genuinely random. Since the time of any given decay is random,
the interval between two consecutive decays is also genuinely random (not unlike
between two financial transactions). Using the Geiger teller, we can now measure
the lengths of the uncertain intervals after the fact and thus collect genuinely
random numbers. We measure a pair of these intervals, and emit a zero or one
bit based on the relative length of the two intervals. To create each random bit,
we wait until the first count occurs, then measure the time, Ty, until the next. We
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Monitor 5 — radiation monitor

o Detect: Alpha, Beta, Gamma, X-rays

Features: Easy to read analog meters, red light
count, anti-saturation circuitry and audible beeper
Specifications:

Ranges: x1, x10, x100 and BATT (battery check)
Power: One 9 volt alkaline battery provides up to
2,000 hours of operation at normal background
levels

Temperature: —20°C to +50°C

Detector: Uncompensated halogen-quenched with
1.5-2.0 mg/cm? mica end window

Energy sensitivity: Detects Alpha down to 2.5 MeV
through the end window; typical efficiency at 3.6 MeV
is greater than 80%. Detects 50KeV Beta at 35%
typical efficiency; 150KeV is typically 75%. Detects
Gamma and X-rays down to 10KeV through the
end window, 40 KeV minimum through the case.
Meter reading: 0—-50 mR/hr and 0-50,000 CPM, or
0-500 uSv/hr and 0-50 mR/hr

|Monitor 5 Meter  C31,475  $299.00)

Figure 1.3 Simple and relatively inexpensive radiation monitor.

then wait for a third pulse and measure T, yielding a pair of durations. If they’re
the same, we throw away the measurement and try again. Otherwise if Ty is less
than T, we emit a zero bit; if Ty is greater than T», a one bit. In practice, to avoid
any residual bias resulting from nonrandom systematic errors in the apparatus or
measuring process consistently favoring one state, the sense of the comparison
between Ty and T, is reversed for consecutive bits.

1.2.3 Chaos = deterministic dynamic nonuniqueness

Chaos is a special form of irregularity. It means that at a certain time something,
that was certain and unique, suddenly can become nonunique, although it remains
very well determined. The dynamic system can have more than one equilibrium
state to be in, because of equilibrium state bifurcations (Lorenz, 2001). How many
times the system “orbits” or “jumps” through a set of equilibrium states depends on
the nonlinear constraints imposed on the dynamic system. However, these separate
equilibrium states of the same system can be perfectly well identified, determined
and described, like H, O molecules orbiting through the two coexisting equilibrium
states of ice floating in liquid water. The molecule is either in the “ice” state, or
in the “water” state, and it orbits through these two states as time progresses
(Prigogine, 1997).

chaos = deterministic dynamic nonuniqueness
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Even more precisely, complete chaos is the coexistence of an infinite number
of unstable deterministic equilibrium orbits, through which the dynamic system
cycles. Chaos is a form of “inexactness,” since there is clearly nonuniqueness
or aperiodic cyclicity.® But it is not pseudorandomness, since there coexist more
than one equilibrium state of being at the same time, while with pseudorandomness
there is only one equilibrium state of being at the same time. However, chaos is
deterministic, since there is no doubt what these distinct, but coexisting equilibrium
orbit states are: they are perfectly well determined. The set of such distinct but
coexisting aperiodic equilibrium states is called the strange attractor. Already
more than a decade ago, chaos is asserted to have been observed in speculative
market prices on the trading floor (Savit, 1988, 1994). For a way of visualizing the
distinction between a chaotic financial time series and a truly random or irregular
one, cf. Chapter 9.

1.2.4 Probability = complete set of relative frequencies

Probability is a very well defined and constraint form of randomness. In math-
ematics, probability is the ratio of the chances favoring a certain state to all the
chances for and against it. Thus, probability is a rational measure: it measures
relative frequencies. It counts the number of times of being in state A relative to
the total number of states, i.e., the sum of the number of times of being in state A
relative to the number of times of being in the A and non-A states.

Thus, the basic problem of using a probability measure to describe a degree
of uncertainty is that one has to know the complete universe of states that may
occur to compute the relative frequency or probability of a particular event. But
the definition of the concept of uncertainty already indicates that we’re doubtful
or ignorant of what may happen. In other words, the very fact that we cannot
completely know the extent of the universe from which the event is drawn precludes
the use of probability measures in most of real life. Probability only plays a role
in games that have completely predefined rules. Most real life situations are not
like well-defined games. Often we don’t know which gaming rules in a particular
situation apply or what possibly such rules may be. Science deals with attempting
to discover such gaming rules and the relative frequencies by which particular
events occur. In other words, the probability distribution of a particular event is
itself a phenomenon that science tries to discover and identify. It is pseudoscience
to presume and predefine such probability distributions before the finite empirical
data sets have been analyzed.

Remark 3 Earlier financial analysts claimed that probability is a necessary
concept for the pricing of derivatives and that the broader concept of uncertainty
would not do. Nowadays it is acknowledged that probability is not needed for the
pricing of options, because the prices of derivatives can be replicated by the linear
combinations of the prices of portfolios of fundamental assets. The prices of such
fundamental assets are uncertain and not probabilistic, as this book demonstrates.
Even bond prices are uncertain, when discontinuous credit or default risk is taken
into account. However, one can always give an ex post probabilistic interpretation
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to the prices of derivatives, once they have been priced on the basis of replication
portfolios consisting of fundamental assets.

1.2.4.1 Kolmogorov’s axiomatic probability

In 1933, the Russian mathematician Kolmogorov provided one particular
axiomatic definition of probability, using set theory (Kolmogorov, 1933; cf. also
Papoulis, 1984, for a complete treatment). Since Kolmogorov, particular non-
Kolmogorovian definitions of probability have been discovered, inter alia, by the
Italian mathematician Luigi Accardi, a student of Kolmogorov and now Professor
of Mathematics at the University of Rome. Thus, currently, at least two definitions
of probability coexist. The definition of probability is no longer unique! However,
we will still discuss Kolmogorov’s set-theoretic definition of probability, since it
is the most familiar. But it is also a somewhat misleading representation of real
world “randomness,” since it is based on simple integer counting of events within
a preselected or presumed “universe.” This discussion assists with making the
connection to the modern approach to randomness, i.e., to our broader concept of
randomness as uncountable “irregularity.”

To provide the axiomatic definition of probability in the proper context of set
theory, we assume some familiarity with the Boolean notions of sets, complements,
intersections and unions, as well as with the notion of function. The following pre-
sentation by a series of definitions sequentially building on each other, beginning
with the fundamental set definitions, follows an earlier tutorial exposition pre-
pared for the Federal Reserve Bank of New York by Los (1982) (cf. also Chow
and Teicher, 1978).

Definition 4 A space 2 is a nonempty set which serves as the ultimate reference
set, or the “universe.”

Definition 5 A nonempty family of subsets, say A, is said to be an algebra, or
field, if for A1, Ay € A, A; € A,i = 1,2 and Aj U Ay € A, ie., Ais closed
under the Boolean set operations of complements and unions.

Here A; means non-A;, i.e., the complement of A;.
Definition 6 Ler A be an algebra defined on Q, then if for A; € A

UAi cA (1.2)

i=1

A is said to be a o -algebra (or Borel-field).
Thus, A is closed under Boolean set operations and sequential limits.

Definition 7 Let Q be a space and A a o-algebra relative to Q. Then, the
set (2, A) is said to be a measurable space and the set of A is said to be
a measurable set.
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Definition 8 Ler Q be a space and A a nonempty class of subsets of Q. A set
function u on A is a real valued function on A, i.e., if Ay € A,then u(Ay) is a
real number.

Definition 9 Ler u be a set functionon A. Let A € A C Qand{A;:i =1,2,...}
is a collection of disjoint sets such that

A=A (1.3)
and
w(A) =) n(A) (14)
i=l1

then p is said to be o -additive, or countably additive.

Definition 10 A nonnegative, o-additive set function u, defined on a class A,
which contains the empty set ¥, such that

n@ =0 (1.5)

is said to be a measure. If |4 is a measure on a o -algebra of subsets of 2, the triplet
(2, A, ) is said to be a measure space. If, in addition,

n(€2) =1 (1.6)

then the triplet (2, A, u) is said to be a probability space, and is denoted
(2, A, P), where P is the probability measure, which maps A to the real numbers
between 0 and 1.

Definition 11 Ler (2, A, P) be a probability space. An event is simply a set
A € A. The real number P(A) is said to be the probability (-measure) attached
to the event A, or, for short, the probability of A. Events A of probability zero,
i.e., such that

P(A)=0 (1.7)
are called null events, or null sets.
Remark 12 The monotone property of a measure ensures that
0=P{W)<P{A}<P{Q}=1 (1.8)

Definition 13 The probability space (2, A, P) is said to be complete, if any
subset of a set in G with P(A) = 0 also belongs to A.
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Any probability space (€2, A, P) can always be completed!

Definition 14 A property is said to hold almost certainly (a.c.) [also: almost
surely (a.s.), almost everywhere (a.e.), or with probability one (w.p.1)], if it holds
everywhere, except possibly on a null set A, i.e., a set A such that P(A) = 0.

After so many preparatory definitions, we have finally arrived at the classical,
Kolmogorov’s, axiomatic definition of a random variable (r.v.).

Definition 15 Ler (2, A, P) be a complete probability space. A measurable
function X: Q — R (where R is the real line) is said to be a t.v. if

P(A)=0,A={t:1X(1)| = oo} (1.9)

Surprisingly, perhaps, Kolmogorov’s apparently innocuous definition of r.v.
excludes a lot of irregular events, e.g., all singularities and discontinuities. Thus,
nowadays, Kolmogorov’s definition is considered deficient by sophisticated real
world mathematicians, such as Mandelbrot (1982), Pincus, Kalman and Singer
(Kalman, 1996; Pincus and Singer, 1996; Pincus and Kalman, 1997). For example,
we can observe and measure (= count the frequency of) special irregular events,
called “singularities.” The occurrence of singularities is a frequent occurrence in
the real world and not all singularities are alike. Thus, in Chapter 8 we will discuss
the concept of a “singularity spectrum” and how we can measure it. Therefore, we
need a new non-Kolmogorov concept of a “random variable,” which effectively
asserts

P(A) > 0,A={t:1X()| = o0} (1.10)

1.2.4.2  Empirical real world: relative frequency

In the empirical world, we determine the probability of an irregular event by
measuring how relatively often it occurs. We measure its relative frequency of
occurrence. We do NOT require that the absolute measure of that event is finite.
Thus, for empirical simplicity, as long as we set the total number of measured
events (= the measured “universe” equal to unity), we can always define:

probability = relative frequency of events

Based on the preceding discussion of why probability measures a very specialized
form of randomness, we categorically state that it is more in agreement with the
empirical world to define:

randomness = irregularity

and not to bound the describing and measuring functions of such irregularity, in
contrast to what Kolmogorov’s probability axioms require. In fact, we can now
measure the degree of randomness of a price or rate of return process, by measuring
the degree of irregularity of such a process (Pincus and Singer, 1996).
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1.2.5 The Elisberg Paradox

Peters (1999) uses the Ellsberg Paradox to illustrate the essential difference
between uncertainty and probabilistic risk.” In the Ellsberg Paradox, you are shown
an urn that contains 90 balls. Of these, 30 balls are red, and the remaining 60 balls
are an unknown mixture of white and blue balls. One ball is to be drawn from the
urn, and you are paid an amount of money if a particular color ball is chosen. You
are given two payoff options to choose from as in Table 1.1.

Look over Options 1 and 2 in Table 1.1 and decide which you would choose
and keep your choice in mind. Most people choose Option 1 for the set of payoffs
in Table 1.1. We will soon see why.

Next, turn to the two other options that are offered in Table 1.2. The drawing
will be of the same urn, with the same mixture of red, white and blue balls, as
before.

Which of these two new options would you now choose? Be honest! Most
people choose Option 4 for the second set in Table 1.2. But why?

In Option 1, you know for certain that you have a % probability of winning. But
you have no idea of the probability of winning in Option 2. It could be anywhere
between zero and % i.e., it could be zero or higher than the % of red. This demon-
strates that most people prefer to go with the odds they know, instead of to choose
for uncertainty.

Option 4 is chosen for the same reason. You know that Option 4 has a % prob-
ability, because 60 of the 90 balls are either white or blue, but you do not know
the odds of finding a red or a blue ball, which can be anywhere between % and 1.
Again, most people prefer to go with the odds they know, instead of to confront or
deal with uncertainty.

Now, by itself, each choice appears rational. Remember, though, that you chose
both Options 1 and 4. Here is where the Paradox comes into play. Choosing Option
1 over Option 2 means that you believe that a red ball is more likely to be drawn
than a white ball. However, choosing Option 4 over Option 3 implies that you

Table 1.1 Ellsberg Paradox payoffs: Options 1 and 2

Red ($) White ($) Blue ($)

Option 1 100 0 0
Option 2 0 100 0

Table 1.2 Ellsberg Paradox payoffs: Options 3 and 4

Red ($) White ($) Blue ($)

Option 3 100 0 100
Option 4 0 100 100
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believe that “white or blue” is more likely than “red or blue” and thus you believe
that white is more likely than red when choosing Option 4. Consequently, choosing
both Option 4 and Option 1 under the same conditions is inconsistent, since the two
beliefs supporting the respective choices are in conflict with each other, according
to the tenets of subjective probability, so loved by “rational” Bayesian statisticians.

Why do the majority of people choose Options 1 and 4? Because, when faced
with true uncertainty, we are more comfortable with what we know, than what
we don’t know. Thus, uncertainty is very different from probabilistic risk, which
is known. Probabilistic risk depends on the concept of known odds. The odds
are known and calculable for probabilistic games like throwing dice, turning a
wheel of fortune, or playing a hand of cards. Uncertainty is more dangerous than
low-but-known odds, since, essentially,

uncertainty = our ignorance

We hate being ignorant! It is this hate for ignorance that drives scientists to look
for certain and unique mathematical models to explain the structure of natural
phenomena. Once such a mathematical model is found, e.g., DNA’s double helix,
there is no longer uncertainty, even though the measurement precision is not per-
fect! (cf. Los, 2001, chapter 1). Mathematicians often confuse uncertainty with
measurement imprecision.

1.3 Nonparametric and parametric distributions

Let’s introduce a few additional classical measurement definitions to enable
the frequency analysis in the following chapters. An important concept for the
following discussion is the distribution function.

Definition 16 Ler X be a random variable defined on the probability space
(2, A, P). Then the distribution function (d.f.) of X is defined by the probability
(= relative frequency) P such that

Fx(x) =P{t: X(t) < x,x € [—00, )} (1.1D)

Remark 17  From the preceding discussion it is clear that the frequency d.f. has
the following properties:

(i) Fx is nondecreasing (1.12)
(ii) Fy is left continuous: }1<mx F(y)=F(x), xeR (1.13)

y—x

@iii) Fx(oo) = lim Fx(x) =1
X—> 00
Fx(—o0) = lim Fx(—x)=0 (1.14)
X—>00
One of the greatest scientific challenges still is to identify the true frequency

distribution of a particular measured event from a finite set of time series data.
However, it is also clear that this challenge is even surpassed in difficulty, when
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simultaneously the distribution of these events over time has to be taken into
account. We will have to look at the complete 2-dimensional frequency-time-
distribution picture.

1.3.1 Moment and cumulant generation

The complete description of empirical frequency distributions requires infinite
knowledge, which we, humans, don’t possess. Therefore, we try to summarize
distributions by using a limited number of characterizing summary statistics. We
will discuss the definitions and properties of moments and cumulants of the first
four orders of distributions. Moments and cumulants are useful semi-invariant sum-
mary statistics of distributions. First, we give the definition of a joint characteristic
or moment-generating function.

Definition 18 For one continuous random variable X with density f (x), the char-
acteristic function is the Fourier Transform of the density function f(x) defined by

+oo

®(w) = E {17} =/ eI f (x)dx (1.15)

—00

The characteristic function completely determines the distribution of X and
has many useful mathematical properties. E{-} denotes the expectation operation,
the number e = lim,, o (1 + (1/m))™ = 2.71828, ..., and j is the imaginary
number j = /—1 (or j> = —1).

The Fourier Transform will be discussed in greater detail in Chapter 5.

Definition 19 Given a set of n real random variables {x(1), x(2), ..., x(n)},
their joint moments of order r = ki + ko + --- + k,, are given by the partial
derivatives of the characteristic function evaluated at zero frequencies w;,i =
1,2,...,n (Papoulis, 1984):

Mom[x* (1), x*2), ..., x* ()] = E[x"" (1) - x22) - - - x* ()]

0 P(wr, w2, ..., wy)
= (_J) 3 I3 k
80)1 aa)2 e Ba)n” w=wy=-w,=0
(1.16)
where
D (0w, ..., wp) = E{ej(wlx(1)+a)2x(2)+...+wnx(n))} (1.17)

is their joint characteristic function.
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For example, for two joint random variables {x(1), x(2)}, we have the second-
order integer moments

Mom[x(1), x(2)] = E{x(1) - x(2)} (1.18)
Mom[x2(1)] = E{x*(1)} and (1.19)
Mom[x2(2)] = E{x*(2)} (1.20)

However, often in signal processing, instead of using moments, cumulants are
used, because of their ability to suppress noise, when it is additive Gaussian, and
their usefulness for estimating frequencies. Let’s first define these cumulants.

Definition 20 The joint cumulants of order r = ki + ko + -+ - + k, of a set
of random variables {x(1), x(2), ..., x(n)} are defined as the coefficients in the
Taylor expansion of the natural logarithm of the characteristic function about
zero, i.e.,
Cum[x¥1 (1), 2 (2), ..., x%(n)]
0" In[® (w1, w2, ..., wy)]

k k ki
dw,' dwy’ - - - dw, O1=wy =, =0

= (—)) (1.21)

In this book we will not discuss multivariate joint distributions of the set of
random variables {x (1), x(2), ..., x(n)}, but only distributions of a single random
variable x. In that case their are no cross moments, and the moments m, can be
simply computed by

+00
my = E{x"} = / x" f(x)dx (1.22)

where f(x) is the probability density function (p.d.f.).
For example, the first four integer moments of x are simply

mi = Mom[x] = E{x} (1.23)
my = Mom[x - x] = E{x?} (1.24)
m3 = Mom|[x - x - x] = E{x°)} (1.25)
ms4 =Moml[x - x - x - x] = E{x*} (1.26)

and the first four integer cumulants of x are related to these moments, as follows:

¢1 = Cuml[x] = m; (1.27)
¢ = Cumlx - x] = my — m? (1.28)
c3 = Cum[x - x - x] = m3 — 3mamy + 2m (1.29)

¢4 = Cum[x - x - x - x] = ma — dmsmy — 3m3 + 12mym? — 6m7  (1.30)



20 Financial risk processes

These relationships between the moments and cumulants can be verified by
substituting the Taylor expansion into the preceding general definitions for joint
moments and cumulants and working out the differentiations about zero.® Notice
that if the first moment (mean) m| = c¢; = 0, there is considerable simplifications,
since it follows that ¢ = my, ¢3 = m3, and ¢4 = my4 — Sm%.

Remark 21 Interestingly, the classical literature only presents integer moments.
As Chapter 3 will show, the recent spate of articles and books on stable distributions
in finance has considerably expanded our concept of moments. It now includes
fractional moments, related to fractal distributions.

1.3.1.1 Moments of parametric distributions

Figures 1.4 and 1.5 are borrowed from Nikias and Petropulu (1993), pp. 10 and
11. Figure 1.4 illustrates the first four order moments and cumulants of the p.d.fs
for three symmetric parametric distributions: the Laplace, Gaussian and Uniform
distributions. Note that for symmetric p.d.fs all m,, and ¢, for odd n are identical
to zero and that for the Gaussian distribution all cumulants ¢, of order greater than
second (n > 2) are also zero. Thus, second-order statistics ¢p = my = o2, the
variance, are sufficient to characterize a Gaussian distribution, since then ¢; =
m| =c3 =m3 = c4 = 0sothat my = 3m% = 3¢%,

In contrast, Figure 1.5 illustrates three nonsymmetric parametric distributions:
the Exponential, Rayleigh and so-called K -distributions. It is clear that these dis-
tributions require all four order of moments or cumulants to completely describe
these distributions.

However, moments and cumulants of any order » > 0 can be computed for any
type of empirical and theoretical distribution, parametric or nonparametric. The
fundamental research problem of identification of frequency distributions of finite
empirical financial observations, like speculative stock, bond or foreign exchange
prices or their increments, is that we do not know a priori how many orders of
statistics are sufficient to completely describe such distributions. What can be
proven is that, in general, the computation of joint cumulants of order r requires
knowledge of all moments up to order r (Nikias and Petropulu, 1993).

Furthermore, if a set of variables {x (1), x(2), ..., x(n)} is jointly Gaussian, then
all the information about their distribution is contained in the moments of order
r < 2. Therefore, all moments of order greater than two (r > 2) have no new infor-
mation to provide. This leads to the fact that all joint cumulants of order r > 2 are
identical to zero for Gaussian vectors. Hence, the cumulants of order greater than
two, in some sense, measure the non-Gaussianness (non-normality) of a distribu-
tion. Furthermore, it is always possible to compute the empirical moments and
cumulants and then check how close such empirical distributions are to various
known parametric distributions. But such approximations by theoretical distribu-
tions can never lead to a unique identification of an empirical distribution. There
will always be a subjective degree of confidence in the resulting distributional fit.

What do the various moments measure?
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Figure 1.4 The nth-order moments and cumulants for n = 1, 2, 3, 4 of the Laplace,
Gaussian and Uniform p.d.fs.

Definition 22 The location of a distribution is measured by the first-order
statistic, the mean, or average,

cr =my = E{x} (1.31)

It is easy to laterally shift a distribution so that ¢c; = m = 0 to achieve consid-
erable simplification, by computing deviations from the mean ¢ = x —m| = x —
E{x}, since then the first-order statistic of such deviations €, m(e) = c;(¢) = 0.
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Figure 1.5 The nth-order moments and cumulants for n = 1,2, 3,4 of Exponential,

Rayleigh and K-distribution p.d.fs.

Therefore, it is strongly advised that all empirical data are computed as deviations
from their means, so that ¢c; = m; = 0.

Definition 23 The scale, dispersion, or variance of a distribution is measured
by the second-order statistic

¢y = my (since my(g) =0) (1.32)
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Distributions can always be scaled or reduced to normalize distributions, by
dividing by the scale. Usually this is done in combination with the lateral shift.’
Thus, the standardized variable z = &/m>, so that ¢;(z) = mi(z) = 0 and
my(z) = c2(z) = 1.

Definition 24 The skewness of a distribution is measured by its third-order
statistic

m3 = c3 (since mi(e) = 0) (1.33)

For example, notice in Figure 1.5 that the third-order statistics of symme-
tric distributions equal zero, m3(e) = c3(¢) = 0, while those of asymmetric
distributions are unequal zero, m3(¢) = c3(¢) # 0 (since mi(¢) = 0). In
fact, when m3(¢) = c3(¢) < O the distribution is negatively skewed and when
m3(e) = c3(e) > 0, the distribution is positively skewed.

Definition 25 The kurtosis, or degree of peakedness, of a distribution is measured
by its fourth-order statistic

¢4 =my —3m3 (1.34)

Usually the comparison is made with the Gaussian distribution, which has

m> = o2, so that we conventionally measure the normalized kurtosis.

Definition 26 Normalized kurtosis is measured by

my
Knormalized = —>
m;
C4
= — 43

2
my

=& s (1.35)
o

When the kurtosis is the same as that of a Gaussian distribution, ¢4 = 0, and
thus normalized kurtosis equals m4/ m% = 3, we speak of meso-kurtosis. When
cq > 0, i.e., normalized kurtosis m4/m§ > 3, the distribution exhibits large
kurtosis, or lepto-kurtosis: the frequency distribution is more heavily concentrated
around the mean than the Gaussian distribution. When ¢4 < 0 and normalized
kurtosis my4/ m% < 3, the distribution exhibits low kurtosis, or platy-kurtosis:
the frequency distribution is less heavily concentrated about the mean than the
Gaussian distribution.

Example 27  Figure 1.6 shows how such an empirical distribution is constructed
in the left panel (sideways) using a number of bins into which the time series values
of particular ranges are collected (Frisch, 1995, p. 29). Notice how binning gathers
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Figure 1.6 Construction of the histogram of a time series by binning.

the distributional or frequency information of the time series, but loses the time-
dependence information of the series. Until recently, statisticians have paid more
attention to the distributional information of time series, while signal processing
engineers have paid more attention to their dependence on time. In this book we’ll
discuss both the frequency and time-dependence information, first separately and
consecutively, and then simultaneously.

Example 28 Figure 1.7 shows the raw and transformed daily returns of the DAX
index in Frankfurt for the period after Black Monday, November 1987-August
1998. The histograms on the right show the relative frequencies of the returns in
the same scale (Ormoneit and Neumeier, 2000, p. 49).

Example 29 Figure 1.8 shows the empirical histogram of the minute-by-minute
logarithmic increments of the Japanese Yen (JPY) for the month of June 1997
compared with the theoretical Gaussian distribution (curved line), with the same
variance. The distribution of these logarithmic increments is clearly leptokurtic:
notice the extreme “peakedness” of the histogram, indicating the higher than
normal occurrence of small movements, and the “fat” tails, indicating the higher
than normal occurrence of “outliers.” There is also a clearly noticeable dearth
of intermediate movements. Notice also that in particular bins (the 6th bin to the
right and the 4th bin to the left of the mode) no observations exist. Thus, empirical
distribution is incomplete. It clearly contains null events A, so that P(A) = 0.

Example 30 A similar phenomenon as in the preceding example has been dis-
cussed in the financial literature regarding foreign currency options (cf: Hull, 2001,
pp. 286-288). The volatility smile, which relates option volatility o to the strike
price X, is used by traders for empirically pricing of foreign currency options. It has
the general form in Figure 1.9. The volatility smile is relatively low for at-the-money
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Figure 1.7 Raw and transformed daily returns of the DAX. The histograms on the right
show the relative frequencies of the returns in the same scale.
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Figure 1.8 Empirical histogram of minute-by-minute log-increments of the JPY in June
1997.
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Figure 1.9 Volatility smile of foreign currrency options.

Figure 1.10 Implied distribution and (log-) normal distribution of foreign currency
options.

options. It corresponds to the (Black—Scholes) implied distribution in Figure 1.10,
which has higher kurtosis than the corresponding lognormal distribution with the
same mean and standard deviation. Figures 1.9 and 1.10 are consistent with each
other. Consider first a deep-out-of-the-money call option with a high strike price
of X». The relative occurrence of this event is higher for the implied distribution
than for the lognormal distribution. Therefore, we expect the implied distribution
to give a relatively high price for the option. A relatively high option price leads to
a relatively high implied volatility. Which is exactly what is empirically observed
in Figure 1.9. A similar reasoning applies for a deep-out-of-the-money put option
with a low strike price of X1. Thus, the lognormal distribution of foreign currency
prices understates the relative occurrence of extreme movements in exchange rates.
Based on the measurement of daily movements in 12 different exchange rates over
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a 10-year period, Hull and White (1998) found that daily changes exceeded three
standard deviations on 1.34 percent of days, while he lognormal model predicts
that this should happen on only 0.27 percent of days. Daily changes exceed four,
five and six deviations on 0.29, 0.08 and 0.03 percent of days, respectively. The log-
normal model predicts that we should hardly ever observe this happening. The two
reasons for this empirical phenomenon mentioned by Hull and White (1998) are
nonconstant volatilities and the impact of jumps (discontinuities) in the exchange
rates, often in response to the actions of central banks.

Example 31 The traders who empirically price equity options use a volatility
skew, as in Figure 1.11. The volatility o decreases when the strike price increases
(Macbeth and Merville, 1979; Lauterbach and Schultz, 1990; Rubinstein, 1994;
Jackwerth and Rubinstein, 1996). The volatility used to price a low strike price
option is significantly higher than that used to price a high strike price option. This
volatility skew corresponds to the skewed and leptokurtic implied distribution in
Figure 1.12. It has a fatter left tail and a thinner right tail than the lognormal dis-
tribution. For example a deep-out-of-the-money call with a strike price of X, has a
lower price when the implied distribution is used than when the lognormal distribu-
tionis used. A relatively low price leads to a relatively low implied distribution. One
possible explanation for this volatility skew in equity options is financial leverage.
As a company’s equity declines in market value, the company’s financial leverage
increases. Its equity becomes more risky and its volatility o increases andvice versa
(Hull, 2001, p. 290). Thus, we can expect the volatility of equity to be a decreasing
function of price, consistent with Figures 1.11 and 1.12, and implying that it is
time-dependent. Interestingly, prior to the October 19, 1987 stock market crash

Implied
volatility

Strike price

Figure 1.11 Skewed volatility smile of equities.
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<«— Implied

Figure 1.12 Implied distribution and (log-) normal distribution.

Table 1.3 First four moments of FX returns: USD/DEM and USP/JPY

FX rate Interval © Mean Variance Skewness  Kurtosis

USD/DEM 30 minutes —1.40 x 107 7.53 x 1077 0.60 46.10

6 hours —1.68 x 1075 8.42 x 107 0.27 11.75
24 hours —6.62x 1075 348 x10>  0.12 6.04
1 week —4.65x107* 241 x 1074 0.17 4.24
USD/JPY 30 minutes —2.20 x 107% 7.16 x 10~7 —0.05 24.02
6 hours —2.65x 107 7.98x10°% —0.17 11.64
24 hours —1.06 x 107* 3.13x 107> —0.16 7.06
1 week —7.57x107% 222x107* —0.23 4.29

implied volatilities were much less dependent on strike prices. Rubinstein (1994,
p. 784) suggests that one reason for the pattern in Figure 1.12 may be “crash-o-
phobia.” Traders are concerned about the possibility of another crash similar to
the one of October 19, 1987, and they price options accordingly. It appears that
the implied distribution for a stock price has fatter left tails than the distribution
calculated from empirical data on stock market returns. Also the volatility skew
became more pronounced after the October 1997 and August 1998 declines.

Example 32 Table 1.3 provides the first four moments of the return distributions
at different time intervals for the German Deutschemark (DEM) and the JPY
against the US dollar (USD). The period of observation is January 1, 1987 to
June 30, 1996. The data for the USD/DEM and USD/JPY in this Table 1.3 are
selected from table 2 in Miiller et al. (1998), p. 73, which contains similar data for



Risk — asset class, horizon and time 29

three additional currencies: GBP/USD, USD/CHF, and USD/FRF. The distribution
of foreign exchange (FX) returns is computed from the bid (= intention to buy)
and offer (= intention to sell) price quotations of the market maker through the
logarithmic middle price

In Xpiq,; + In Xofter s

x(1) : (1.36)
and the return r(t) is measured over a fixed time interval T as
r(t) =x() —x( —1) (1.37)

where x(t) is the sequence of logarithmic middle prices spaced equally in
Greenwich Mean Time (GMT). The standard deviations are about twice as large as
the means and the absolute values of the skewness are mostly significantly smaller
than one. From these facts we conclude that the empirical distributions are almost
symmetric. The mean values are slightly negative, since during the period of obser-
vation there was an overall increase in the value of the USD versus the DEM and
versus the JPY (less USD per DEM and JPY, means relatively higher USD value).
But comparing these four empirical moments with the theoretical moments of the
theoretical distributions of Figures 1.4 and 1.5, we notice that for the shortest time
intervals, the measured kurtosis of these empirical distributions is higher than
normal (>3>3). Interestingly, all rates show the same general characteristics: a
decreasing kurtosis with increasing time intervals. In other words, the shapes of
the distributions depend on the time horizon t. At intervals of about one week, the
kurtosis is rather close to the Gaussian value. This argues against scaling in the
FX markets for time intervals of one week and larger. The topic of scaling we’ll
discuss further in Chapter 3.

Example 33 Table 1.4 provides the first four moments of the return distributions
at different time intervals for the short-term cash interest rates from the interbank
money market for the US, Germany, and Japan. The period of observation is
January 2, 1979 to June 30, 1996. The data in this Table 1.4 are selected from
table 3 in Miiller et al. (1998), p. 74, which contains similar data for two additional
countries, Great Britain and Switzerland. Compare once more these empirical
moments with the theoretical moments of the theoretical distributions of Figures 1.4
and 1.5 and notice that these empirical distributions are again not Gaussian,
mainly because of their much higher than normal kurtosis (>>3), but also because
of their skewness.

Example 34 In Figure 1.13 three empirical frequency distributions are plotted
for the USD/DEM and two for the USD 6 month cash interest rate (This is figure 2
in Miiller et al. (1998), p. 62). The cumulative frequency is on the scale of the
cumulative Gaussian probability function. Gaussian distributions have the form
of a straight line in this representation. Notice that this is approximately the case
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Table 1.4 First four moments of FX returns by time interval

Interest rate Interval t  Mean Variance Skewness  Kurtosis
USD 3 months 24 hours —1.27 x 107> 241 x107% —0.16 24.72
1 week —8.88x 1070 220x 10~ —0.53 14.98
USD 6 months 24 hours —1.04 x 107> 1.98 x 107 —0.20 20.49
1 week —733x 107 171 x 1075 —0.82 14.48
DEM 3 months 24 hours —1.72x 1077 7.93x 1077  0.39 28.68
1 week —7.35%x 1077 5.62 x 107 0.22 18.80
DEM 6 months 24 hours —4.76 x 10~7  7.80 x 1077 0.22 33.52
1 week —399x107% 535x107°  0.10 11.90
JPY 3 months 24 hours 6.06 x 1077 1.28 x 1076 1.23 43.74
1 week 424 x107% 7.65%x 107  2.80 36.97
JPY 6 months 24 hours —2.47 x 107°® 9.94 x 1077 0.50 46.29
1 week —173x 1070 622x107° 242 28.04
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Figure 1.13 The empirical cumulative distributions for USD/DEM and USD 6 months cash
interest rate, shown for different time horizons 7: 30 minutes, 1 day and 1 week
for USD/DEM and 1 day and 1 week for USD 6 months. The fat lines are the
shortest time intervals.

for the cumulative distribution of weekly returns, whose kurtosis is only slightly
higher than normal. In contrast, the distributions of 30-minute and 24-hour returns
are distinctly fat-tailed and their kurtosis values are very high. Again, the shape
of the FX distribution is not preserved under time aggregation as was the case for
the cotton prices in Mandelbrot (1963a). It is clear that the distributions of FX
rates depend on the time horizon t. Only in the case of the USD 6 month interest
rates, both distributions for the 1-day and 1-week interval look remarkably alike.
For these interest rates it is therefore not possible to reject the hypothesis of their
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distribution being stable under time aggregation. The kurtosis, which is high for
the I-day interval, remains high for the 1-week interval. Also the cumulative
distribution for the interest rates is more fat-tailed than for the FX rates, as we
can see by comparing Tables 1.3 and 1.4. Of course, the empirical distributions
of the interest rates are more noisy than for the FX rates, due to both their lower
precision of quotation and their lower frequency.

1.3.2 Heavy-tailed stable distributions

Stable distributions (or L-stable distributions) are a class of distributions that allow
for skewness and heavy tails, like we found in the preceding examples of the cash
interest rates. This class of distributions was characterized by Lévy (1937, 2nd
edn, 1954) in his study of sums of independent, identically distributed (i.i.d.)
variables. The general stable distribution is described by four parameters, similar
to the moments:

(1) anindex of stability, or characteristic exponent, az € (0, 2], which describes
the degree of kurtosis;

(2) askewness parameter B € [—1, 1];

(3) ascale parametery > 0, similar (but not equivalent) to the second distribution
moment; and

(4) alocation parameter 6 € R (a real number).

Only a few stable distributions have closed formulas for densities and distribu-
tion functions, such as the Gaussian, Cauchy and Lévy distributions. There are
three reasons to use these stable frequency distributions:

(1) There are solid theoretical reasons to expect that real world phenomena exhibit
non-Gaussian stable distributions, like in the case of Fractional Brownian
Motion.

(2) The Generalized Central Limit Theorem states that the only possible non-
trivial limit of normalized sums of i.i.d. variables is stable (and that may be
even true for non-i.i.d. variables too (cf. Kalman, 1994, 1995)).

(3) Empirically, many large data sets exhibit skewness and heavy tails and are
poorly described by the Gaussian distribution or by lognormal distributions.

Examples of such stable distributions in finance and economics are given in
Mandelbrot (1963a,b, 1966), Fama (1963, 1965), McCulloch (1996), Bassi et al.
(1998). We will define and discuss the theory of stable distributions and several
theoretical and empirical examples of stable distributions in Chapter 3.

1.4 Random processes and time series

Thus far, we have discussed frequency distributions per se, without taking account
of the time-dependence of dynamic financial random processes and of financial
time series. In this section we introduce this important time dimension, since
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most dynamic phenomena exhibit time-dependence characteristics. Of course, we
need both a frequency and a time-dependence analysis of any financial time series,
preferably simultaneously, before we can properly model its frequency and depen-
dence characteristics. It is astonishing to observe, how many statisticians, signal
processing engineers, and other empirical researchers analyze each of these two
characteristics — frequency or time dependence — in isolation or independently from
each other, and how often they ignore the either one of these two characteristics.

First, we’ll give the formal definitions of a random process and of a time series,
which are surprisingly restrictive. Then we discuss some of the peculiar empirical
characteristics of financial time series.

Let (2, A, P) be aprobability space and let T be the ordered set of real numbers
corresponding to the times at which the sequential observations are carried out

Definition 35 A monotonically decreasing family of o -algebras {A;:t € T}ona
given probability space (2, A, P) such that Ay C Ay C---C A1 C A CA,
where Ay is the trivial algebra Ay = {¥, R}, is called a current of o -algebras.

Definition36 The sequence of randomvariables (r.v.s){X (t), A;:t € T} denotes
an object of a current of o -algebras {A,: t € T} on the measurable space (2, A),
and the sequence of rvs {X (t): t € T}, where the r.vs X (t) are A;-measurable for
allt € T, is called a random, or stochastic process.

Definition 37  The sequence of r.vs {X(¢): t € T} is {A;}-predictable if X (¢) €
A1 C A forallt € T.

As we will see in the following chapters, some financial series are predictable
and some are unpredictable. However, the predictability of a series of observations
is not determined by its being random or deterministic, as this Boolean definition
shows. Predictability has to do with the form of dynamic inertia. An event is only
predictable, according to this definition, if it lies within the historical information
set or set of historical experiences. For example, there exist deterministic, but
unpredictable time series, called chaotic series, to be discussed in Chapter 9.

There is a more specific and complete Kolmogorovian definition of a dynamic
system, which generalizes the concept of time shift, or time horizon t, and which
is less restrictive than the classical current of o-algebras definition, which led
to ARIMA or Markov type process definitions with unique equilibria. This new
concept of a dynamic system is more open-ended, since it allows for bifurcations
and the simultaneous coexistence of nonunique equilibria. This less restrictive
definition of an abstract dynamic system we’ll encounter again when we discuss the
iterative degeneration of such a system into chaos in Chapter 9, which come about
because of the simultaneous coexistence of more than one nonunique equilibria.

Definition 38 A dynamic system is a quadruplet (2, A, P, L). The set Q2 is the
universal space. A is a o -algebra of Q. P is the probability measure, which maps
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A to the real numbers between 0 and 1 and which satisfies the three axioms of
Kolmogorov

(1) P(A) >0 forall Ae A, non-negativity (1.38)

(2) PU;A) = Z P(A)), additivity (1.39)
i

(3) PR =1, completeness (1.40)

where A; is any countable set of disjoint sets € A. The time shifts, L;, are a family
of operators depending on a variable time t > 0, which can be either continuous
or discrete. The time shifts L;s satisfy the semi-group property

Lo=1, L;L; =Ly, (1.41)
and conserve the probability

P(G,_IA) = P(A), forallt >0 andallAe A (1.42)

By definition, dynamic systems represent temporal end/or spatial evolutions or
diffusions of a set of particles, like the original Brownian motion, but with the
possibility of nonunique pathways. Dynamic systems are represented by a set of
state variables and a specification of the (stochastic) processes they follow, as their
values are observed from moment to moment. These processes implicitly specify
the densities governing the values of the state variables at future times.

1.4.1 Stationarity and serial dependence

We will now introduce two essential concepts for time series analysis: stationarity
and time dependence. These two concepts have been more or less ignored by
financial economists and financial analysts, who traditionally, but erroneously,
have assumed that all empirical financial and economic time series are stationary
and that their increments are mutually independent.

1.4.1.1 Stationary processes

Definition 39 A random process {X (t), A;: t € T} is said to be stationary in the
strict sense (distribution stationary, or strongly stationary), if

P{X(1),X?2),... X0} =P(X(1+71),XC+1),.... Xt + 1)} ac
(1.43)

foralltandt+t e T.

Notice that under stationarity in the strict sense, the whole joint probability
distribution does not change over time. This is not easy to check empirically,
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as we will see, since we will have to measure all characteristic, integer and
fractional, moments of the distributions. Regrettably, we can’t know a priori
how many moments are required to characterize an empirical distribution. Thus,
pragmatically, only the moments are computed that one is interested in.

Definition 40 A random process {X (t), A;:t € T} is said to be stationary in the
wide sense (covariance stationary, or weakly stationary) if

E|X*(1)] < o0 (1.44)
and

E{XOX(t—1)}=h(t -1 (1.45)
i.e., the covariance is a function only of the absolute time period |t — T|.

Stationarity in the wide sense is empirically much easier to check, since it
restricts the checking to second-order integer moments only.

Remark 41 The stationarity of random process is equivalent to the property of
identically distributiveness (i.d.) of r.v. in classical (non-dynamic) statistics.

In finance, this has meant until recently that only the first two integer moments of
return distributions are computed. For example, Black (1976) looked at stock price
volatility (second moment) and how it changes over time, while Ilmanen (1995)
looked at the expected returns (first moment) in international bond markets and
found them to be nonstationary, c.q., time-varying. Recently, empirical financial
researchers have become more aware of the non-Gaussianness of such rate of
return distributions and have begun to compute their third, fourth and even higher
moments, moving beyond the pragmatic checking of stationarity in the wide sense
and in the direction of the rather elusive goal of checking for stationarity in the
strict sense.

Example 42 Stationarity in the wide sense is required for classical optimal
hedging, since the use of the minimum variance hedge ratio assumes that the
future standard deviations of and the correlation between the changes in the spot
and futures prices remain unchanged (Stulz, 1984). The minimum variance hedge
ratio is:

o
Bt =p2S (1.46)

OF
where os = standard deviations of the changes in the spot price; oF =
standard deviation of the changes in the futures price; osp = covariance

between the changes in the spot price and the futures prices, respectively; and
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o = (osF)/(osoF) correlation between spot S and futures F prices. The use of
h* assumes that o, o and p remain constant over time:

os,0F, p = constant for all t (1.47)

However, the futures and spot markets show little stationarity in the wide sense and,
in this context, several questions had already been raised some decades ago about
their hedging performance (Ederington, 1979; Franckle, 1980). These research
questions have been insufficiently addressed in the finance literature.

Example 43 The Black—Scholes and the binomial option pricing models also
assume that the variance of the rates of return of the underlying asset is constant
throughout the life of the option (Haugen, 2001, p. 472). In contrast, the con-
stant elasticity of variance option pricing model of Cox (1996) assumes that the
variance of the rate of return is parametrically dependent on the level of z; the
underlying price. A reduction in the market value of common stock reflects an ero-
sion in the firm'’s equity base. Or, a reduction in the value of equity relative to the
value of the firm’s debt means an increase in stockholder risk. Such a dependency
can be modeled by a so-called financial “single-index” model, where the system-
atic component of the stock’s variance equals the product of the stock’s squared 8
and the variance of the index, as follows:

ry = E{rt}+b[Z[ (1.48)
where
by =a1S " and z ~N(0,1) (1.49)

The increment in the rate of return is equal to the product of (1) an index z;
associated with the individual stock and (2) a coefficient b;, which relates the
returns on the stock to the factor z;. Let’s look at three different situations: (1) If
ar = 2, then b; = ay, and o, = btzozz = a%. This is the special case assumed in
the Black—Scholes framework. (2) If ax = 4, then b; = a1 S;, and o, = btzazz =
afSrz. When ay > 2, the variance of the rate of return becomes larger as the stock
price becomes larger. This positive dependence of the variance on the level of the
stock price is contrary to both theory and empirical evidence. (3) If ay = 0, then
b, = alS,_l = a1/$;, and o,y = btzazz = a%/S,z. When ap < 2, the variance
of the rate of return becomes larger as the stock price becomes smaller. Such a
negative dependence of the variance on the level of the stock price conforms to
both theory and empirical evidence (MacBeth and Merville, 1979, 1980; Emanuel
and Macbeth, 1982).

It now appears also that, for more complete financial risk measurement, analysis
and management, we need to compute at least the first four moments of wide sense
stationary processes. Some researchers argue even in favor of the computation of
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several more moments. Next, we must check which of these moments are time-
invariant and which are time-varying (Priestley, 1988; Cizeau et al., 1997). It will
be observed in the Exercises of Chapter 2 that the first four moments of a simple
stock market index series like the S&P500 index are all time-varying and that
consequently its distribution is non-stationary in the strict sense. One may try to
discover how the time-varying moments systematically relate to either the time
series or to additional, so-called exogenous variables.

Example 44 A striking example of a non-stationary foreign exchange rate dis-
tribution, where the non-stationarity is in the form of an institutional discontinuity,
is given in Figure 1.14. This figure portrays the two semi-annual cumulative distri-
butions of one-minute changes of the Thai baht (THB) relative to the USD in 1997.
THB abruptly fell on July 2, 1997 and the Asian Financial Crisis followed. The
distribution of the first half year January—June 1997 in blue is significantly more
concentrated than the distribution of the second half year. The small insert chart
with differential spectra include data points in both halves corresponding to per-
centile increments of 10 percent. Thus, the 10, 20, 30 percent, . . ., data values for
the second half year are plotted against this in the first half year. Using a 45° line
to indicate equality between the two half years, the extremely large deviation from
the 45° line was tested against both halves, and indicated a significant difference
(Los, 1999, p. 275; also in Abu-Mostafa et al., 2000, p. 237). In comparison, the
shape of the distribution of the DEM, an anchor currency, measured over the same
semi-annual periods, remained remarkably stationary in 1997, with the exception
of a few outliers, as shown in Figure 1.15. (Los, 1999, p. 276, also Abu-Mostafa
et al., 2000, p. 238).
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Figure 1.14 Semi-annual cumulative distributions of THB-FX increments, January—
December 1997.
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Figure 1.15 Semi-annual cumulative distributions of DEM-FX increments, January—
December 1997.

1.4.1.1.1 MOMENTS AND CUMULANTS OF WIDE SENSE STATIONARY PROCESSES
The definitions of the cumulants and moments of wide sense stationary processes
are straightforward, although not always simple, e.g., the fourth-order cumulant
is a complex expression.
Definition 45  The first-order cumulant, or mean value:

c1=m; = E{X (1)} (1.50)

Definition 46  Second-order cumulant or covariance sequence:

2

(1) = ma(t)) —my
2
=ma(—11) —mj

=c(—11) (1.51)

where my (1) is the autocorrelation function dependent on the time horizon t| of
time series 1.

Notice that covariance sequences are symmetric in time. The time interval is 77.

Remark 47 When m = 0, the covariance sequence simplifies to

c2(t1) = ma(7y) (1.52)
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Definition 48 Third-order cumulant
e3(t1, @) = m3(11, ©2) —mi[ma(t1) +ma (1) +mo(rr — 1) +2m3;  (1.53)
Remark 49 When m| = 0, this simplifies to
c3(t1, 1) = m3(71, ©2) (1.54)
Definition 50 Fourth-order cumulant
c4(t1, 12, T3) = M4 (11, T2, 73) — m2(T1) - M2 (T3 — T2)
—ma(12) - ma(13 — 1)
—ma(13) -ma(tp — 11) — my[m3(2 — 711, 13 — 71)
+ m3(12, 13) + m3(12, 14) + m3(11, 72)]
+ (m1)*[ma(t1) + ma(r2) + ma(t3) + ma(ts — 71)
+ma(t3 — 1) + ma(ra — )] — 6(my)* (1.55)

Remark 51 When m| = 0, this expression simplifies to

c4(T1, 12, 73) = ma(71, T2, T3) — m2(71) - M2 (73 — 12)
—ma(12) - ma(13 — 11) — ma(73) - ma(12 — 71) (1.56)
If the random process is zero mean (m; = 0) (and we can always make it
so, if and when the mean is a constant, by analyzing the deviations from the
mean), it follows that the second- and third-order cumulants are again identical
to the second- and third-order moments, respectively. However, to generate the

fourth-order cumulant, we still need knowledge of the fourth- and second-order
moments.

1.4.1.2  Conditional probability

The study of random processes would not have progressed without the concept
of conditional probabilities, which led to the Bayesian interpretations based on
Bayes Theorem.

Definition 52 The conditional probability is

P(ANB)
P(A|B)= W (1.57)

which is implicit in Bayes Theorem (Bayes, 1763):
Theorem 53 (Bayes)

P(A|B)P(B)=P(B|A)P(A)=P(ANB) (1.58)
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Definition 54 The conditional expectation of a random variable {X (t): t € T}
given the o-algebra Ay is itself the random variable

E{X(1) | As} (1.59)

measurable with respect to the information set A; and satisfying the equality
/ X()dPy =/ E{X(t) | A;}dPy (1.60)
A A

Examples of wide sense stationary random processes with serial dependence are
Markov processes, Geometric Brownian motion, Random Walks (= arithmetic
Brownian motion), and non-stationary (G)ARCH processes, to be discussed in
greater detail in Chapter 5. All these processes are used for conditional forecasting
(e.g. French and Roll, 1986).

1.4.1.3 Markov process

Definition 55 The random process {X (t): t € T}, defined on the probability
space (2, G, P), is said to be a Markov process in the strict sense, or fo possess
the Markov distribution property, if and only if

PIX(®) | X(1),....,X(t — 1)} = P{X(®) | X(t — D} a.c. (1.61)

Definition 56 A random process {X (t): t € T} is said to be a Markov process
in the wide sense if

E{|X(t)|2} < 00 (1.62)
and

E{X@®)|XA),....Xt—D}=E{X@) | Xt —D}ac (1.63)
Remark 57 In general, for a time series, of course

E{X(t)| X(t—-1D}#Xt—-1) (1.64)
Thus, a Markov process in the wide sense need not be a martingale (see Chapter 2
for the definition of a martingale). A Markov process in the strict sense involves a

stronger restriction than a martingale, since the Markov property involves whole
distributions, rather than just the expectations implied by these distributions.

1.4.2 Ergodicity

A crucial, but often misunderstood, or more precisely, ignored, concept for the
classical ensemble approach to time series — which, ideally, considers one historical
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realization of a time series as only one element of the set, or ensemble, of many
possible realizations — is Birkhoff’s ergodicity (cf. Halmos, 1956).

Theorem 58 (Birkhoff’s ergodicity) Let {X(t)} be a random process, i.e., a
measurable, or more specifically, an integrable function defined in the interval
[0, 1]. Then the expected value E{-} (also called the ensemble average) can be
replaced by a (limiting) time average, since

1 T
Jim DUX@O Xt +1). .. X+ 1)

t=0
1
:f {(X@)-Xt+7),..., X0t +17-1)} (1.65)
0
=FE{X@t)-X@t+11),....XUt+1_1)}ac (1.66)

If a random process is (Birkhoff) ergodic in the most general form, a.c., all its
moments can be determined from a single set of observations. Thus, Birkhoff’s
Theorem allows us to replace time averages over one time interval or orbit by
ensemble averages. Clearly, a particular random process might be ergodic for
certain higher order moments, but not for others. In practice, when we are given
a finite length realization of an ergodic process, we cannot compute the infinite
limit, but only the approximating finite estimate

1 T
- Y XW) - Xt+T). ... XU+T)
t=0

Remark 59 Birkhoff’s Theorem is the crux of the statistician’s frequency ori-
ented approach to time series. It’s very controversial and is obviously not accepted
by signal engineers, on physical grounds. I have not yet seen an empirical scientific
test or check for this ideal property of ergodicity, other than the exact computa-
tions based on the wavelet scalograms, to be discussed in Chapter 7. Based on the
empirical observations thus far, it would be very surprising if this equality empiri-
cally exists in financial time series and if the assumption such an empirical equality
can ever be checked (Los, 2001). After all, such a scientific check presumes the
existence of an ensemble of infinitely many possible parallel worlds. But we have
only available for scientific analysis one finite length realization, or, at best, a
limited number of finite length time realization of a particular dynamic process.
The right-hand side of the ergodicity equation is based on infinite or complete
set of frequencies and the left-hand side on an infinite or complete set of obser-
vations. Most empirical invariance properties only hold within limited ranges of
finite frequencies and of finite time intervals. Moreover, the Heisenberg Theorem
is in direct conflict with the completeness assumptions of Birkhoff’s ergodicity.
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1.4.3 Global dependence and long-term memory

The global dependence, also known as long-term dependence, of random processes
and time series, is much harder to define than serial, or short-term dependence,
such as the wide sense Markov process, since the correlations are not serial or even
overlapping. Global dependence is not of the nature of a conditional martingale
or a Markov nature, since it is not conditional on the whole past, as in the case of
martingales, or on the immediately preceding period, as in the case of the Markov
property. In fact, global dependence may occur even when serial correlations are
close to zero! Global dependence shows correlations only at transient or varying
frequencies.

Therefore such dependencies can better be described in the combined time-
frequency domain than in either the time domain or the frequency domain and
they can best be analyzed in a multi-scale fashion (Moody and Yang, 2000). The
frequency domain per se is useful only for characterization of stationary processes.
For an early documentation of the usefulness of multi-scale decomposition in
hydrology, see Mandelbrot and Wallis (1969). The global dependence of the time
series of asset returns is a central theme of this book and therefore its characteristics
will be discussed in almost all following Chapters.

1.5 Software

The computations of the following Exercises can be executed in Microsoft
EXCEL spreadsheets using its built-in functions, or by using the MATLAB®
Statistics Toolbox available from The MathWorks, Inc., 24 Prime Park Way
Natick, MA 01760-1500, USA. Tel (508) 647-7000; Fax (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

1.6 Exercises

Exercise 60 Using EXCEL spreadsheet functions and the data from the S&P500
daily data for the year 1998 found in the data set in Appendix B, compute the (loga-
rithmic) rates of total return, and the first differences (= increments or innovations)
of both the price series and of the total rates of return. Make sure that you save
these and other results in an EXCEL Workbook, and, preferably, back them also
up on a CD or a diskette.

Exercise 61 Plot the four series X(t), AX(t),x(t) = Alnx(t) and Ax(t)
created in the first Exercise against time.

Exercise 62 Produce scatter plots of the four series x(t) against x(t — 1), then
x(t) against x(t — 10), x(t — 20), x(t — 30), x(t — 40), x(r — 50), x(t — 100),
and against x (t — 200), respectively.

Exercise 63 Compute the first four moments and cumulants of the four series and
determine their mean, variance (or standard deviation), skewness and kurtosis.
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Exercise 64  Using the statistics produced in the fourth Exercise, can you answer
if any of these series exhibit serial dependence or global dependence? Why or
why not?

Exercise 65 Run MATLAB® Help, Examples and Demos, Toolboxes, Statistics:
Run Probability: have a close look at the p.d.f. (= probability density function) and
c.d.f. (= cumulative density function) of all available theoretical statistical distri-
butions. Compare the continuous with the discrete distributions, the centric with
the noncentric distributions, and the symmetric with the asymmetric distributions.

Exercise 66 Run MATLAB® Help, Examples and Demos, Toolboxes, Statistics:
Interactive Contour Plots: interpret this colored 2D image of a 3D function.

Notes

1 With little loss of generality, in this book we mean by asset returns or investment returns:
total returns = sum of cash payments and capital gains. All dividend payments are
assumed to be reinvested in the assets.

2 Tobin’s (1958) argument that portfolio returns are usually normally distributed, even
when the security returns are not, is based on an application of the central limit theorem,
which requires that the returns on the securities combined in the portfolio are uncorrelated.
But security returns are always correlated to some degree and therefore the classical i.i.d.
central limit theorem does not apply.

3 The term antipersistent will be explained in greater detail in Chapter 4. The commonly
used term mean-reverting implies that both the mean and the variance are stable: volatility
has an average value toward which it tends to move and it reverses itself constantly, trying
to reestablish its equilibrium value. That is not true with an antipersistent time series.
Financial market volatility is unstable like a turbulent flow: it has no trends, but will
frequently reverse itself in an uneven fashion. A large increase in volatility has a high
probability of being followed by a decrease of unknown magnitude.

4 Surprisingly, these crucial distinctions were already made in 1921 in a non-mathematical
form by two economists, Frank Knight (1885-1972) and John Maynard Keynes
(1883-1946), who disliked each other intensely. In particular, the Chicago economist
Frank Knight made sharp distinctions between uncertainty, randomness and probabil-
ity (Knight, 1964, original 1921). The commonsensical Knight would have appreciated
the modern concept of randomness as irregularity, which we adopt as the most rational,
although, perhaps, not the exact measurement of it. The rather elitist Cambridge, UK,
economist Keynes distinguished between historical probability = relative frequency and
subjective probability (Keynes, 1921). Keynes personally appreciated the irrational prob-
ability concepts developed by the eighteenth century enigmatic, nonconformist minister
Thomas Bayes (1701-1761), a Fellow of the Royal Society, in Bayes’ posthumously pub-
lished “Essay Towards Solving A Problem In The Doctrine of Chances” in Philosophical
Transactions (Bayes, 1763).

5 John Stuart Mill (1806-1873), the great nineteenth-century English philosopher and
economist demanded in his influential pamphlet On Liberty (1859), in which he relent-
lessly attacked conformity and timidity, that we accept uncertainty or randomness as the
necessary human condition. He wanted us to live, as his modern disciple Isaiah Berlin
might say, with the assumption that life is neither stationary nor easily understood. In
this context, it is significant that in his first major work, A System of Logic, Mill analyzed
the epistemological principles underlying empiricism (Mill, 1843).
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6 Chaos, why and how it occurs — by the process of period-doubling —is discussed in great
detail in Chapter 10.

7 This section is borrowed, with slight alterations, from Peters (1999, pp. 22—24). Dr Daniel
Ellsberg is, indeed, the one of Pentagon Papers’ fame.

8 This treatment can easily be expanded into a multivariate framework (Stein, 1981).

9 Lateral shifting and scaling are the two defining operations of wavelet analysis, to be
discussed in Chapter 7.
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2 Competing financial market
hypotheses

2.1 Introduction

Since Fama’s (1970) martingale formulation of the Efficient Market Hypothesis
(EMH), most textbooks in finance have blindly adopted this theoretical idealization
of financial markets. However, the problem, in which a theoretical random process
accurately describes the changes in the logarithm of a price in a financial market,
is still open. Several competing models have been proposed to explain at least the
following two stylized facts of observation:

(i) there is empirical evidence that the tails of measured distributions are fatter
than expected for the classical Geometric Brownian Motion (GBM).

(i1) there is empirical evidence that the second moments of the relative price
changes vary over time, i.e., that there is wide sense non-stationarity.

Eugene Fama himself was well aware of competing financial market hypothe-
ses. In the 1960s, he had reviewed and criticized the work on fractal market pricing
theory, or the Fractal Market Hypothesis (FMH), by Mandelbrot, which empha-
sizes the empirically observable and well-corroborated self-similarity of power
laws of financial pricing, in particular in stock markets (Fama, 1965). Such time-
dependent self-similarity of empirical financial pricing laws contradicts the EMH
based on martingale theory, as explained in this chapter.

While theoreticians have favored Fama’s martingale based EMH, and Fama
continues to support the martingale based EMH (Fama, 1991), more than twenty
years of empirical research results assiduously compiled by Peters (1994) tend to
support the FMH.! In this book we will present new methods of empirical analysis
to corroborate and refine those FMH results.

2.2 EMH: martingale theory

2.2.1 Martingales and fair games

Before we follow Fama (1970) and interpret the efficiency of financial markets in
terms of martingales, it may be wise to obtain first an intuitive understanding of
what martingales are. Martingales are very useful concepts for when time series
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observations are dependent, since they usually are! Examples are abundant, like

(1) when the observations result from feedback processes;

(2) when the estimation situation is nonlinear; and

(3) when the information sets are increasing, because of accumulation of
observations.

Intuitively, a discrete martingale can be understood as a sequence of values of
conditional (pricing) events, which is as likely to go up as to go down, in each of
a series of consecutive time instants.

Definition 67 For the sequence {X (t):t = 1,2, ...}, if
E{Xt+1D|X(1),XQ2),....,X0®)}=X() 2.1)
then the sequence {X (t)} is called a martingale.

For example, if X (¢) represents the stake in a game at time ¢ held by one of two
gamblers, the game between the two gamblers is fair if and only if the martingale
property holds. Martingales are one of the simplest kinds of random processes
for which a number of convergence results and central limit theorems (CLTs) are
available (Chow and Teicher, 1978; Los, 1982). For estimation theory, however,
the martingale-difference (MD) property is more fundamental, since this property
lies in between the properties of independence and uncorrelatedness, respectively.
Martingales are the partial sums of MDs, which we will define shortly.

To do so, we need, first, the following definitions of sub- and supermartingales,
as follows.

Definition 68 A random process {X (t), A;: t € T} is called a submartingale if

E{|X(1)]} = o0 (2.2
and

E{X(®t)| As} > Xya.c., s<t;s,teT (2.3)
The random process is called a supermartingale if, instead,

E{X(t)| A} < Xya.c., s<t;s,teT 2.4)

The random process is a martingale, if the process is both a submartingale and
a supermartingale.

Remark 69 Sub- and supermartingales are also called semi-martingales.
We can now easily define the more relevant concept of a MD.

Definition 70 A random process {X (t), A;:t € T} is called a MD if
X)) =AYt)=Y@®)—Y(t—-1), X{1)=Y() (2.5)

where the random process {Y (t), A;:t € T} is a martingale.
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Since for an MD

E{XX®) | A—} =E{Y®) - Y@t — 1D | A1}
=EY®) | A} —E(Y@ =1 | A—1}
=Y¢t-1)-Yt—-1)=0 (2.6)

the MD process is often defined by the conditional expectation:
E{X(@) [ A1} =0 2.7

Thus, a martingale is conditional on all preceding information or experience
contained in the historical information set .4;_;. In particular, MDs have a history!
They are not mutually independent!

2.2.2 Independence and uncorrelatedness

Compare now this definition of the MD-property with the following classical def-
initions of independent and uncorrelated random variables (r.vs), to see why the
martingale property is different from both and why it is more general.

Definition 71 Let {X(¢): t € T} be a sequence of r.vs on a given probability
space (2, A, P) with

E{X()}=0 (2.8)

and {A;: t € T} a current of o-algebras on the measurable space (2, A). Then
{X (¢)} is a sequence of independent r.v. with respect to { A;} if X (t) is measurable
with respect to A, and is independent of A,y forallt € T.

Thus, independent r.vs have no history! They are immeasurable using past
historical information. Otherwise stated, they are only measurable with respect to
current information.

Remark 72  Only the outcome of a throw of the theoretical ideal fair die is an
independent r.v. Such a complete system situation never occurs in the real world,
as Fama (1970) understood, based on his earlier observations (Fama, 1965).
Even a real world so-called randomized experiment can never be the equivalent
of the theoretical ideal fair die, in contrast to what statisticians appear to believe.
The physical, finite constraints of the real world prevent that from happening.
The system is never complete. Even computerized randomization will not result in
this theoretical equivalence, since computers have finite memory registers.

Empirical data are virtually never independent. Only the physical process of
atomic decay leads to pure random “bits.” In empirical reality there is always
some form of historical conditionality, some constraint, some form of dependence
on the past, even with a so-called “fair” die (Kalman 1994, 1995, 1996). Thus,
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the fundamental scientific research questions should be: what kind of dependence
is that? Is that dependence serial (“short term”) or global (“long term’)? What is
uncorrelatedness? Is it similar to independence, or is it more restricted? This last
question we can answer: it is more restricted.

Definition 73 Let {X(t):t € T} be asequence of r.vs on a given probability space
(2, A, P)with E{X(t)} = 0and {B;:t € T} a current of linear spaces B; D B;_1
on the measurable space (2, B). Then X (t) is a sequence of uncorrelated r.vs
with respect to {B,} if X(t) € B; and is uncorrelated with all elements of B,
forallt € T.

The crucial part of this definition of uncorrelatedness is the linearity of the
independent information sets, which we’ll discuss in detail in Chapter 3. Uncor-
relatedness is linear independence. A random process of increments can be
uncorrelated = linearly independent, but nonlinearly dependent. In contrast, mar-
tingales allow for nonlinearity, i.e., for both general dependence and for the more
restricted correlatedness. But, depending on whether the current of data spaces
on which they are defined is nonlinear or linear, MDs are independent or even
uncorrelated, respectively (Mantegna, 1997).

2.2.3 Random Walk and GBM

We’ll need some additional definitions to expand the arsenal of our analytic tools,
to sharpen our analytic concepts and make them more specific and detailed, since
there is quite some sloppiness in this field of research (cf. Osborne, 1959, 1962).
First, we’ll define a Random Walk and its sibling, the GBM. Both are currently
the most popular time series models in finance.

Definition 74 A Random Walk, or Arithmetic Brownian Motion (ABM) is a
particular wide sense Markov process with independent, identically distributed
(i.i.d.) (= stationary) innovations

X(t)—X(t—1)=e(t), wheree(t) ~i.i.d. (2.9)

Definition 75 A GBM is a Random Walk of the natural logarithm of the original
process X (t). Thus, first we define

X(@) _ _
nm—lnX(t) 1HX(I l)
= AlnX()
=x(1) (2.10)

so that we have the ratio

XA _ 0 _ pea-De (2.11)
X(@t—1)
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or, equivalently, after taking natural logarithms,

x(t)=x(t —1)+e(@), wheree(t) ~i.id. (2.12)

Consequently, we can also state, simply

Ax(t) =x(t) —x( —1)
=e&(t), wheree(t) ~i.id. (2.13)

The innovations ¢(t) of such alogarithmic Random Walk or GBM are identically
distributed in the wide sense = wide sense stationary (= with constant mean and
variance), and they are mutually independent.

Quite a few of the classical probability theory and estimation results are derived
from the CLT of Lindeberg-Lévy, which formulates the convergence in distribution
to a standard normal distribution of normalized and centered sums of i.i.d. random
variables (Lévy, 1937; see also Dhrymes, 1974; Chow and Teicher, 1978). The
usual approach to prove these asymptotic CLT-based results is to apply an ergodic
theorem, which assumes that the ensemble- and time-averages are identical. But,
as we now understand, this ergodic approach requires such considerable (Platonic)
idealization of the empirical situation, that it is unrealizable. It just does not apply
to the finite, empirically observable world. Worse, such idealization leads to con-
siderable distortions and hinders future progress in our scientific understanding
of the world.

In finance, one usually assumes a sequence of i.i.d. observations. In reality, this
assumption of independence is violated because of financial feedback and adapta-
tion processes: financial investors and traders learn from their valuation and trading
mistakes. Further, an indispensable condition for the application of an ergodic the-
orem is that the probability measure must converge almost certainly (a.c.). To
achieve convergence a.c., strict stationarity of the observations is assumed. But
this assumption can never be checked completely against the data. Thus, we’ve
come full circle.

The fundamental empirical problem is that the idealizing assumption of ergod-
icity, which is based on the unrealistic assumption of an idealized ensemble set, is
uncheckable on the basis of a single historical realization of the random process,
i.e., on a single historical set of time series data. We should check the complete
ensemble, but we can’t. We assume it theoretically exists, while we can’t check
that it empirically exists. Such uncheckable assumptions don’t belong in science
(Los, 2001).

2.2.4 Dependence-allowing efficiency

Samuelson (1965) and, in particular, Fama (1970) used the martingale (difference)
property to define efficient market pricing, so that market efficiency no longer
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depends on the conventional

i.i.d. = independence + stationarity (2.14)

assumption of the innovation series that drives the speculative pricing process as
modeled by, say, the original Random Walk of Bachelier (1900; see also Cootner,
1964), or the GBM. Thus, from now on, in this book, when we talk about effi-
ciency, we distinguish a particular degree of efficiency: the Samuelson—Fama
efficiency. That is the compact definition of market efficiency, which allows for
other, in particular, nonlinear forms of market efficiency than the one defined by
i.i.d. innovations. There are clearly other degrees of efficiency.

Definition 76 A market is Samuelson—Fama-efficient, when the random market
pricing process is a martingale.

It’s important to realize that this degree of market pricing efficiency allows for
a particular kind of dependence over time and that other kinds of dependence
are possible. In fact, as Mandelbrot (1966, 1971) showed, martingales and MDs
are too restrictive to describe efficient empirical speculative markets, since they
don’t allow for singularities in the empirical time series, i.e., the discontinuities
and sharp breaks which are observed in empirically efficient speculative markets.
Martingales require that:

E{|X(@)|} < o0 (2.15)

Mandelbrot demonstrated that there are random speculative pricing processes, for
example, sequences of price singularities, like the incremental changes in FX
quotations, which have infinite variances, so that:

E{|IX®)|} = 00 (2.16)

Therefore, they falsify the classical statistical assumption of ergodicity, as we
discussed in Chapter 1.

Fortunately, we can still empirically measure the risk in those singular markets,
but not by using conditional expectations and martingales. Consequently, the effi-
cient convergence to a limiting, dynamic (time-varying) equilibrium distribution
is now viewed to be dependent not on the classical i.i.d. r.v. assumption, but on a
particular class of dependent r.v. assumption. Such efficient convergence towards
a dynamic equilibrium is dependent on either stable distributions or on even more
transient phenomena, like the spectrum of singularities of the speculative price
series, as in the case of empirical FX quotations. We’ll discuss the measurement
and analysis of such singularity spectra in Chapter 8.
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2.3 FMH: fractal theory

2.3.1 Importance of investment horizons

Why do we need a different concept of time-dependence than the serial time-
dependence favored by classical time series analysis? Because of the simultaneous
existence of a variety of investment horizons t; in the financial markets. To
demonstrate the importance of the various investment horizons in market pric-
ing processes, Holton (1992) contrasts the immateriality of these horizons in the
idealized Random Walk process with the empirically measured materiality of such
horizons for speculative pricing series. His simple graphs clearly demonstrate the
incorrectness of the Random Walk model, even as an approximation, for such
empirical pricing processes, since the Random Walk assumes stationarity of the
volatility of the innovations. Before we discuss the details of this new view, we
introduce the formal definition of a total rate of return on an investment, as used
in this book.

Definition 77 The total rate of return on an investment X made at time t — 1 is
represented in various forms, as
AX(t
Xt —1)
X)) —-X@—1)
T X@t—-1D
X (1)
X@t—-1)
X(1) :
n|{ ———— for relatively small numbers
X(t—1)
=InX@#) —InX(—-1)
= AIn(X (1)) (2.17)
Definition 78 In finance, the volatility of x(t) observed at appropriate moments

in time (e.g. in minutes, hours, days, weeks, months, years, etc.) is measured in
period t; by the standard deviation, measured by using time-averages:

o7, = [Eo {[x(t) — E- {x()}*}1°?
. 0.5

2
1 1
EZ |:x(t) — r—igx(t)i| (2.18)

t=1

What are the specific consequences of the assumptions of stationarity and
independence (i.e., the conventional combined i.i.d. assumption), discussed in
Chapter 1? Let’s spell them out beforehand, so that we can find the stark discrep-
ancies and clashes between these theoretical assumptions and empirically observed
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reality. Under the assumptions of wide sense stationarity, the means are constant,
thus

I=1;

1
Eefx®}=— x(®
b=1

= Eq {x(n)}

= constant, wheret;,7; €T (2.19)
and the volatilities are also constant

oy,

i

=oy, =0, wheret,t;€T (2.20)

In addition, it is assumed that there is complete independence between periods,
implying that there is also uncorrelatedness = linear independence between peri-
ods. Thus, all cross-covariances between periods are implicitly assumed to be zero
and are, consequently, ignored

1 1=1+7;
o= t)— E. t r—7T, —T;
Tl e ; [x(7) — Eq {x(ON[x(t —  — 1))
0.5
—E {x(t — 5 —1)}] =0 wherer;, 7, €T (2.21)

The result is that the squared volatility (= variance) of the whole observation
period T = 71 + 70 + - -+ + 1, is measured by the sum of the constant squared
volatilities in each of the subperiods:

T

(01)> =) (01)* =T(0,)* (2.22)

t=1

Thus, one reaches the conclusion that the volatility of the whole observation
period is an exponential function of time, with an exponent equal to 0.5:

or = o, T%? (2.23)

Therefore, Random Walk volatility, which relies on the combination of the two
assumptions of stationarity and independence, behaves as a square root function of
time. When we normalize these theoretical volatilities by the square root of their
time horizon, all normalized volatilities equal the same constant volatility.
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When the time periods of observation are equal to each other and t; = t for
all i, the observation period is proportional 7 = nt. For given T = length of the
set of observations, when the time periods t of observation become smaller, i.e.,
when the scale of time observation becomes smaller and is reduced to T — 1, the
fundamental time unit of observation increases, n — T, and we observe relative
smaller risks.

Definition 79 Normalized Random Walk volatility is
Or =0T (nr)fo‘5 =or 7703 fort =1 (2.24)

Thus, under the simplifying Random Walk assumption, we only have to compute
the volatility of an asset class once over the complete time period T as in Figure 1.1,
and then we can extrapolate all other time horizon volatilities for these asset classes
by appropriate scaling adjustments. On a normalized basis, still each asset class
has its own constant volatility, as in Figure 2.1. This is what we mean by the
financial market risk being dependent only on the asset class w, since there is only
one fundamental theoretical frequency w = 1/7.

Remark 80 This i.i.d. assumption implies self-similarity of the risk, since the
risk o over the horizon T, is similar to the risk o of the base observation period
7, except for the Fickian scaling factor 70,

But is this Random Walk property empirically true? Figure 2.2 shows the empir-
ically observed reality of normalized volatility, i.e., of the empirically measured
volatility for each maturity  is normalized by dividing it by 7°-. Figure 2.2 shows
that empirical financial market risk is not only dependent on asset class w, but also
on the investment horizon t. The normalized volatility of currencies increases over

16 S&P500

12 Currencies

Intermediate bonds

Annualized volatility (%)
o]

One-year T-bills

0 1 2 3
Horizon (years)

Figure 2.1 Annualized volatility of theoretical Random Walk model of constant,
normalized, asset return volatilities.
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Figure 2.2 Empirical annualized volatility of financial marketreturns: financial market
risk is a function of horizon: time-dependent, standardized, asset return
volatilities.

time. The volatility of the rates of return of the S&P500 index increases within the
horizon of one year, but then declines the longer the horizon. Similar behavior can
be observed for the intermediate bonds, except that the initial horizon is about a
quarter of a year. The volatility of the rates of return of one-year T-bills declines
within a year, is zero at the horizon of one year, and thereafter it increases again.

Thus, when Holton varies the time horizons and computes for each horizon sep-
arately the corresponding empirical volatility, it appears that these volatilities are
not constant, but time-dependent. This is a clear refutation of the i.i.d. assumptions
of the Random Walk model of risk. We have to conclude that time-dependence
plays a much more important role in the financial markets than financial analysts
have accounted for. Thus, there is not one fundamental, homogeneous time hori-
zon 7 in the financial markets but there exists a whole set of heterogeneous time
horizons t;. The term horizon analysis is currently used in the empirical financial
markets for the analysis of such time-dependencies of financial risk.?

2.3.2 Fractal Market Hypothesis

We can now also provide a simple definition of the FMH of Mandelbrot (1982)
and Peters (1994). This definition will provide us with an analytic framework, that
will be refined and made more precise in the following chapters of this book.

Definition 81 FMH: The magnitude of a risky (= random) market asset pricing
process is both frequency-(= asset class w) dependent and horizon t;-dependent
and shows global dependencies via its fractality, i.e., via its self-similarities in the
frequency and time domains. Such a process can be homogeneous = mono-fractal
(= exhibiting one form of self-similarity), or non-homogeneous = multi-fractal
(= exhibiting many coexisting self-similarities).
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We have not yet provided a precise definition of the term fractal in the FMH.
Here it is:

Definition 82 A geometric object is fractal when it has a fractional dimension D.

Contrast this definition with that of the well-known Euclidean objects, with
which we’ve become so familiar because of the classical mathematics education
of our childhood.

Definition 83 Euclidean geometric objects have discrete integer dimensions,
such as D(point) = 0, D(straight line) = 1, D(plane) = 2, D(cube) = 3.

Euclidean geometry is the study of points, lines, planes and other geometric
figures, using a modified version of the assumptions of Euclid.® In contrast, a
fractal geometric object has a fractional dimension. Such a fractal dimension
indicates the extent to which the fractal object fills the Euclidean dimension in
which it is embedded. For example, the random process x(¢) of rates of return
process on the S&P500 stock price index has the measured fractional dimension
D = 1.4 within the 2-dimensional (2D) (x, ¢) data plane.

Such fractional dimensions can be measured by various methods, such as
Range—Scale (R/S) analysis, Roughness—Length (RL) analysis, Variograms, Spec-
trograms (based on Fourier Transforms) and Scalograms (based on Wavelet
Transforms), as we will discuss in the coming chapters (cf. in particular
Chapters 5-8).

Fractal geometry describes objects that are self-similar (Mandelbrot, 1982).
This means that when such objects are magnified, their parts are seen to bear an
exact resemblance to the whole, the likeness continuing with the parts of the parts
and so on to infinity, as in the Figure 2.3 of the famous Julia set.*

Mandelbrot’s Julia set resembles the empirical breaking-wave patterns in clear-
air turbulence, due to changes in the wind within and around the jet stream, in
Figure 2.4 (Perry, 2000, p. 40). Such empirical turbulence measurements have
been made possible by a burst of recent research in technologies for real-time
detection of turbulence in all its varieties, like the onboard Doppler laser radar,
or lidar, used to produce the multicolored graph in Figure 2.4, predicting various
persistence and anti-persistence phenomena, such as thunderstorms and tornadoes,
respectively.

Inspired by this real time technology and these visualization results, a major
research question of this book on financial market risk is: are such fractal patterns
also observable in financial time series, such as the rate of return data in various
asset markets and in foreign exchange markets? In Chapter 10, we’ll show evidence
for an affirmative answer.

Itis important to emphasize that fractal processes have two important properties:

(1) Fractals are scale-symmetric (= self-similar): the fractal process can be mag-
nified, but keeps the same shape. In financial risk-theoretic terms, a marginal
distribution of a fractal speculative pricing process maintains its shape when
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observations are taken at different time intervals, although the size of these
shapes (= their amplitude) can change.

(2) Fractals are translational-asymmetric: the fractal process does not keep the
same shape when shifted. Fractals are devoid of translational symmetry, i.e.,
they don’t exhibit the smoothness associated with Euclidean lines, planes and
spheres. Instead, a rough, jagged quality is maintained at every scale at which
an object can be examined (cf. Figure 2.3).

Keep in mind that there are both upper and lower limits to the size range over
which empirical fractal objects are self-similar. Above and below that size range,
the shapes are either rough (but not self-similar), or smooth, i.e., convention-
ally Euclidean. In financial risk-theoretic terms, a fractal rate of return process is
aperiodic, although it does show a form of cyclicity over a particular time range,
because of the observed scale-symmetry.’

The risk inherent in a market pricing process depends on the different lengths
of the investment horizons of the various market participants, who neither have
uniform investment horizons, nor have investment horizons than can be easily
normalized. In addition, the financial risk depends also on the particular frequency
distribution (& asset class w), as usual.

Fractal, computer-generated image

Copyright (c) Gregory Sams/Science Photo Library, Photo

Figure 2.3 Mandelbrot’s Julia set. This set’s major element of stability is a budlike shape.
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Figure 2.4 Clear-air turbulence, in which air currents move in strong breaking-wave pat-
terns, shows up starkly in this image observed with adownward-looking Doppler
laser radar, or lidar, aboard the NASA ER-2 high-altitude research aircraft.

Using this broader definition of financial market risk, generally expressed in
probability distribution terms, we define such “financial risk™ as the shape of the
frequency distribution of the investment returns. This distribution function P can
be used to provide a wider definition of financial risk:

financial risk = P(w, T, t) (2.25)

where w (for frequency) categorizes the asset class, t represents the particular
investment horizon or its maturity, and t indicates the important dependence of this
frequency distribution on time. Empirically measured financial risk is notoriously
time-scaling and time-varying.

The importance of volatility research is most acutely experienced in option
markets, where Black and Scholes considered their tests of market efficiency in
response to Fama’s martingale definition of efficiency and debated how options
should be valued. This debate is far from settled, despite Nobel Memorial Prize
winning Black—Scholes formulas (Black and Scholes, 1972; cf. also Galai, 1977,
Chiras and Manaster, 1978; Hull and White, 1987, 1988; Figlewski, 1989).
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Table 2.1 Volatility matrix of European option
prices for various strike prices and
expiration dates

Maturity Tt Strike price X
090 095 1.00 1.05 1.10

1 month 142 130 120 13.1 145
3 month 140 13.0 120 13.1 142
6 month 141 133 125 134 143

1 year 147 140 135 140 148
2 year 15.0 144 140 145 15.1
5 year 148 146 144 147 15.0

Example 84 Sophisticated financial market participants are fully cognizant
of the phenomenon that financial risk is frequency w-, horizon t-, and time
t-dependent (Harvey and Whaley, 1991, 1992). Currently option market traders
use the volatility term structure when pricing options. They recognize that the
volatility used to price an at-the-money option depends on the maturity T of the
option. They use so-called volatility matrices, which combine volatility smiles
(which are frequency w-dependent) with the volatility term structure (which is
horizon or maturity t-dependent) to tabulate volatilities appropriate for pricing
an option with any strike price and any maturity. Table 2.1 provides an example of
such a volatility matrix, which forms a contour plot of the options volatility, and,
via the Black—Scholes model, of the options price (Hull, 2001, p. 291). Volatility
tends to be an increasing function of maturity T, when, at a particular time t, short-
dated volatilities are historically low. This is because then there is the expectation
that volatilities will increase. Similarly, volatility tends to be a decreasing function
of maturity T, when, historically at a particular time t, short-dated volatilities are
high. Then there is the expectation that volatilities will decrease. Thus, the chang-
ing term structure of volatilities reflects a nonlinear feedback mechanism in the
financial markets based on adjusting expectations (cf. Chapters 10 and 11).

Example 85 Recently more empirical research has been done on the intraday
and intraweek volatility patterns of various stock and futures market indices. Also
this research shows the time-dependence of market volatility. Usually one tests the
null hypothesis of arbitrage equality of the cost-of-carry model between the futures
and spot markets, Hy: oy = oy, which is almost always rejected, against one of
two alternative hypotheses based on information asymmetry in the markets: (1) the
“wait-to-trade” hypothesis, Hy: oy > oy, or (2) the “noise-traders” hypothesis,
Hy: 0y < oy. Using 15-minute data covering July 1, 1994 to June 28, 1996, Tang
and Lui (2001), who provide also a comprehensive literature survey on these issues,
find that the first alternative hypothesis is true for all weekdays in Hong Kong: inter-
day data for the Hang Seng Index Futures (HSIF) are more volatile than those of the
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Figure 2.5 Intraday return variance of the HSI by weekdays based on data for July 1, 1994
to June 28, 1996.

Hang Seng Index (HSI). However, for the intraday returns, the HSI is significantly
more volatile than the HSIF for the first 15-20 minutes after the markets open on
all weekdays, except on Mondays. Intraday and intraweek volatility patterns exist
for both markets. Figure 2.5 shows the variation of the intraday variance of the
HSI by weekdays and Figure 2.6 does the same for the HSIF.

Example 86 Not all results for the valuation of derivatives are sensitive to the
time-variation of risk. The put-call parity is true for any set of distributive assump-
tions, since it is based on simple arbitrage. It does not depend on the lognormal
assumption underlying the Black—Scholes model. The put-call parity holds true
even when the underlying distribution is time-varying, because at a particular
moment t the financial risk of a put option, P(w, T, ), is the same as that of a
corresponding call option with the same maturity T written on the same underlying
asset class w (Klemkosky and Resnick, 1979).

Contrast this new time-dependent definition of financial market risk with the
more narrow definition of financial risk, expressed exclusively in terms of a
time-invariant term structure of volatility (= second-order moments), as used,
for example, in Miiller ef al. (1995), Dumas et al. (1998) and Batten et al. (1999):

or = g(w, 7) (2.26)

This definition allows invariant volatility scaling in the financial markets. This
second-order definition of financial market risk is dependent on the asset class
and on the investment horizon 7, but not on time ¢.
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Figure 2.6 Intraday return variance of the HSIF by weekdays based on data for July 1, 1994
to June 28, 1996.

The even older, and, as currently considered, very unrealistic i.i.d. definition
of financial market risk is expressed by the exceedingly simple expression, which
continues to be erroneously taught as being “true” to undergraduate students:

o = constant 2.27)

In other words, this older definition assumes strict stationarity of the asset return
distributions. Amin and Morton (1994) investigated many functional forms of
implied volatility considered up to 1994 and rejected all of them.

Notice that our newest definition of financial risk = P(w, 7, t) encompasses
both preceding functional definitions of financial market risk, but that it is a much
broader definition of risk since it is focusing on the shape and time dependence
of the whole frequency distribution and not only on the functional form of its
dispersion measure or second moment.

The following two examples show that the empirically measured financial risk
in the term structure of interest rates at various maturities 7 is, indeed, dependent
on time ¢, or is time varying.

Example 87 Figure 2.7 shows the one-month Eurodollar yield x. (t), where T =
one month, together with its volatility o, (t). The following stylized facts emerge:
(1) This short-rate series is a persistent time series. It spends long, consecutive
periods above and below the (sample estimate of) the unconditional, or long-
run mean. (2) In the 1979-1982 period, the average level and volatility of the
short rate was substantially higher than for other years in the 1971-2000 period.
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Figure 2.7 One-month Eurodollar yield and time-varying (a) turbulent volatility and (b)
daily data, April 1971 to April 2000.

(3) The volatility of the short-rate level appears to be both time varying and
show long-term dependence (Chapman and Pearson, 2001, pp. 78—79). Of course,
a more precise and definite measurement of the degree of long-term dependence
should be executed by the more sophisticated technology discussed in Chapters 6
and 7.

Example 88 Figure 2.8 plots the level x.(t) (panel (a)) and volatility o, (t)
(panel (b)) of the T = five-year, constant-maturity treasury (CMT) yield from
January 1962 through April 2000. This longer maturity series has a lower mean
and volatility than the short rate in Figure 2.7, the overall movements in levels and
volatility are qualitatively similar. In particular, the five-year rate appears also to
be a long-term dependent series, and the 1979—1982 period was characterized by
substantially higher yield levels and volatility than any other years in the data set.
These observations appear to be also true for CMT yields of maturities from 1 to
30 years (Chapman and Pearson, 2001, pp. 78 and 80).
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Figure 2.8 Five-year CMT yield and time-varying (a) turbulent volatility and (b) daily data,
January 1962 to April 2000.

The lower panels in Figures 2.7 and 2.8 show the variability of the volatility of
the yields of these two financial instruments, which reminded Mandelbrot (1972)
of the variability of energy (= volatility = risk) dissipation in a turbulent fluid,
which he modeled by multifractal diffusion models, to be discussed in Chapters 8
and 11. This shows the deep link between the uses of the fractal approach in the
study of turbulence and of finance.

Example 89 Based on the recognition that some volatilities are time varying and
not constant, a recent innovation in the swap markets is the so-called volatility
swap (cf- Hull, 2001, p. 407). Just like a vanilla swap exchange floating for fixed
payments, a volatility swap exchanges varying volatility or financial risk for fixed
volatility or financial risk. Suppose the nominal principal is So. On each payment
date, one side in the volatility swap pays Syoor, where o is the historical volatility
measured in the usual way, by taking daily observations on the underlaying asset
during the immediately preceding accrual period, or horizon t, and the other
side pays Sook, where ok is a pre-specified constant volatility. Variance swaps,
correlation swaps, and covariance swaps are defined similarly.
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2.4 Importance of identifying the degree of market efficiency

The identification of the degree of market efficiency is important not only for the
accurate measurement, analysis and management of market risk, but also for the
correct and accurate valuation and pricing of both fundamental and derivative
financial instruments. In particular, it is an important research topic in the deriva-
tives markets, which exists specifically to value and price risk. The following
discussion borrows from Hull (2001, pp. 27-28 and 64—66) and Johnson (1960).°

2.4.1 Speculators’ forecasts and normal backwardation
in futures markets

The issue was initially raised as a scientific research question by Cowles (1933),
who asked if forecasters could predict the stock market, but it took until Houthakker
(1957), before the individual commodity markets were empirically analyzed.
Houthakker looked at empirical futures prices for wheat, cotton and corn in the
period 1937-1957 and he found significant market inefficiencies. He showed that
significant profits could be earned by taking long futures positions, suggesting that
an investment in an asset has positive systematic risk and consequently the present
futures price Fy systematically under-predicts the expected future spot price of the
asset E{St} at the time of maturity 7, as follows. Finance theory tells us that the
present value of the expected cash flows of a risky investment to the speculator,
who takes a long position in the futures market, consists of the sum of a certain
cash outflow and a, certainty equivalent, expected cash inflow:

—So+ E{St)e T = —Foe T + E{Sp}e™*T (2.28)

where r is the risk free rate of return and x is the discount rate appropriate for
the risky investment, i.e., the expected return required by investors on the risky
investment, which depends on the systematic risk of the investment.” Assuming
that all investment opportunities in a free, competitive securities markets have zero
net present value, we have

—Foe'T + E{Sp}e™T =0, or
Fo = E{Sp}e" =T
< E{St} whenx >r (2.29)

Both economists John Maynard Keynes (1930) and John Hicks (1939) had
already discussed this situation in theoretical terms under the term of normal
backwardation, when the speculators tend to hold long positions and the hedgers
tend to hold short positions. This occurs because speculators require compensation
for the systematic market risks they are bearing. While the hedgers lose money on
average, they accept this situation and pay that “insurance premium,’ because the
futures contract reduces their risks.

Theoretically, there are two other cases possible. First, the case of unbiased
prediction by futures prices, which would indicate that the futures markets are
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efficient. If the spot price S7 would be uncorrelated with the level of the stock
market, the investment would have zero systematic risk, in which case x = r and
Fy = E{St}. Second, the case where S; would be negatively correlated with the
level of the stock market and the investment would have negative systematic risk.
In this case x < r, and Fp > E{S7}. In this case, called cotango by Keynes and
Hicks, it would be profitable for hedgers to hold long positions and speculators to
hold short positions.

Telser (1958) appeared to have found the first case of unbiased prediction. He
studied the period from 1926 to 1950 for cotton and from 1927 to 1954 for wheat
and found no significant profits for traders taking either long or short positions.
His results are corroborated by Gray (1961), who looked at corn futures prices
during the period 1921-1959, and by Dusak (1973), who studied more recent data
on corn, wheat and soybeans in the period 1952-1967.

Dusak calculated directly the correlation of the movements in the commodity
prices with movements in the S&P500 and found little or no systematic risk, lend-
ing support to the hypotheses of unbiasedness and of efficiency. However, from the
current perspective, Dusak’s study suffers from the prejudice to look only at linear
correlations and to ignore nonlinear dependencies. Moreover, his unidirectional
projection method of regression, strongly biased his correlation results downwards,
since the level of uncertainty in his data is high.® More recent work by Chang
(1985), using data on the same commodities but with more advanced statistical
techniques, supports the normal backwardation hypothesis, Fy < E{St}.

Other shortcomings of most of these earlier studies are that they assume that the
market return distributions are Gaussian, i.e., symmetric and time invariant, and
that they are stationary, so that linear correlation studies can be applied. The empir-
ical market reality differs from both these assumptions and these conventional
correlation studies can now be shown to be scientifically deficient.

2.4.2 Measurement of degrees of market efficiency and persistence

Overall, our own conclusion is that since, empirically, more asset prices are
positively correlated with the levels of the market indices than negatively cor-
related, normal backwardation should be expected to be prevalent in the futures
markets. Therefore, the current research questions discussed in this book are:
what is the character and degree of dependence in the markets — in other words,
what is the degree of efficiency in the various markets — and what is the degree
of the resulting prediction bias? These research issues remain important for the
derivatives markets, as testified by the research of, for example, Rendleman and
Carabini (1979), Bhattacharya (1983), Klemkosky and Lasser (1985) and Harvey
and Whaley (1992).

In the following chapters, we will first expand on the issue of how to identify
the degree of market efficiency. First, we’ll discuss how to make the frequency
distributions of the various asset classes more realistic than the usual Gaussian
assumption, i.e., approximating closer to empirical reality. We do this by intro-
ducing non-Gaussian, in particular skewed and heavy-tailed stable distributions.
It will be emphasized that even this elegant statistical approximation approach
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has substantial scientific shortcomings. Next, we discuss in more detail the vari-
ous investment horizon (maturity) dependencies of these frequency distributions
and how we can possibly analyze them in a scientific, non-approximation fash-
ion. Then, our analysis will move from the (assumed) stationary investment return
processes of, say, classical option pricing, via the nonstationary rate of return pro-
cesses, to the transient rate of return processes. Ultimately, in Chapter 8 we will
focus on series and spectra of singularities, which are not necessarily evenly spaced
throughout time and which represent essentially unpredictable, but still “charac-
terizable” market risks. Some of these possible return innovation series can even
be characterized as Cantor “dust,” as Mandelbrot does (Mandelbrot, 1982).

2.5 Software

The computations of the following Exercises can be executed in Microsoft EXCEL
spreadsheets using its built-in functions, or by using the MATLAB® Statis-
tics Toolbox available from The MathWorks, Inc., 24 Prime Park Way Natick,
MA 01760-1500, USA. Tel (508) 647-7000; Fax (508) 647-7001; http:/
www.mathworks.com/products/wavelettbx.shtml.

2.6 Exercises

Exercise 90 Produce frequency histograms of the four main series of the first
Exercise in Chapter 1, based on the S&P500 daily data for the year 1988: X (t),
AX(t), x(t) = Aln X(¢) and Ax(t), to get a rough idea of the shape of their
probability density functions (p.d.fs). Use the FREQUENCY function in a Windows
EXCEL spreadsheet and plot the resulting p.d.fs.

Exercise 91 Test for stationarity of the four series of the preceding Exercise
by computing the windowed first four moments and by plotting them. How many
observations should each observation window contain?

Notes

1 This support has a different focus from, but is in line with the evidence compiled by
Haugen (1995). Haugen emphasizes the inefficiency of the stock markets and supplies
the evidence for their persistence. However, Haugen ignores the ultra-efficiency of the
foreign exchange markets and, therefore, provides no evidence for their anti-persistence.
The signal processing terms persistence and anti-persistence can be roughly translated
into the financial-economic terms of inefficiency and ultra-efficiency. Of course, neutral
persistence = martingale increments = Fama efficiency.

2 For an empirical example of such horizon analysis, cf. Los, 2001, pp. 217-220.

3 Euclid is, perhaps, the most famous scientist of all time, who worked in Hellenistic
Alexandria around 300 BC. His Elements of Geometry was a standard mathematical text
for more than 2000 years (Euclid, 1956).

4 Fractional dimensions were not discussed until 1919, when the German mathematician
Felix Hausdorff launched the idea in connection with the small-scale structure of mathe-
matical shapes. Other mathematicians of the time considered such shapes as “pathologies”
that had no empirical significance. This attitude persisted until the mid-twentieth century
and the work of Polish-born French mathematician Benoit Mandelbrot (1924—present),
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who developed fractal geometry. Mandelbrot’s 1961 study of similarities in large- and
small-scale fluctuations of the stock market was followed by work on phenomena involv-
ing nonstandard scaling, including the turbulent motion of fluids and the distribution
of galaxies in the universe. By 1975, Mandelbrot had developed a complete theory of
fractals, and publications by him and others made fractal geometry accessible to a wider
audience and the subject began to gain importance in the sciences.

With an MS in aeronautics (1948) from the California Institute of Technology, Man-
delbrot served in the French air force, then earned a PhD in mathematics (1952) from
the University of Paris. Moving to the United States in 1958 to work at IBM’s Watson
Research Center, he joined Yale University in 1974, where he is now a full time Professor
in Mathematics.

5 The terms periodicity and cyclicity, and the differences between them, are explained in
Chapter 4.

6 Figlewski (1986) is a good general source for theoretical and empirical issues of hedging
with futures.

7 According to the celebrated Capital Asset Pricing Model (CAPM). But that relationship
is more uncertain than is often assumed (Los, 1999).

8 For a strong, logical and scientific critique of the prejudices of the unique choice projec-
tion direction implied by regression and the resulting downward bias of the correlation
results, cf. Los, 2001, chapters 4 and 5.
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3 Stable scaling distributions
in finance

3.1 Introduction

As we discussed in Chapter 1, the distributional form of financial asset returns
has important implications for theoretical and empirical analyses in economics
and finance. For example, asset, portfolio and option pricing theories are typ-
ically based on the shape of these distributions, which some researchers have
tried to recover from financial market prices, as, for example, recently Jackwerth
and Rubinstein (1996) and Melick and Thomas (1997) did for the options
markets.

In particular, stable distributions are currently en vogue again for risk valua-
tion, asset and option pricing and portfolio management, long after having been
in fashion for a short-lived period in the 1960s. They provide more realis-
tic financial risk profiles, in particular in the high frequency antipersistent FX
markets, where excess kurtosis is found, but also in the persistent stock mar-
kets (Hsu et al., 1974; Mittnik and Rachev, 1993a,b; Chobanov et al., 1996,
McCulloch, 1996; Cont et al., 1997; Gopikrishnan et al., 1998; Miiller et al.,
1998; Los, 2000).

The scientific debate — about what kind of distributions best represent financial
time series — is not yet settled, and maybe never will. Some authors claim the
financial market return distributions to be close to Paretian stable (Mandelbrot,
1962, 1963a—c, 1966; Fama, 1963, 1965a,b; McFarland et al., 1982; Rachev and
Mittnik, 2000); others that they are close to Student-¢ distributions (Boothe
and Glasserman, 1987). Still others reject any single distribution (Caldéron-Rossel
and Ben-Horim, 1982). However, everybody agrees on two empirical observations:
FX and cash return rates are fat-tailed. Extreme values are more prevalent than
the conventional Gaussian distribution suggests, i.e., extreme risks are abnormally
frequent.

Thus, the main motivation for studying stable distributions is the need to evaluate
extreme risks in the financial markets. Regrettably, most of the current models
for assessing such risks are still based on the assumption that financial market
returns are distributed according to the Gaussian distribution. With the Gaussian
distribution the evaluation of extreme risks is directly related to the volatility o, as
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we noted in Chapter 1, but in the case of fat-tailed distributions this is no longer
the case.

A new controversy has arisen in the financial research community as to whether
the second moment of the distribution of rates of returns exists, i.e., whether it
converges to a (time-normalized) constant, or not. As emphasized by Miiller et al.
(1998), this question is central to computational finance, since financial models
heavily rely on the existence of the volatility of returns, ¢ (Los, 2001). Some
empirical financial distributions, such as the rates of return of the S&P500 Index
exhibit such non-existent, i.e., non-convergent volatilities. Their variances are not
only nonstationary, they are essentially unpredictable!

As we observed in Chapter 1, financial market risk has been associated with this
volatility of returns o, ever since in the 1950s Markowitz attempted to put portfolio
theory on a scientific footing (Markowitz, 1952, 1991). From the Sharpe ratio for
measuring the portfolio performance of mutual funds (Sharpe, 1966) to dynamic
fundamental asset and derivative pricing models, the risk constant o is always
present. Of course, for full-scale global multi-currency, multi-asset investment
portfolio valuation, one investigates the whole covariance matrix ¥, instead of
only independent variances 2.

To broaden the set of our theoretical distributional benchmarks, in this chapter
we focus on the statistical theory of stable marginal distributions of investment
returns, in particular, on the theory of their Paretian scaling distributions, irrespec-
tive of the structure of their temporal dependence. We want to have a theoretical
concept of statistical frequency distribution that exhibits the property of self-
similarity and to show how that property is related to certain time intervals via
stable scaling laws of time aggregation. Later on we will establish a (not yet speci-
fied) connection between the frequency of occurrence and the timing of occurrence
of certain risky events.

In this chapter, we explain, first, the difference between linear and affine
relations and time series. Then some invariant properties of stable distributions
are defined, like those of weighted mixtures, choice maximization and aggre-
gation, closely following Mandelbrot (1962, 1963b). Next, we focus on the
particular parametrizations of stable distributions of Zolotarev, following the
explanation by Nolan (1999a,b) and Rachev and Mittnik (2000). The chapter
concludes with some examples of empirical financial research, which use this
new theory of stable distributions, and discuss some of the essential weak-
nesses of the statistical approach to identify these distributions from inexact and
irregular data.

3.2 Affine traces of speculative prices

Although, in Chapter 1, we stated that correlation was a form of linear dependence,
we have not yet defined linearity, nor time-invariance, or time-dependence. In this
section, we will define linearity, affinity, time-invariance and time-dependence, all
within the context of a financial system by using simple operator algebra.!
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3.2.1 Linearity versus affinity

3.2.1.1 System transformations

Let’s first define what is meant by such a crucial concept as a system.

Definition 92 A system is a mathematical model of a physical process that relates
the input function (or source) to the output function (or response). Thus, a system
can be considered a mapping of an input X;(t) into an output X,(t). Using the
symbol f to symbolize this mapping, we have

Xo(t) = f{Xi()} 3.1
and f is the system operator, which transforms the inputs X; (t) into outputs X, (t).
f may be a linear or a nonlinear system operator.

Definition 93 A system is invertible when

Xi() = [~ Xo(0) (3.2)
Thus, the output can just as well be the input, and vice versa.

Definition 94 A system is time-invariant when
Xot+71) = f{Xit + 1)} (3.3)
where T is an arbitrary constant, representing a time interval.

Time intervals have no influence on the output of a time-invariant system, since
the system does not change within such time intervals.

Definition 95 L is called the linear operator and the system represented by L is
called a linear system, if the operator L satisfies the following two conditions of
additivity and homogeneity:

L{Xi1(t) + Xin(®)} = L{X;1 (D)} + L{Xi2()}
= Xo1(1) + Xoa2(t)  (additivity) (3.4)

Li{cXi(0)} = cL{X; (1)}
=cX,(t) (homogeneity) 3.5)

For example, the time lag-operator L which delays the input by one period is
linear, as can be easily checked, since it satisfies these two properties of linearity.
Notice that

X,—p = L°X, (3.6)

Multiple period lags consist of a geometric series of linear one-period lag operators.
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Remark 96 Note that the first difference operator A can be derived from the
time lag-operator, since

A=1-1L (3.7
This is easy to check, since

AX)=X@t)— Xt -1
=X@)— LX)
=(1-L)X®) (3.8)

Now we see also why the Geometric Brownian Motion (GBM) can be written as

Ax(t) = (1 — L)x(t)
=¢(t), withe() ~i.id. (3.9

with x(t) = Aln X (¢).

Since the lag operator is linear, the first difference operator is also linear. Higher-
order difference operators can be expressed as products of the first difference
operator:

AY=(1-1L1)¢ (3.10)

for any d € R. These higher-order difference operators play an increasingly
important role in empirical financial research, as we will observe in the following
chapters.

Example 97 The Random Walk in Chapter 2 can be viewed as a linear system,
when we focus on the first price differences AX(t), since we can write

AX(®) = (1 — L)X (1) = e(t), withe(t) ~i.id. @3.11)

In this model conception, the series of time-dependent prices {X (#)} is lin-
early transformed, or filtered, into innovations, which are assumed to be i.i.d.
Consequently, to empirically test this Random Walk model, we compute the first
differences of such price series and then test if the resulting series of innovations
is, indeed, stationary and independent. If not, the price series cannot be described
by the Random Walk model. Recently we executed non-parametric stationarity
and independence tests on high-frequency, minute-by-minute Asian FX series in
Los (1999), which are nonstationary and not independent, and on weekly Asian
stock market returns in Los (2000), which show a fair amount of stationarity, but
do not show independence.

However, the order of financial system differentiation is often empirically
measured to be a fraction and not an integer.

Definition 98 A fractional difference operator is AY = (1 — L) for d =
non-integer € R.
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We’ll meet these empirically important fractional difference operators again in
Chapter 4, where we discuss Fractional Brownian Motion (FBM), which can better
explain the observed simultaneous phenomena of non-stationarity and long-term
time dependence.

In Chapter 4, we will discuss the two major types of their time dependence:
serial (short-term) dependence, modelled by integer difference operators or global
(long-term) dependence, modelled by fractional difference operators.

3.2.1.2  Affine transformations
Definition 99 M is called the affine operator when
Xo(1) = M{X; (1)}
=cX;t)+d (3.12)

where ¢ and d are amplifying and vertical frame shifting constants, respectively.

The affine operator is clearly nonlinear, since, first, it is not additive:
M{X (D)} + M{X2()} = c[X1() + X2(0)] + 2d
# M{X (1) + X2(1)}
=c[X1() + X2(1)] +d (3.13)
and, second, it is not homogeneous, since
M{cX(t)} =cX(t)+d
# cM{X (1)}
=cX(t)+cd (3.14)

However, we can always transform an affine data series into a linear data series
by taking deviations from the mean, since

1 T
Xo(t) = {Xoo) -7 Xoa)}

t=1

T T
=[cX;(t) +d] - [% > X+ % Zd:|
t=1 =1

1 T
:c[Xi(t)—?ZX,-(t)i| +d—d

t=1

1 T
=c[xi<r)—72xi(r>}

t=1

= cx; (1) (3.15)
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which is clearly additive and homogeneous, and thus linear. Thus, we’ve found a
second reason to compute deviations from the mean, before we analyze a financial
time series, such as rates of return.

3.3 Invariant properties: stationarity versus scaling

We learned in Chapter 1 that stationarity in the wide sense (weak stationarity) is
defined by constant, invariant risk:

oy =05, witht,seT (3.16)

We learned also that a Random Walk has invariant normalized risk. As long
as the scaling factor remains invariant or stable, we can transform any horizon
risk linearly into normalized risk by proper scaling. By scaling we normalize
the horizon risk of an asset to its own invariant asset risk class. In the case of the
Random Walk, we use Fickian scaling. The Random Walk risk scales self-similarity
according to the number of periods n, where the total time of observationis T = nt,
since we can express the self-similarity of the horizon risk of the Random Walk
within the horizon 7 as follows:

1

Oy = 30T
1,05

T

= (7)0'5 or (3.17)

or, in inverse form,

or = o n*

= o.n" (3.18)

But there are distributions which have different scaling exponents than the
Fickian scaling exponent A = 0.5 of a Random Walk or ABM (on the basis
of the market prices X (¢)), or of a GBM (on the basis of the investment return
x(t) = In(X(¢)/X (¢t — 1)). It appears that these non-Fickian scaling exponents,
A # 0.5, are prevalent in empirical finance. A subgroup of such statistical scaling
distributions are the Pareto—Lévy power laws.>

Definition 100 A (Pareto—Lévy) scaling distribution (or power law) is a fre-
quency distribution P(X(t) > x) of independent random variables X (t) with a
scaling factor o, which is dependent on the frequency of (observed) occurrence,
such that

P(X(t) > x) ~ o7 = on* (3.19)

where A is the scaling exponent, the total time of observation is T = nt and T is
the minimal time period of observation, or horizon, e.g., a minute, an hour, a day,
a month or a year, etc.
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The essence of power laws is the inherent self-similarity over n: no matter what
the size of n, the power law will have the same shape. The shape of the power law
is determined by the exponent A. The size of the distributional shape is determined
by n and the fundamental volatility o .

Remark 101 Notice that we make a distinction between the observation, or
trading time t and actual time t. Thus, only when the trading time is the same as
the actual time we have t = 1,T = n, and the power law can be expressed in
terms of the total time of observation:

P(X(t) > x) ~or =0, T" (3.20)

For some financial time series, we must distinguish between trading time and
observation time, like for FX series, where the tick-by-tick trading is often more
[frequent than the recording of transaction prices by commercial bank quotations.
Researchers have often only access to the regularly spaced price quotations and not
to the more frequent and irregularly spaced tick-by-tick transaction prices.

A power law can be written in logarithmic form as an affine relation:
Inor =Alnn + Ino; (3.21

so that, in principle, the exponent A can be found from the expression:

1 —1
5 = nor no; (322)
Inn

In terms of financial risk theory, Peters (1994, pp. 27-37) appropriately calls this
relationship the term structure of volatility.

How easy is it to compute the invariant scaling exponent A from the observations?
Not as easy as it appears, since, a priori, we do not know o, the basic standard
deviation (risk) of the unit of observation, that is, the observation “noise.” This
has to be measured first, somehow, or at least simultaneously. We will discuss
this epistemological issue in greater detail in Chapter 4. The relevance of this
issue for portfolio risk management and Value-at-Risk issues will be discussed in
Chapter 12.

3.4 Invariances of (Pareto—-Lévy) scaling distributions

Many objects that come in different sizes have self-similar power law distributions
of their relative abundance over large size ranges, of the form:

fx) ~xl/e (3.23)
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A recent example of the application of the scaling laws of financial volatility to
the analysis of financial long-term dependence is Batten et al. (1999). The only
prerequisite for such a self-similar law to prevail in a given size range is the absence
of an inherent size scale. Thus, invariance of scaling results from the fact that
homogeneous power laws lack natural scales: they do not harbor a characteristic
unit (such as a unit length, a unit time or a unit mass).

Remark 102 Real-world data are never completely scale-invariant because of
“end effects.” For example, no living village has fewer than I inhabitant or more
than 100 million inhabitants — except the proverbial “global village,” which is
more of a simile, than a reality.

Mandelbrot (1962, 1963b) discusses three invariances of scaling, or self-
similarities, of stable Pareto—Lévy power law distributions:

(1) invariance of scaling under weighted mixture (= weighted linear combina-
tion);

(2) invariance of scaling under choice maximization (minimization); and

(3) invariance of scaling under aggregation.

More invariances are possible, as Figure 3.1 shows, but they are all related to the
three invariances defined by Mandelbrot, which we’ll now discuss in the following
three sections.

3.4.1 Weighted mixtures

Suppose that the random variable X is a weighted mixture of the independent
random variables X(7), and denote by p, the probability that Xy is identical

Scheme Stability property?
Summation X, Za,(Xy+-+X,) +b,
Maximum X1éja,7 maxy <<, Xj+ b,
Minimum X, 2a,miny<;cp Xi+ by,
Multiplication X, 2 A(X, X+ X,)Cn
Geometric summation X4 g a(p)(Xy+ -+ + Xrp) + b(p)
Geometric maximum X4 4 a(p) maxq << y(p) Xi+b(p)
Geometric minimum X1ga(p) mMiny <j<1(p) Xi+b(p)
Geometric multiplication | X; < A(p)(X,X; - X7(p) CP

Figure 3.1 Stable probabilistic schemes.

Note J
a Notation “X =" stands for “equality in distribution.”
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to X (7). Since
P(Xw >x)=Y pP(X(r) > x)
T
~ Y proen’
T
= oyn* (3.24)

we see that Xy is also scaling and the scale parameter oy = ) p;o; is a
weighted average of the separate scale parameters o;. (The sign ~ means “is
proportional to.”) Thus, scaling is invariant under weighted mixture (= weighted
linear combination) of the random variables.

3.4.2 Choice maximization

Ex post, when the values of X(t) are known, let X, be the largest value. This
Xy is also scaling with the scale parameter oy = Y o7, since, in order that X
is the largest, i.e., X3y < x, where x is a value, it is both necessary and sufficient
that X, < x for every t. Hence we have the product

P(Xy <x)=[]P(X: <) (3.25)

Consequently

PXy>x)=1—PXy <x)

=1-][P(X: =x)

=1 —]_[(1—P(X, > X))

~ XzarnA = oyn* (3.26)
for sufficiently small o, where o)y = > 0.
3.4.3 Aggregation

Let X 4 be the sum of the random variables X . The aggregate X 4 is also scaling,
with a scale parameter that is again the sum of the separate weights 04 = Y o7.
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Using a similar argument as for weighted mixtures

P(Xa>x)=) P(X;>x)

~ o
T
= oun’ (3.27)

where 04 = Y o0;. Mixtures combined with aggregation leave the scaling
distribution invariant — up-to-scale.

3.5 Zolotarev parametrization of stable distributions

We will now discuss stable distributions in general, by following closely Nolan’s
(1999a,b) admirably clear theoretical presentation, and we will see where the
Pareto-Lévy scaling laws of Mandelbrot, which exhibit infinite variance in the
limit, fitin. Interestingly, the study of general stable distributions was begun by Paul
Lévy in 1924 in his study of normalized sums of i.i.d. variables. Stable distributions
are a class of distributions, that includes the Gaussian and Cauchy distributions
in a family that allows skewness and heavy tails (= excess kurtosis). Distribu-
tions with heavy tails are regularly observed in economics, finance, insurance,
telecommunications and physics.

Remark 103 In finance, the interest in the skewness of return distributions has
primarily emerged in the context of the discussion about the empirical truthfulness
of the Capital Asset Pricing Model (CAPM), which is based on Markowitz Mean—
Variance Analysis. That model assumes normal distributions and/or quadratic
wealth-utility preference functions, which don’t include preferences for skewness
and kurtosis. However, the moment a certain degree of skewness is preferred by
the investors, the conventional CAPM is no longer a model of market efficiency
(Kraus and Litzenberger, 1976, Friend and Westerfield, 1980). In other words,
the empirically observed skewness implies that the CAPM cannot represent an
efficient market model.

Some people have objected against the use of stable distributions with infinite
variance, because empirical data supposedly exhibit only bounded ranges. How-
ever, the rates of return of the S&P500 Index have indeterminate (= “infinite”)
variance! Still, bounded data sets are routinely modeled by Gaussian distribu-
tions which have infinite support. Thus the epistemological question is, why
would distributions with infinite support with bounded ranges be methodologically
acceptable, while distributions with finite support and unbounded ranges would
not be? After all, we’re primarily interested in the shape of the distributions.

It appears that the shape characteristics of stable distributions, other than the
Gaussian, are more conform to the frequency distributions we empirically observe,
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in particular in finance (Rachev and Mittnik, 2000). Stable distributions pro-
vide a realistic fit with very parsimonious parametrizations. Furthermore, infinite
variances is not something restricted to stable distributions. If a distribution has
asymptotic power decay on its tails, then the number of moments is limited. If the
exponent of the power decay is less than 2, then the distribution will have infinite
variance, as we will see in Chapter 4.

We turn now to Zolotarev’s definition and parametrization of stable distributions,
since that is currently the most popular theoretical representation (Zolotarev, 1986;
Adler et al., 1998).

3.5.1 Definitions of stable distributions

Definition 104 (Original definition of stable distribution): A random variable X
is stable, or stable in the wide sense, if for X| and X, independent copies of X
and for any positive constants a and b,

aX) +bX, L ex +d (3.28)

for all choices of a and b and for some nonnegative ¢ > 0 and some d € R. Thus,
if the weighted sum of X1 and X, equals in distribution an affine relationship.

d P .
The symbol = means equality in distribution, i.e., both expressions have the
same probability law, although the size of the distribution is indeterminate.

Definition 105 The random variable X is strictly stable or stable in the narrow
sense if this relationship holds with the “intercept” d = 0, thus if their weighted
sum equals in distribution a linear relationship.

Definition 106 A random variable is symmetrically stable if it is stable and
symmetrically distributed around 0, e.g.,

4

X=-X (3.29)

In other words, the equation

aXi+bX2 LeX +d (3.30)

states that the shape of the distribution of X is preserved up to scale ¢ and shift
d under addition. For scaling distributions, which are a subset of stable distribu-
tions, this is, of course, equivalent to the invariances under weight mixture and
aggregation of Mandelbrot’s (1963a) Pareto—-Lévy distributions. The word stable
is used because the shape of the distribution is stable or unchanged under sums
of this additive type. As already mentioned, there are not only additive stable, but
also max-stable, min-stable and geometrically stable distributions, that preserve
stability under choice maximization, choice minimization, etc.
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There are other equivalent definitions of stable random variables. Here is a
variation of the original definition of an (additive) stable distribution:

Definition 107 (Variation of the definition of a stable distribution) X is stable
(in the wide sense) if and only if for all n > 1 there exist constants ¢, and d,, € R
such that

d
Xi+Xo+--+X,=c, X +d, (3.31)
where X1, ..., X, are independent, identical copies of X.

It appears that the only possible choice for ¢, is ¢, = n1/%2), X is again strictly
stable if and only if d,, = O for all n. Thus, a defining invariance property of stable
distributions is that linear combinations of stable random variables are also stable.

The most concrete way to describe all possible stable distributions is through
their characteristic functions, or Fourier transforms (cf. Chapters 1 and 4), which
is what we will do next. All stable distributions are scale and location shifts of
standardized stable distributions, just like any Gaussian X ~ N (i, o'2) is the scale
and location shift affine transform X = o Z + u of the standardized Gaussian
Z ~ N(0, 1), for which standardized probability tables exist.

Following Nolan, we will present the popular standardized or reduced
parametrization of stable distributions of Zolotarev.? This standardization of stable
distributions uses the sign (or modified Heaviside) function, which is defined as:

—1 forw <0
sign(w) = 10 forow =0 (3.32)
+1 forw >0

Theorem 108 (Zolotarev, 1986, standardized parametrization of a stable distri-

bution) A random variable X is stable if and only if X Lz +d, withc > 0,d € R,
and Z = (vz, B) is a random variable with the following characteristic function,
where 0 <az <2,—1 <8 <1,

. oo
Efei®?} = / eI dG ()
—00
(—lol*z[1+j tan(wez/2) sign(@) (ol Z2=D])  ; 1

(—loll1+]BQ/m)(sign(@) In|w]) ifag =1

where G is the stable distribution function corresponding to the stable density
function of Z.

The key idea of Zolotarev’s fundamental Theorem is that oz and 8 determine
the shape of the stable distribution, while ¢ is a scale and d is a shift parameter.
It shows that the standardized stable distribution has only two parameters: (1) an
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index of stability, or stability (shape) exponent az € (0,2] and (2) a skewness
parameter 8 € [—1,1]. For the @z = 1 case, 0.1n 0 is always interpreted as 0.

Remark 109 The non-standardized stable distribution of the random variable
X ~ S(az,B,v,8;0) (e.g., in Mittnik et al., 1998 and in Rachev and Mittnik,
2000) has the characteristic function

. +m .

E{e/?"} = / e!“*d H (x)
—00

eV o214 jBlan(waz /2) sign(@)(ylel' ™4 =DI+jdw) g, £

= | o rloll1+iB@/m) (sign(@)(In [0l +n y 1+ jéw) faz =1

(3.34)

where H is the stable distribution function corresponding to the stable density
function of X. As we already discussed in Chapter 1, this non-standardized stable
distribution has four parameters (1) a stability exponent az € (0,2], (2) a skew-
ness parameter € [—1,41], (3) a scale parameter y > 0, and (4) a location
parameter § € R.

Remark 110 The computation of all stable densities is approximate in the sense
that the density function S(az, B,v,8;k), k = 0, 1 is approximated by Fast Fourier
Transformation (FFT in Chapter 5) of these stable characteristic functions.

3.5.2 General properties of stable distributions

Although explicit formulas exist for stable characteristic functions, in general no
explicit formulas exist for the corresponding stable distribution densities. How-
ever, the theoretical properties of such distribution densities are well known. The
basic property of stable distribution densities is given by the following so-called
idealization theorem.

Theorem 111 All (non-degenerate) stable distributions are continuous distribu-
tions with an infinitely differentiable density.

The probability density function (p.d.f.) of a standardized Z(«z, B) stable dis-
tribution will be denoted by f(z | oz, 8) and the cumulative distribution function
(c.d.f.) will be denoted by F(z|az, ). All stable densities are unimodal, i.e.,
they have each one “peak.”4 The mode m(az, B) of a Z(xz, B) distribution can be
numerically computed, even though no explicit algebraic formula for it exists. By
the symmetry property, the densities have modes such that:

m(az,—p) = —m(az, ) (3.35)

Furthermore, stable densities are positive on the whole real line, unless oz < 1
and (B = +1 or 8 = —1), in which case the support is half a line. In more
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precise terms

Lemma 112  The support of a stable X (az, B, v, §) distribution is

support f (z | az, B)

[6 —tan(wraz/2), 00) ifaz < 1 and B = 1 (positively skewed)
=1 (—00,6 + ytan(wraz/2)] ifaz <1 and B = —1 (negatively skewed)
(—00, +00) otherwise
(3.36)

Remark 113 Notice that the constant tan(woz/2) is an important ingredient
of stable distributions. It shows an essential discontinuity at oy = 1, since as
az 1 L tan(raz/2) 1+ +ooand oz | 1, tan(maz/2) | —oo, while tan(waz/2)
is undefined at oz = 1.

Another basic property of stable distributions is their symmetry.
Proposition 114 (Symmetry Property) For any oz and §,
d
Z(az,—p) = Z(az,p) (3.37)

Therefore, the density and distribution function of a Z(«z, 8) random variable

SatiSfy f(Z | az, ﬁ) = f(_Z|a29 _ﬁ) and F(Z |aZ5 ﬁ) = 1 - F(_Z |aZs ﬁ)
It is important to consider a few special cases:

(1) When g = 0, the symmetry property says f(z|az,B) = f(—z|az,B), so
the p.d.f. and c.d.f. are symmetric around O.

(2) When B > 0, the distribution is skewed to the right with the right tail of the
distribution heavier than the left tail: P(Z > z) > P(Z < —z) for large
z > 0. When 8 = 1, the stable distribution is fotally skewed to the right.

(3) By the symmetry property, the behavior of the 8 < 0 cases is reflecting the
behavior of the 8 > 0 cases, with a heavier left tail. Thus, when g < 0, the
distribution is skewed to the left with the left tail of the distribution heavier
than the right tail: P(Z > z) > P(Z < —z) for large z > 0. When 8 = —1,
the distribution is totally skewed to the left.

(4) The stability exponent oz € (0, 2] determines the kurtosis of the distribution:
the peakedness at § and the fatness of the tails. As the stability exponent
oz decreases, three things occur to the distribution density: its peak gets
higher, the region flanking the peak gets lower, and the tails get heavier, or,
in summary: the kurtosis of the distribution increases. Of course, when the
stability exponent oz increases, the kurtosis of the distribution decreases. For
example, when oz = 2, the distribution is normal with its variance equal to
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o2 = 2y2. In that case
Tz
tan (T> = tan(7) = 0 (3.38)

so the characteristic function is real and hence the distribution is always
symmetric, no matter what the value of B.

(5) When the stability exponent oz < 2, the second moment, or variance,
becomes infinite, or undefined. When 1 < a7 < 2, the first moment exists,
but when az < 1, the theoretical (population) average also becomes infi-
nite or undefined (Samorodnitsky and Taqqu, 1994). Thus, there is only a
very limited range of the stability exponent «z for which both the first and
second moments exist. By existence of moments we mean that they have a
well-defined value that can be determined within a prespecified error range,
no matter how small.

Of course, we can always compute a (sample) average or a variance of a finite
data set. Non-existent or undefined theoretical (population) averages and vari-
ances mean that there is no convergence to well-defined values, even when we
substantially enlarge the data set. The computed mean and variance of that data
set will never converge to a specific mean and variance, but will continue to “wan-
der.” It will never settle on a specific value. This is not a theoretical abstraction,
as one can observe from the empirical data Exercises at the end of this chapter,
based on the rates of return of the S&P500 Index. These stock market rates have
defined, convergent finite mean, but no defined, convergent variance. Peters 1994
(pp- 200-205) provides many additional theoretical and empirical examples. These
cases are seldom mentioned in the classical statistical literature, thereby creating
the erroneous impression that these cases are pathological and special. But they
are regularly occurring empirical cases in the financial markets!

3.5.3 Different Zolotarev parametrizations

Historically, several different Zolotarev parametrizations have been used for stable
distributions, for which, in general, no closed form parametrization exists (because
of the discontinuity ataz = 1). We give the three most often used parametrizations.
Here is the first one.

Definition 115 A random variable X is the parametrized stable distribution
S(az’ﬂ’ )/,8,0) lf

xLyz45 (3.39)
where Z = Z(az, B) is implicitly given by its characteristic function in Theorem 1.
This is the parametrization used for current numerical work on stable distribu-

tions. It has the simplest form for the characteristic function that is continuous in
all parameters.
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Figure 3.2 Stable density in the Zolotarev S(az,B,y.8;0) = S(az,0.8,1,0;0)
parametrization.

Remark 116 Notice that y is the scale parameter and § the location parameter,
in a rather natural fashion. For the standardized version y = 1 and 6 = 0, so that
S(az,B,y,8,0) = S(az, B;0).

Let’s show some numerical examples of stable distributions to demonstrate
their properties mentioned in the preceding section. Figure 3.2 provides a graph-
ical representation of stable densities in the S(az, 8, y,8;0) = S(«az,0.8,1,0;0)
parametrization, with the stability exponent a7 (alpha) as indicated.

Here is the second parametrization:

Definition 117 A random variable X is characterized by the parametrized stable
distribution S(az, 8,y,8; 1) if

Tz .
|rz+erpran=7). ifaz#1

X (3.40)

2
J/Z+(<3+/3;V1ny), ffaz =1

where Z = Z(az, B) is implicitly given by its characteristic function in Zolotarev’s
1986 Theorem.

This S(az, B,y,8; 1) parametrization is the most common one currently in
theoretical use, since it produces the simplest characteristic function, which is
jointly continuous in all four parameters, and has therefore preferable algebraic
properties. But it’s practical disadvantage is that the location of the mode is
unbounded in any neighborhood of oz = 1.
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Figure 3.3 Stable density in the Zolotarev S(az,B,y.8;1) = S(az,0.8,1,0;1)
parametrization.

Figure 3.3 provides a graphical representation of stable densities in the
S(az, B,v,68;1) = S(xz,0.8,1,0; 1) parametrization, with the stability exponent
az being varied similarly as in Figure 3.2. Notice in Figure 3.3 that the mode is
near 0 for oz near O or 2, or ¢z = 1, but diverges to 400 as @z 1 1 and diverges
to —oo as az | 1. When B = 0, both these parametrizations are identical.

Remark 118 Asaz 1 2 both parametrized distributions converge in distribution
to a distribution with standard deviation ~/2y and noty, as maybe would have been
expected! In fact, when az < 2, no standard deviation exists. Thus, for comparison
purposes, one should multiply y by /2 to make the scale parameter of the stable
distribution comparable with that of the standard Gaussian distribution, i.e., the

deviation o = /2y, or, equivalently, y = %0.

The third parametrization focuses on the mode as a location parameter, since,
as we saw, every stable distribution has a mode.

Definition 119 A random variable X is characterized by the parametrized stable
distribution S(«z, B,y,8;2) if

X Lo,y (Z = m(az. B) + 6 (3.41)

where Z = Z(az, B) is implicitly given by its characteristic function in Theorem 1
and m(az, B) is the mode of Z.
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3.5.4 Tail properties and stable Paretian laws

When the stability exponent oz = 2, the resulting Gaussian distribution has well
understood asymptotic tail properties. For the purpose of comparison, we’ll briefly
discuss in this section the crucial tail properties of non-Gaussian (az < 2) stable
distributions. In financial risk theory, it is the tails of such stable distributions,
representing the less likely, outlying and sometimes catastrophic events, that are
most important for financial analysts, hedgers and insurers.

Theorem 120 (Tail Approximation) Let X ~ S(az,B;0) with0 < az < 2,
—1 < B < 1. Then, as x — oo,

P(X > x) ~ cq,(1 + B)x™% (3.42)
f(xlaz,B;0) ~ azeq, (1 4 B)x~ @D (3.43)

where ¢, = I'(az)(sinmoz/2)/m.

Remark 121 Notice the gamma function T, which is such that T'(az + 1) =
azl(az) = az!, with T'(1) = 1. We’ll discuss and use this important gamma
function in much greater detail in Chapter 4.

Remark 122  Using the symmetry property, the lower tail properties are similar.
For all «z < 2 and —1 < B, the upper tail probabilities and densities are
asymptotic power laws (i.e. scaling distributions).

Having developed this arsenal of concepts and definitions of stable distributions,
we can now define more specific non-Gaussian distributions, in particular the
Pareto and heavy tailed distributions, which currently figure prominently in the
recent financial research literature (Miiller et al., 1990; Janicki and Weron, 1994,
Mantegna and Stanley, 1995; Samorodnitsky and Taqqu, 1994) .

Definition 123 Pareto distributions are probability laws with upper tail proba-
bilities given exactly by the right-hand side of the Tail Approximation Theorem.

Remark 124 The term stable Paretian laws is used to distinguish between the
fast decay of the Gaussian distributions and the Pareto-like tail behavior in the
oy < 2 case.

Definition 125 A distribution is said to be heavy tailed if it’s tails are heavier
than exponential.

Remark 126 For oy < 2, stable distributions have one tail (when az < 1 and
B = %£1), or both tails (in all other cases) that are asymptotically power laws.
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One important consequence of heavy tails is that not all moments exist, or, when
they exist, they may be fractional. In other words, the literature on frequency distri-
butions has considerably expanded our arsenal of moments discussed in Chapter 1:
from integer moments to fractional moments!

Definition 127 Fractional absolute moments:

E{|IX|"} = /Oo x|? f (x)dx (3.44)

—0Q0

where p is any-integer or fractional-real number.

The Tail Approximation Theorem implies that for 0 < oz < 2, the moments
E{|X|?} are finite for 0 < p < waz, and that E{|X|”} = +oo forall p > az.
Thus, when az < 2, E{|X|*} = E{X?} = +o0 and stable distributions do
not have finite second moments or variances. This is the worrisome theoretical
case to which Mandelbrot (1963, 1966) referred in the 1960s and which was then
dismissed by most mathematicians as pathological. But empirical observations
since then have demonstrated that this case is more prevalent in financial markets
than was presumed by the theoreticians.

In fact, this is an important case for anybody studying financial risk, since it
implies that particular investment return series may have measurable stable distri-
butions, but still exhibit infinite risk! The empirical scientific question is, do such
strange financial distributions exist in empirical reality? The unfortunate answer
is: yes, since these are the distributions of variables moving in the range of the
so-called persistent or pink noise, i.e., noise that lies in the range between white
and red noise.’

Example 128 The logarithmic plot of Figure 3.4 (borrowed from Mantegna and
Stanley, 2000, p. 69) shows that the high-frequency p.d.f. for At = 1 minute
price changes of the S&P500 index with an empirically measured oz = 1.67
lies between the Gaussian p.d.f. with az = 2.00 and the p.d.f. of a Lévy stable
distribution with az = 1.40 and a scaling factor of y = 0.00375.

Example 129 Figure 3.5 shows that the daily observations on the rates of return
of the S&P500 stock market index in 1998 (available in Appendix B) exhibit con-
siderable persistence unlike Gaussian rates of return. The variance or volatility
of these daily rates of return, computed over longer and longer horizons dissi-
pates. But this dissipation of the S&P500’s volatility is not gradual and smooth.
It shows sudden and completely unpredictable discontinuities and the volatility
never converges to one defined value. Peters (1994, pp. 141-146) observed simi-
lar phenomena and found that this volatility dissipation process is antipersistent,
a term that we’ll explain in Chapter 4.

Let’s analyze the specific case of the first moment, or mean, of stable
distributions in somewhat greater detail.
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Figure 3.4 Comparison of the At = 1 minute p.d.f. for high-frequency S&P500 price
changes (white circles) with the Gaussian p.d.f. (dotted line, smallest p.d.f.
in middle) with oz = 2.00 and with a Lévy stable p.d.f. (solid line, largest

p.d.f.) of @z = 1.40 and scale factor y = 0.00375 (same as that of the
S&P500).

2.500

2.000

1.500

1.000

0.500

0.000 ) N A ) A

1 20 39 58 77 96 115 134 153 172 191

Figure 3.5 Non-convergent moving variance of 253 daily rates of return (in
100 percent) of the S&P500 stock market index in 1998, computed with a
moving window of T = 50 observations. Notice that none of the window
variances is the same and that they wander aimlessly.
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Proposition 130 When 1 < az < 2, E{|X|} < oo and the mean of X ~
S(az, B, vk, Ok k) exists, for k = 0, 1,2, respectively, the mean is

E{(X) =6
L0%4
w= {8 — Brotan — (3.45)

_ Tz
6y — azl/ayz(ﬁ tan - + m(otz,,B))

In other words, there is a clear relationship between the various location parame-
ters, 81, 6 and &, of these three parametrizations. On the other hand, when oz < 1,
the first absolute moment E{|X|} = 400, and these means are undefined. What
happens geometrically with a stable distribution when its absolute mean does not
exist?

Consider what happens to the mean of X ~ S(az, 8;0) as@z | 1. Even though
the mode of the distribution stays close to 0, it has a mean u = Stan(waoz/2).
When 8 = 0, the distribution is symmetric and the mean is always 0. When
B > 0, the mean 1 +o00, because both tails are getting heavier, but the right
tail is heavier than the left. By symmetry, the 8 < 0 case has the mean p | —oc.
Finally, when oz reaches 1, the tails are too heavy for the integral

o0

E{X}= / xf(x)dx (3.46)
—00

to converge and the mean becomes undefined or infinite: E{X} — oo.

However, this geometric description depends on the particular Zolotarev
parametrization chosen. For example, the second parametrization, a S(xz, 8; 1)
distribution keeps the mean at O by shifting the whole distribution by an increasing
amount as «z | 1. For the third parametrization, a S(«z, 8; 2) distribution keeps
the mode exactly at 0, and the mean behaves like the mean of a S(az, 8;0) distri-
bution. Thus, a stable empirical distribution with a non-existent mean can best be
parametrized by the first parametrization, when such a parametrization is required.

3.5.5 Generalized Central Limit Theorem (GCLT)

The classical Central Limit Theorem states that the normalized sums of i.i.d. vari-
ables with finite variance converges to a Gaussian distribution (Gnedenko and
Kolmogorov, 1954). But the GCLT shows that if the finite variance (= finite risk)
assumption is dropped, the only possible resulting limits are stable distributions.

Theorem 131 (GCLT) Let X1, X»,...,X, be an ii.d. sequence of random
variables. There exist constants ¢, > 0,d, € R and a non-degenerate random
variable Z with

X4+ X)) —d, S Z (3.47)

if and only if Z is stable, in which case ¢, = n~"% for some 0 < az < 2.
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Remark 132  Recall from Chapter 1 that for the normalized i.i.d. Random Walk

volatility we have the stability exponent oz = 2 and thus the normalizing constant
-0.5

cp=n""".

This GCLT implies that the only possible distributions with a domain of
attraction (DOA) are stable distributions!

Definition 133 A random variable X is in the DOA of Z if and only if there exist
constants ¢, > 0,d,, € R with

d
acXi+---+ X)) —d, > Z (3.48)
where X1, X2, ... are i.i.d. distributed copies of X.

By DOA(Z) we will indicate the set of all random variables that are in the
domain of attraction of Z. As Mittnik et al. (1998) and Rachev and Mittnik (2000)
properly emphasize, a DOA is an important and, perhaps, even desirable property.
Loosely speaking, any distribution in the DOA of a specified stable distribution has
properties which are close to the properties of the stable distribution. These authors
reason that, therefore, decisions will, in principle, not be affected by adopting
an “idealized” stable distribution instead of using the true empirical distribution.
Furthermore, they claim that it is possible to check whether or not a distribution is
in the DOA of a stable distribution by examining only the tails of the distribution,
since only these parts specify the DOA properties of the distribution. The stability,
or continuity, of the adopted distribution is valid for any distribution with the
appropriate tail.

3.6 Examples of closed form stable distributions

Although there are closed forms for the characteristic functions of all stable distri-
butions, there are no closed formulas for the distribution densities and distribution
functions for all but a few stable distributions, like for the Gaussian, Cauchy and
Lévy distributions we encountered in Chapter 1. Here are their special closed form
densities.

Definition 134 Gaussian distributions: X ~ N (i, 02) if it has density

1
fx)= ﬁe—“—mz/%z, —00 < x < 400 (3.49)
TOo

The normal distribution has an infinite support (infinite domain) on the whole

real line from —oo to 4-00. In terms of Zolotarev’s formula, Z (2, 8) 4 Z(2,0) ~
N(,2).

Definition 135 Cauchy distributions: X ~ Cauchy(y, §) if it has density

—00 < X < 400 (3.50)
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The Cauchy distribution has also an infinite support on the whole real line from
—00 to 4-00. In terms of Zolotarev’s formula, Z(1,0) ~ Cauchy(1,0).

Remark 136 It can easily be shown that a Cauchy variable X, which has a
stable distribution and is almost certainly finite, has an infinite variance and an
infinite mean! (We return to this important issue in Chapter 12, when we discuss
the particular consequences of their properties for portfolio management.)

Definition 137 Lévy distributions: X ~ Lévy(y,d) if it has density

/ 1
f(x) = %meiy/z(xiﬁ), §<x <00 (351)

The Lévy distribution has only support in the positive domain on the half line
from § to oo. In terms of Zolotarev’s formula, Z(0.5,0) ~ Lévy(1,0).

Both Gaussian and Cauchy distributions are symmetric, bell-shaped curves,
but the Cauchy distribution has much heavier tails than the Gaussian distribution,
i.e., the events further away from the mean are more likely to occur than under a
Gaussian distribution. This is the reason why stable distributions other than the
Gaussian are called heavy tailed. In contrast to both the Gaussian and Cauchy
distributions, the Lévy distribution is highly skewed, with all the probability con-
centrated on x > 0, and it has an even heavier tail than the Cauchy distribution.
General stable distributions allow for varying degrees of tail heaviness and varying
degrees of skewness.

Table 3.1 demonstrates clearly the heavier tail probabilities of the Cauchy and
Lévy distributions, compared to the tail probabilities of the Gaussian distribution.

Other than the Gaussian distribution, the Cauchy distribution, the Lévy dis-
tribution and the reflection of the Lévy distribution, there are no known closed
form expressions for general stable densities and it is even unlikely that any
other stable distributions, than the ones mentioned, have closed forms for their
densities. Although there is no closed formula for the normal distribution func-
tion, there are numerical tables and accurate numerical computer algorithms
for the standard distribution function (e.g., Mantegna, 1994). Financial ana-
lysts use such computed numerical values in normal models, e.g., for the

Table 3.1 Comparison of tail P(X > c) probabilities

c Normal Cauchy Lévy

0 0.5000 0.5000 1.0000
1 0.1587 0.2500 0.6827
2 0.0228 0.1476 0.5205
3 0.001347 0.1024 0.4363
4 0.00003167 0.0780 0.3829
5 0.0000002866 0.0628 0.3453
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valuation of Black—Scholes options. Similarly, we have now also computer
programs (like Nolan’s STABLE.EXE software, available from his web site:
http://www.cas.american.edu/ jpnolan/stable.html) to compute quantities of inter-
est for stable distributions, so it is possible to use them in empirical problems, like
the valuation of the risk in various assets and derivatives. Precise tabulations of the
skewed stable distributions can be found in McCulloch and Panton (1997, 1998).

3.7 Stable parameter estimation and diagnostics

Nolan (1999b) discusses in detail the methods for estimating stable parameters
from empirical data and the methods for model verification, i.e., how to assess
whether the estimated stable parameters actually do a good job describing the
empirical data.

3.7.1 Parameter computation
There are basically four methods of parameter computation:
(1) The computation of «z, 8,y and ¢ is usually performed by minimizing a

distance function, (Mittnik et al., 1998), like the Kolmogorov distance.

Definition 138 Kolmogorov distance (KD):

p = sup |F(x) — Fs(x)| (3.52)

xeR

where F(x) is the empirical distribution and ﬁs(x) the estimated distribution
function for a particular parametrization S.

This method is used mostly when one is concerned about kurtosis.
(2) Alternatively, one maximizes numerically the so-called likelihood function

of stable distributions.

Definition 139 Likelihood function (ML):

i -5\ 1
L(z.B.y.8) = [[S@z. $:0) <" )— (3.53)
1 Y Y

which is maximized with respect to the four parameters oz, 8, , 6.

Under the i.i.d. assumptions the resulting estimates are consistent and asymp-
totically normal with the asymptotic covariance matrix given by the inverse of
the usual Fisher information matrix, i.e., the matrix of second derivatives of the
likelihood function evaluated at the ML point values (Mittnik et al., 1996).

(3) The oldest method is the quantile/fractile method of Fama and Roll
(1971) for the symmetric case and of McCulloch (1986) for the general
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case. This method tries to match certain data quantiles with those of stable
distributions.

(4) But the scientifically most convincing method is to compute the moments
directly from the empirical characteristic function, as recommended by Nolan
(1999a,b).

Nolan (1999b) provides many valuable applications of simulated data, exchange
rate data, CRSP stock prices, Abbey National share prices, radar noise ocean wave
energy, and simulated unstable data. Here, we reproduce Nolan’s example of fitting
stable distributions to exchange rate data.

Example 140 Daily exchange rate data for 15 different currencies were recorded
(in UK Pounds) over a 16-year period (January 2, 1980 to May 21, 1996). The
data was logarithmically transformed by

y(t) = AlnX(t + 1)

=InX(t+1-InX()) (3.54)
giving T = 4,274 transformed data observations. The transformed data were fit
with a stable distribution, using the maximum likelihood function method. The
results, with 95 percent confidence intervals, are given in Figure 3.6. These empir-
ical data are clearly not Gaussian: the heavy tails in the data cause the sample
variance to be large, and the Gaussian fit poorly describes both the center and the
tails of the distribution. Although the stable distribution fit does a reasonable job
of describing the FX rate data, it never captures the extreme “peakedness” of FX
rate data. With the stability or tail exponent 1 < az < 2, we must conclude that
although the mean of these daily FX returns exists, the variance is undefined and

Country o B y 8

Australia 1.479+£0.047 0.033+0.080 0.00413 +0.00013 —0.00015 + 0.00022
Austria 1.559 +0.047 —0.119+0.092 0.00285 + 0.00009  0.00014 + 0.00015
Belgium 1.473 +£0.047 —0.061 +0.080 0.00306 & 0.00010  0.00009 + 0.00016
Canada 1.574 +£0.047 —0.051 +£0.093 0.00379 +0.00012  0.00004 + 0.00020
Denmark 1.545+0.047 —0.119+£0.090 0.00272 4+ 0.00008  0.00022 + 0.00014
France 1.438 +0.047 —0.146 +£0.078 0.00245 + 0.00008  0.00028 + 0.00013
Germany 1.495+0.047 —0.182 +0.085 0.00244 +0.00008 0.00019 + 0.00013
Italy 1.441 +£0.046 —0.043 +£0.076 0.00266 & 0.00009  0.00017 &+ 0.00014
Japan 1.511+£0.047 —0.148 +£0.086 0.00368 & 0.00012  0.00013 & 0.00019
The Netherlands 1.467 +0.047 —0.167 +£0.081 0.00244 4+ 0.00008 0.00016 & 0.00013
Norway 1.533+0.047 —0.070 +0.088 0.00253 & 0.00008  0.00005 + 0.00013
Spain 1.512+0.047 —0.007 +0.083 0.00268 & 0.00008 0.00012 4 0.00014
Sweden 1.517 £0.047 —0.081 +0.085 0.00256 &+ 0.00008 0.00006 + 0.00013
Switzerland 1.599 +0.047 —0.179 £0.100 0.00295 + 0.00009  0.00014 + 0.00016
United States 1.530 +0.047 —0.088 +0.088 0.00376 &+ 0.00012  0.00009 =+ 0.00020

Figure 3.6 Estimates of four
distributions.

parameters of

the Zolotarev parametrization of FX
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thus also the fourth moment. In other words, the values of the variance and of the
kurtosis of each of the FX series do not converge, but they “wander” aimlessly
when more data are aggregated.® In other words, the volatilities of these FX data
are undefined and, therefore, cannot be priced or hedged by the usual pricing or
hedging formulas! The currency with the heaviest tails (¢ = oz = 1.441) and
thus most extreme outlying values was the Italian Lire, while the one with the light-
est tails (¢ = az = 1.530) was the Swiss Franc. Notice also that the Australian
distribution was the only one in this period with a slight positive skewness (8 > 0),
indicating the depreciation of the Australian Dollar versus the UK Pound. All other
currencies showed negative skewness (8 < 0) and thus appreciated versus the UK
Pound over the length of this 16-year period. For a similar, but earlier, set of daily
foreign exchange data and their statistical properties, see Hsieh (1988).

3.7.2 Diagnostics

In principle, it should be no surprise that one can fit the empirical data better with
the four parameter stable distribution model than with the two parameter Gaussian
model, since there are two more degrees of freedom available. But the relevant
scientific question is whether or not the fitted stable distribution actually describes
the empirical data well. In models of financial data, like rates of investment, stock
prices or foreign exchange rates, we’re interested in the whole distribution, and not
only in the tails, even though risk sensitive financial managers may want to focus
on the extreme values in these tails (Hols and DeVries, 1991), as we’ll discuss in
Chapter 12.

An important caveat is that non-Gaussian stable distributions are heavy-tailed
distributions, but most heavy-tailed distributions are not stable, as we’ll see in
Chapters 4 and 5. In fact, it is not possible to directly prove that a given empirical
data set is or is not stable! (Pincus and Kalman, 1997) Therefore, the elegance of
the stable distributions may turn out to be irrelevant for empirical financial research,
Gaussian or not, because of changes in the financial and economic situations over
time that produce nonstationary, unstable time series, for which no definite stable
distributions exist.

Even testing for normality or “Gaussianity” is still an active field of research
and not as “cut and dried” as standard statistics and, in particular, econometrics
textbooks (even in specialized textbooks such as Gourieroux and Jasiak, 2001)
make it out to be! The best we can do at this point is to determine whether the data
are consistent with the hypothesis of stability. But all these tests will fail if the
departure from stability is small or occurs in an unobserved part of the range of
observations. For example, it is found that because of the curvature (reflecting the
degree of kurtosis) in the distribution functions, it is very difficult to compare
the fitted and the empirical density functions visually, especially with respect to
the (important) tails, where observations are, per definition, scarce.

3.8 Software

For more detailed information on stable distributions, papers and soft-
ware, see John Nolan’s expert web site at the American University:
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http://academic2.american.edu/“jpnolan/stable/stable.html where you can find
STABLE.EXE (900 KB) which calculates stable densities, cumulative distribution
functions and quantiles, as well as Nolan’s User Guide for STABLE Version 2.11.
It also includes stable random number generation and maximum likelihood
estimation of stable parameters using a fast three-dimensional cubic spline inter-
polation of stable densities. STABLE.TXT (16 KB) provides the description of
the STABLE.EXE program.

Huston McCulloch of Ohio State University provides a stable distribution ran-
dom number generator in the form of MATLAB® M - Files: STABRND.M:
http://www.econ.ohio-state.edu/jhm/jhm.html.

3.9 Exercises

Exercise 141 What does a power (scaling) law of price changes, or of cash rates
of return on investments, mean in financial terms?

Exercise 142  With the four standard integer moments computed in the Exer-
cises of Chapter 1, use Nolan’s software program STABLE.EXE to numerically
compute the marginal p.d.fs for each of the four data series. Try the two
standardized parametrizations: S(oz,B,y,8;0) = S(az,B;0) = SO0 and
S(az,B8,v,8;1) = S(az, B;1) = S1. What’s the difference between these two
Zolotarev parametrizations?

Exercise 143 Are any of the four data series of the Exercises in Chapter 1
Gaussian? If not, what distributions do you suggest they represent and why?

Exercise 144 Looking at the plots produced in the second Exercise of Chapter 2,
do all first four moments of these series exist? If, or if not, what does that imply?

Exercise 145 Use Nolan’s software STABLE.EXE to generate, by the Chambers,
Mallows and Stuck algorithm (corrected by Nolan), 1,000 stable random variates
following the example in Nolan’s User’s Guide (initial random seed for the random
number generator = —1, « = az =14, 8 =0, vy = 1,6 = 0). The output
goes to a file STABLE.OUT, where it can be edited for other use (e.g., parameter
estimation).

Exercise 146 Use STABLE.EXE to fit the S&P500 data series of X (t), x(t) =
AlnX (t) and Ax(t) of the Exercises of Chapter 1 with parameters using Maximum
Likelihood estimation with the default ranges. A simple text file, e.g., 255.txt,
works well as input file for this DOS-based program. You can check if your input
file works by comparing the “Summary statistics for sample” of STABLE.EXE
with the mean, standard deviation, coefficient of skewness and coefficient of
kurtosis you’ve computed earlier in the Exercises of Chapter 1 (The EXCEL
functions deliver slightly different values, because of their degrees of freedom
corrections). Do exploratory analysis by making PP and QQ plots with confidence
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bounds, and by comparing the smoothed data distribution densities versus the
fitted densities.

Notes

1

An early user of such operator algebra was the famous Polish economist Oskar
Lange, 1904-1965 (Lange, 1970). As a graduate student of Columbia University, I used
such operator algebra in 1978 to solve the complex nonlinear growth system of Michael
Kalecki (1945), to the delight of my economics lecturer Duncan Foley of Barnard Col-
lege. Kalecki’s dynamic mathematical system was more realistic, because it could model
more complex nonstationary behavior, than Samuelson’s more familiar, but much sim-
pler accelerator-multiplier economic growth system, which can only model stationary
behavior (i.e., trends, infinite sinusoidal waves, etc.) (Samuelson, 1947).

Vilfredo Pareto (1848—1923) was an Italian sociologist and professor of political econ-
omy at the University of Lausanne, Switzerland. In his book Mind and Society (1916;
English translation, 1935), Pareto states that individuals act irrationally, but that mass
action becomes more logical, the greater the number of individuals involved, because
their desires and illusions cancel out. He thought that society, like physics, is a sys-
tem of forces in equilibrium. Mathematics can therefore be applied to explain why the
equilibrium holds, making a science of society possible. Unfortunately, Pareto’s theory
did not recognize that irrational behavior can also occur on a mass scale, e.g., like bub-
bles and catastrophes in the financial markets, and therefore his theory cannot account
for crowd behavior. In 1897 he found that the distribution of incomes for individuals was
approximately lognormally distributed for 97 percent of the population. But for the
last 3 percent of the population incomes increased more sharply. We now know from
finance theory why that is, because the more wealth one has, the more one can risk.
The wealthy can leverage their wealth in ways the average, middle-income, individual
cannot.

Other parametrizations are possible, but currently not as popular (cf. Rachev and Mittnik,
2000). In this book, which emphasizes concepts, definitions and empirical measurements
of financial risk, all theorems, lemmas and propositions will be given without proof. Such
mathematical proofs can be found in the references.

This unimodality, or “one-peakedness” of stable distributions is a potential short-
coming for research into empirical financial distributions, since some of them have
been observed to be multi-modal. Multi-modality occurs, for example, in chaotic
distributions.

These terms — white, pink and red noise — will be defined and discussed in greater detail
in Chapter 4.

Interestingly, Nolan’s (1999b) and Mittnik et al.’s (1999) measurements using the ML
method and the implied conclusion regarding the nonconvergence of the variance of
FX returns appears to conflict with the measurements by Miiller et al. (1998). The
Nolan—Mittnik measurements of o are between 1.44 and 1.78. Miiller et al. use the so-
called bootstrap and jackknife methods and find values for the tail exponent a7 between
3 and 5 for various US dollar exchange rates for various time intervals, suggesting
that the second moment does converge. This inconsistency of the respective empirical
measurements is not easily resolved. But my own oz measurements are compatible with
the Nolan—Mittnik measurements (cf. chapter 8, section 8.42). Moreover the nonconver-
gence of the variance has been observed by myself and several other researchers. Perhaps,
Miiller et al. inverted the exponent and actually measured the homogeneous Lipschitz
o = H (which will be discussed in Chapter 8). In that case their measured tail exponent
is 1/3=1.33 <z <2.00=1/5 and, thus, much more in agreement with the (somewhat
tighter) Nolan—-Mittnik measurements of 1.44 < az < 1.78. Both the physics and the
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financial literature is full of confusion between the Lipschitz «; and Zolotarev’s tail or
stability exponent ez, since most authors don’t bother to index the «!
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4 Persistence of financial risk

4.1 Introduction

In this chapter we focus on the issue of serial and global, or short-term and
long-term, femporal dependence among asset returns, irrespective of the stable
marginal frequency distributions discussed in Chapter 3.

For example, speculative market returns (and other financial and economic time
series) tend to be characterized by the presence of aperiodic cycles of all conceiv-
able “periods” of uncertain length — short, medium and long — where “long” means
comparable up the length of the total available data set, and where the distinction
between “long cycles” and “trends” is very fuzzy (Mandelbrot, 1972). Consider,
for example, the business cycles in the United States which used to have, more or
less defined, “periods” of somewhere between 3.5 and 10 years (Moore, 1980). In
fact, the most recent business “cycle” in the United States had an expansion phase
of about 12 years, from 1989-2001 and is one of the longest on record!

Although cyclical behavior of time series produced by economic models has
been extensively studied, efforts to characterize the structure of actual empirical
financial-economic time series has been minimal. The exceptions were the ele-
gant and heroic efforts by Granger and Morgenstern (1963) and Granger (1966),
who tried to characterize stationary time series of stock market prices by spectral
analysis and who attempted to determine the “typical spectral shape of economic
variables.”! Similar spectral analysis of stationary and of nonstationary series will
be presented in Chapter 5, when we discuss Fourier Transforms and Windowed
Fourier Transforms, respectively. We’ll have to understand these classical tech-
niques to analyze stationary and semi-stationary financial time series first, before
we can advance to the current technology of wavelet multiresolution analysis, also
called multi-scale decomposition, to analyze nonstationary and unstable financial
time series, which are not even convergent in their lower-order moments, and to
analyze series of singularities.

4.2 Serial dependence

4.2.1 Mixing random processes

One way to describe serial, “weak,” or short-term time dependence is that of strong-
mixing processes. Informally, mixing processes are processes that gradually “mix”
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with new information, i.e., that gradually “forget” their initial conditions over time.
In particular, a process is strong-mixing if the maximal dependence between any
two events at two different dates becomes trivially small as the time span between
these two dates increases. By controlling the rate at which this dependence between
past and future events declines, it is possible to extend the usual laws of large
numbers and the central limit theorems from sequences of independent random
variables to sequences of dependent random variables. A formal definition of a
strong-mixing random process is as follows.

Definition 147 (Strong-mixing process) Let the random process {X(t)} be
defined on the probability space (2, G, P) and define the distance measure:

y(A,B)= sup (|P(ANB—-P(APB)|),ACG BcCg 4.1)
AcA,BeB

The quantity y (A, B) is a measure of the dependence between the two o-algebras
A and B in the measurable set G. Denote by B the o-algebra generated by the
sequence {Xs(w), ..., X;(w)}, i.e, B! = 0 (Xs(w), ..., X;(w)) C G. Define the
quantities

y(@) =supy(BL ., BYY,) (4.2)
The random process {X (t)} is said to be strong-mixing if

Tli)néo y(t) =0 4.3)

Such strong-mixing conditions are satisfied by all finite-order stationary auto-
regressive moving average (ARMA) models. These ARMA models can all be
transformed into stable Markov processes, as we will now demonstrate.

4.2.2 Markov and finite-order ARMA processes

The first efforts to characterize oscillatory behavior with exact periodicity was by
postulating second- and higher-order affine Markov processes and their directly
related cousins, the Box-Jenkins type ARMA models (Box and Jenkins, 1970;
Anderson, 1994). Markov models provide only for short-term, or serial, time
dependence. These models are identified by using autocovariance function anal-
ysis, or by using its cousin, spectral analysis, both to be discussed in detail in
Chapter 5.

Definition 148 The first-order Markov process is defined by
Xt)=a1 Xt —-1)+¢@)
=a1LX(t)+¢e), withe(t)~i.id (0, %2) 4.4
which can also be written with the lag operator L (cf. Chapter 3) as

(1 —a\L)X (1) = e@t), withe(t) ~ i.id.(0,02) (4.5)



104  Financial risk processes

This first-order Markov process is stable when 0 < a; < 1. The Random Walk
is a first-order Markov process, which is marginally unstable (and has in the limit
an infinite variance), since a; = 1. An unstable and geometrically exploding first-
order Markov process has 1 < aj. This is easy to confirm, since this first-order
autoregressive AR(1) Markov process X () can also be viewed as an infinite-order
moving average (MA) process with an infinite memory:

1
X(t) = m&‘([)

=(4aL+al*+aL>+- e

— (1 + Za{Lf>g(t), with £(r) ~ i.i.d.(0, 62) (4.6)
j

When 0 < a1 < 1, the lim;_, Zj a{Lj = ¢ exists, where 0 < g < o0
is a real constant. Thus, in the limit, 0)2( =1+ q)2(7£2 is a finite (equilibrium)
variance and over time the financial market risk remains bounded and is stable.
When 1 < ay, the limit diverges, lim;_, Za{Lj — 00, and, in the limit, the
variance of X (¢) is unbounded, lim 0}2( — 00. The financial market risk diverges:
in the limit the financial risk of X (¢) becomes unbounded and infinite.

But first-order Markov processes are too simple processes to describe financial
pricing processes. Financial pricing processes are characterized by uncertain
“periodicity,” i.e., by oscillatory behavior of some sort, although without fixed
periods. For such uncertain “periodicity” one needs at least second- to fourth-order
Markov processes, or more likely, nonlinear processes.’

Definition 149 The second-order Markov process is defined by

(1 —a1L —aa L)X (1) = e(r), withe(t) ~ i.i.d.(0, 62) 4.7)
Remark 150 From straightforward solution analysis of quadratic equations we
know that this second-order Markov process is stable when (a% —4dap) > 0; itis
oscillatory (= showing strict periodic behavior), when (a% —4ay) < 0; and is

unstable when (a]2 —4ap) = 0.

Such higher-order Markov processes are easier to represent in a generic fashion
in vector-matrix notation, as follows.

Definition 151 The n-order Markov process is defined by

x(t) =Ax(t — 1)+ ¢e(t), withet) = |: 81&” ] and ¢g1(t) ~ i.i.d.(0, 03)
(4.8)
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where x(t) is a (n x 1) vector and A a (n x n) matrix, which can also be written
with the lag operator as

A —AL)X(t) =¢e() withe(t) = |: glét) ] and ¢g1(t) ~ i.i.d.(0, 052)
4.9

Example 152 For n = 3, a third-order autoregressive AR(p,q) = AR(3,0)
process can be written in such vector matrix notation as

x(1)
x(t)y=| x@—-1)
| x(1-2)
=Ax(t —1)+¢(t)
[ a a a3 x(t—1) e1(t)
= 1 0 O x(t—-2) |+ 0
| 0 1 0 x( —3) 0
=ax(t —1)+ax(t—2)+a3x(t —3)+ (1) (4.10)

with & (t) ~ i.i.d.(0, 5 2).

Again, the behavior of this random process depends on the spectral analysis of
the actual values of the A-matrix, in particular, the parameters a1, a; and a3, which
are to be determined from the A.cf. If the determinant

n
Al=]]n <1 4.11)
i=1

then the process is stable or implosive; if |A| = 1, it is marginally stable; and if
|A| > 1, the process is unstable or explosive.

Remark 153  Even more general Markov processes can be described by this type
of model when the innovations are covarying, e.g., e(t) ~ i.i.d.(0, X), with ¥ > 0,
a positive definite (n x n) matrix. Such general Markov processes form the basic
random system structure for the Kalman filter, which tracks nonstationary pro-
cesses X(t) (including unstable ones!) with time-varying covariance risk matrices
symptomatic for the conditional heteroskedasticity of G(ARCH) processes to be
discussed in Section 4.4.3

4.3 Global dependence

However, financial and economic time series do not exhibit exact periodicity,
or even uncertain periodicity; they exhibit distinct aperiodic cyclicity. In the fre-
quency domain such time series are said to have risk (= power) at low frequencies.
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Financial time series, in particular, exhibit such aperiodic cyclicity, or periods of
relative stability, followed by periods of great turbulence. Such diverse behav-
ior with periods of great intensity of uncertain movement followed by periods
of low intensity of movement, where the periods are not well defined, is called
intermittency. Intermittency is a property of nonlinear dynamic processes which
are close to complete chaos, as discussed in Chapter 9.

While the occurrence of sharp discontinuities in the otherwise trend-wise finan-
cial and economic time series is called the “Noah effect” by Mandelbrot (1965), an
appropriate reference to the Old Testamental catastrophic Flood, long-term aperi-
odic cyclicity is called the “Joseph Effect ” by Mandelbrot and Wallis (1969). This
is an appropriate biblical reference to the Old Testament prophet, who foretold of
the seven years of plenty followed by the seven years of famine that Egypt was to
experience. This cyclical phenomenon was explained by the long-term aperiodic,
but somehow cyclical behavior of the water flows of the river Nile, which brought
some time intervals of fertile sediment and thus rich harvests, followed by intervals
of drought, no sediments and consequently poor harvests in Egypt. This aperiodic
cyclic behavior of the Nile’s floodwaters has been carefully analyzed by Harold
Edwin Hurst, the British hydrologist in the 1950s.#

Hurst, who is known in Egypt as the “Father of the Nile,” studied the behavior
of the Nile’s water level to determine the height and mass of the Aswan dam to be
built by the Russians. In the process, he designed a new and powerful statistical
measure, the “range-over-standard deviation,” or R/S measure, to quantify such
aperiodic cyclical persistence of floodwater levels. We will define this R/S measure
and relate it to various exponents measuring the irregularity (= “randomness”) of
financial-economic time series.

4.3.1 Long-term persistence of speculative prices

Optimal consumption, savings, portfolio and hedging decisions may become
extremely sensitive to investment horizons t;, when the investment returns are
long-term time dependent, i.e., when they show long memory properties. Prob-
lems may also arise in the pricing of derivative securities (such as options and
futures) with Fama’s martingale methods, since the theoretical continuous-time
random processes most commonly employed, e.g., Geometric Brownian Motions
(GBMs), are inconsistent with such empirical long-term memory effects.

In such circumstances, traditional tests of the Capital Asset Pricing Model
(CAPM) and Arbitrage Pricing Theory (APT) are no longer valid, since the usual
forms of statistical inference do not apply to time series exhibiting long-term persis-
tence (Lo and MacKinlay, 1988, 1999). Mandelbrot (1971) was the first to consider
the implications of such persistent statistical dependence in asset returns in terms
of the limitations of Fama’s martingale model. This particular line of research
has acquired a greater urgency in the 1990s, when the frequency of occurrence
of financial crises appeared to increase and financial analysts and traders became
more aware of such aperiodic cyclicity and intermittency.
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The question arises: are such cycles of condensation and rarefaction, i.e., of
financial crises, which interrupt periods of relative tranquility, predictable, or are
such cycles essentially unpredictable? We’ll defer a response to that crucial, but
difficult question to Chapters 9—11.

4.3.2 Fractionally differenced (ARFIMA) time series

We will now introduce a theoretical model, which can represent such long-term
time dependence and aperiodic cyclicity. Fractional Brownian Motion (FBM) is a
nonstationary process with infinite time span of temporal dependence. Fractional
difference processes were originally proposed by Mandelbrot and Van Ness (1968).
But Hosking (1981) extended the range of these models in the form of Autoregres-
sive Fractionally Integrated Moving Average or ARFIMA(p, d, g) models, with
fractional d € R, where short-term, or serial, frequency effects are superimposed
on the long-term, global, or long memory processes.”> These fractionally differ-
enced, respectively integrated, random processes are not strong-mixing. They are
nonstationary, but have a risk spectrum with a power law decay. The autocorre-
lation functions (ACFs) of long memory or globally dependent processes decay
at much slower rates than the better known and more intensely studied ACFs of
serially dependent processes.°

Definition 154 A fractionally differenced process is defined by
(1 =L)X (1) =e(t), withe(t) ~iid.(0,07) (4.12)

where L is the lag operator and 0 < d < 1 is a fraction € R and €(t) is some sort
of shock or innovation.

Remark 155 When thed < Qs afraction € R, we have a fractionally integrated
process of order d.

Since the expression (1 — L) can be expanded via the binomial theorem for
fractional d powers, we have the general AR process (Lo and MacKinley, 1999):

(- LX) = [Z(—l)f (¢ )L] X(0)

=0

=> a(mX(t-1)

=0
=¢e(t), withe(t)~ iid.(0, 052) (4.13)
where the AR coefficients

a(r) = (—1)’( ¢ ) (4.14)

are often re-expressed in terms of the gamma function I"(u) as follows.
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Definition 156 The gamma function I () is defined by

o
'(u) =/ e dx
0

(4.15)

Integration by parts and iterated substitution gives the following important result

F'u+1)=ul'(u)
=u(u—DIr'u—-1)
=uu—1)w—-2)I'u—-2)
=u(u—Dw—-2)---T'()
= u! for u a positive integer

since I'(1) = 1.
Thus, we have for the AR coefficients:

au)z(—nf(f)

. d!
=D Wd —1)!
dd—1)---(d— 1
SR
t—d—1)-(1=d)(~d)
- 7!
_(r—d—1)!
T (=d = D!t!
't —d)

T T (t+ 1)

As the time horizon increases, T — 00, proportionally,

.L.—d—l

a0~ T

(4.16)

4.17)

(4.18)

Following Box and Jenkins (1970) and Anderson (1994), we can also view the

AR process as an infinite-order MA process, since

X)) =(1—L)"%@)

= b(r)e(t — 1), withe() ~iid.(0,07)

=0

(4.19)
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where the MA coefficients b(7) can also be expressed in terms of the gamma
function

b(r) = (=1)° (‘f)

_(+d-1)!

T d =Dt

= F(T—'l—d) (4.20)
ra@rE+1

as can be checked by following the preceding steps with —d substituted for d.
As the time horizon increases, T — 00, proportionally,

d—1

b - T
O~ =

4.21)

Viewed this MA way, any time series X (¢), even a fractionally integrated one,
can thus be represented as a summation (integration) of white noise &(z).
We can characterize such AR and MA processes by their ACF.

Definition 157 The (non-normalized) ACF of x(¢) is defined by the integral

y(t) = /00 x()x(t — t)dt

—00

= / x(t)Lx(t)dt (4.22)

—0Q

ACFs and their Fourier Transforms (= risk spectra) will be discussed in greater
detail in Chapter 5.7 The ACFs of these long-term dependent random processes
decay so slowly that for the case of persistence, when d < 0, the sum of the AR
coefficients a(t) diverges to infinity (= the financial market risk of investment
returns increases) and for the case of antipersistence, when d > 0, their sum
collapses to zero (= the financial market risk of investment returns vanishes).
Of course, for the MA b(t) coefficients the reverse is true. The main empirical
research question is: how fast does financial risk divergence to infinity or financial
risk convergence to zero occur?

In the next section, we’ll discuss this persistence and antipersistence of random
(investment return) processes in terms of a variety of (Lipschitz) exponents. First,
we need the definitions of regularly and slowly varying functions to be able to
define the important concept of long-term time dependence, which we have used
thus far in a rather loose fashion, but which now needs to be rigorously defined.
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Definition 158 A function f(x) is said to be regularly varying at infinity with
index X if

im f(@x) =x* forallx >0 4.23)
T—00 f(x)
i.e., if it behaves asymptotically as a power function. When A = 0, the function
f(x) is said to be slowly varying at infinity, since it behaves like a “constant” for
a large horizon t.

We have finally arrived at the central definition of the first part of this book: the
definition of a long-term time dependent random process. This random process
figures now prominently in the financial literature concerned with the measurement
of the efficiency and the microstructure of financial markets (cf. Lo and MacKinlay,
1999).

Definition 159 A long-term dependent random process is a process with an ACF
y (1), such that

(4.24)

(@) = ™ H(t) for x €[-1,0), or
vie = —t*H(t) forx e (=2,—1]

as the time interval lengthens, T — 00, where H (t) is any slowly varying function

at infinity.

As we will see in the next chapter, the ACF of the aforementioned fractionally
differenced time series, when &(¢) ~ i.i.d.(0, %2) is given by:

(1) = (=D (—2d)!
Y = N C2d — o)
~ agztz‘i_l as T — o0 (4.25)

where d € (—%, %). Thus, asymptotically, this ACF is slowly decaying.
We have now three important cases of noise processing in the financial markets:

(1) Whend | —%, the market fractionally differentiates white noise (¢) and its
ACF converges to y (1) ~ 0621_2, twice as fast as a hyperbolic decay. The
market representing FBM produces an antipersistent financial time series.

(2) Whend = 0, the market processes just white noise £(¢), and its ACF converges
to y(t) ~ 0821"1, a simple hyperbolic decay. The market representing FBM
integrates the white noise once and produces thereby a neutrally persistent or

brown noise financial time series.
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(3) Whend 1 %, the market fractionally integrates white noise €(¢) and its ACF
converges to y (t) ~ o2, a constant. The market representing FBM produces

a persistent financial time series.

Remark 160 One can measure these exponents by taking logarithms at both
sides of the proportionality sign ~:

Iny(r)=Qd —1)Int +Ino>+1InC (4.26)

for any constant C. The empirically measured slope (2d — 1) in this double-
logarithmic picture provides us with the value of the differentiation exponent d.

ACFs, Fourier Transforms and spectral densities will be discussed in detail in
Chapter 5, but, for the purpose of comparison, we already present here the spectral
density of the fractionally-differenced time series at frequencies close to zero. The
spectral density is the Fourier Transform of its ACF:

P() = o2(l —e )71 — /@)@

2 —2d
~ o, W

=olw ™V asw—0 (4.27)

The spectral density P(w) will be either infinite, as the frequencies approach
zero, w — 0, when d > 0: we differentiate the time series X (¢), c.q., we integrate
white noise ¢(t). Or, the opposite is true and the spectral density is zero, as the
frequencies approach zero, w — 0, whend < 0: we integrate the time series X (¢),
c.q., differentiate the white noise (¢). The exponent v = 2d is called the spectral
exponent.

Before we continue with our favorite model, the FBM model, we’ll discuss now
first some strong, and popular, contenders of the FBM: the (G)ARCH processes.
We will demonstrate that the FBM dominates the GARCH model in representing
long-term time dependence.

4.4 (G)ARCH processes

As we discussed in Chapters 1 and 2, there is strong empirical and theoretical
evidence that the second moment, or variance, of the rates of return on finan-
cial assets are time-dependent random processes (cf. Nelson, 1991). The ARCH
(= Auto-Regressive Conditional Heteroskedastic) processes, introduced by Engle
(1982) are the only plausible alternative to fractal distributions and fractionally
differenced time-series. ARCH processes appear to fit the empirical data of stock
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returns, interest rates, inflation rates and foreign exchange rates, since they can
have sharp modes and fat tails, i.e., they can exhibit different degrees of leptokurtis
for the same variances. Bollerslev (1986) generalizes the ARCH model further to
GARCH (= Generalized ARCH) and IGARCH (= Integrated GARCH) mod-
els. Although ARCH models cannot explain correctly the measured long-term
time dependence phenomena, the IGARCH models do a better, although still not
perfect, job of explaining them, because of the incorporation of a unit root, i.e., a
marginally stable process. For a promotional overview of ARCH models in finance,
cf. Bollerslev et al. (1994), the collection of articles by Engle (1995) and Bollerslev
et al. (1998).

4.4.1 Statistical properties of ARCH processes

ARCH models describe random processes, which are locally nonstationary, but
asymptotically stationary. This implies that the parameters of its conditional p.d.f.
are time-varying. Still the random process has a well-defined asymptotic p.d.f.
ARCH processes are models for which the financial risk o; is conditioned on a
finite series of past values of the square value of the process x; itself, as follows.

Definition 161 AnARCH(p), or ARCH random process x; of order p is a random
process defined by:

2 2 2
o =ap+ayx,_;+--- +apxt_p

withag, ai, ...,ar > 0, E{x;} =0 and E{x}|A; "} =0} (4.28)

where E {x,2 | Ai:f } is the expectation of a conditional p.d.f., conditioned on the
information of a finite memory of x; of a lagged horizon of p time periods from
t — 1 throught — p.

Remark 162 An ARCH(p) process is completely determined when the horizon
p and the shape of the p.d.f. are defined and parametrized by the coefficients
ap, ai, ..., ap. The conditional p.d.f. may be Gaussian or non-Gaussian.

Example 163 The, among currency traders popular, ARCH(1) process

o =ap+ax? (4.29)
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with a Gaussian conditional p.d.f., is characterized by the finite asymptotic or limit
(“unconditional”) variance (= the variance observed over an infinite horizon)

o~ = lim o;
—>00
_ % (4.30)
1—a
provided
1—a; #0, 0<a <1 (4.31)

The limiting normalized kurtosis (cf. Chapter 1) of this ARCH(1) process is

E{x/}
1m
t—00 E{xtz}z

my

_ M4 (4.32)

- 43 (4.33)

which is finite if

1
0<aj < — (4.34)

V3

Notice the potential excess kurtosis of this ARCH(1) process, since 6012 /
a - 3a12) + 3 > 3 = the kurtosis of a Gaussian distribution. By varying ag
and ay, one can obtain random processes with the same limit variance o2, but
with different values of limiting kurtosis. An example for an ARCH(1) process is
given in Table 4.1. Successive increments of simulations of these three ARCH(1)
processes are shown in Figure 4.1 and their respective p.d.fs in Figure 4.2. Both
figures are borrowed, with small modifications, from Mantegna and Stanley (2000,
pp- 79-80).

4.4.2 Statistical properties of GARCH processes

Bollerslev (1986, 1987) proposed a generalized ARCH random process, called
GARCH(p, q) process, which can represent a greater degree of inertia in its
conditional volatility or risk, as follows.
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Table 4.1 ARCH(1) limit kurtosis

For parameter Limit kurtosis
a=1,a, =0 3 (= Gaussian process)
ag=a; =0.5 9

ap=045,a; =055 23

20

|
20 s s ‘ s
0 20,000 40,000 60,000 80,000 100,000

Time (arbitrary units)

Figure 4.1 Successive increments of ARCH(1) simulations with the same unconditional
variance (02 = 1). Events outside three standard deviations are almost absent
when « = 3 (top: &9 = 1, ;1 = 0). They are present when k = 9 (middle:
oy = o; = 0.5), and are more intense when k = 12 (bottom: oy = 0.45,
a; = 0.55).

Definition 164 A GARCH(p, q), or GARCH random process x; of orders (p, q)
is a random process defined by:

2 2 2 2 2
of =ao+aix;_;+---+apx;_, +bio +--+byo,

withagp, ay, ...,ap,by,...,by >0, E{x;} =0 and E{xt2|A;:f"7q} = atz

(4.35)
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log P(x)

log P(x)
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X

Figure 4.2 Logarithmic probability density function of the successive increments shown
in Figure 4.1. The p.d.f. is Gaussian when « = 3 (top) and is leptokurtic when
k = 9 or k = 23 (middle and bottom).

where E {xt2 |A§:f Y s an expectation of a conditional p.d.f., conditioned on the
information of a finite memory of x; of p or q time periods, whichever is longest.

Example 165 Baillie and Bollerslev (1992) show that the simplest
GARCH(1, 1) process, with a Gaussian p.d.f. has as the finite asymptotic or limit
(“unconditional”) variance

ol=_— 4 (4.36)
1—a; — b
The limit normalized kurtosis of this GARCH(1, 1) process is given by
E {xt4 } my
= l1m 5 = —2
11— 00 E{xt } m2
6a%
= +3 (4.37)

1 —3a? —2a1by — b?
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which allows again excess kurtosis, depending on various configurations of the
values of the parameters ay and by. When ay = 0, the process is Gaussian. When
b1 > 0 the variance feedback process of o; increases the kurtosis of the x; process.

4.4.3 (G)ARCH processes: uncorroborated time scaling

(G)ARCH processes are empirically deficient models since they don’t exhibit
the correct empirical long-term dependence, in particular, proper scaling prop-
erties. For example, the empirical evidence shows that the variance of financial
market returns is characterized by power law correlations. Since the correlation
of the squared x; of a GARCH(1, 1) process is exponential, a GARCH(1, 1)
process cannot be used to properly describe this empirical phenomenon. In other
words, (G)ARCH model processes can’t represent the empirically observed long
memories. They are investment-horizon t-specific and can represent only finite
memories. They measure conditional variances for specific finite horizons of max-
imally t = p or g length and not of infinite length. In contrast, fractionally
differenced processes indiscriminately represent p.d.fs for all possible investment
horizons, finite and infinite and produce thus the proper scaling properties for the
unconditional p.d.fs.

Example 166 Mantegna and Stanley (2000) compare empirical investigations
of the S&P500 high-frequency data with simulations of a GARCH(1, 1) process,
characterized by the same limiting variance and kurtosis. Such equality is ensured
by calibrating the three control parameters of the GARCH(1, 1) process, agp, a
and by subjectively and thus, non-scientifically. For example, Akgiray (1989)
arbitrarily chooses by = 0.9. From the empirical analysis of the S&P500 minute-
by-minute data for the period January 1984—-December 1989 (493, 545 minutes),
Mantegna and Stanley find that the limit variance o*> = 0.00257 and the limit
kurtosis (m4/m%) ~ 43. Using the preceding equations, with by = 0.9, the
parameter values ap = 2.30 x 1075 and a; = 0.09105 are obtained. The result-
ing simulated p.d.f. fits the At = 1 minute p.d.f. data well. But, as Mantegna
and Stanley (2000, p. 87) correctly conclude: “The fact that the GARCH(1, 1)
process describes well the At = 1 minute p.d.f. does not ensure that the same
process describes well the stochastic dynamics of the empirical data for any
time horizon At.” To describe the dynamics of the price changes in a com-
plete way, in addition to the p.d.f. of the price changes at a given time horizon,
the scaling properties of price change p.d.fs must be also considered. Although
there is no theoretical model for the scaling properties of the GARCH(1, 1) pro-
cess, one can perform numerical simulations of the GARCH(1, 1) process, as
reported in the double-logarithmic Figure 4.3 (borrowed, with a correction, from
Mantegna and Stanley, 2000, p. 86). From Figure 4.3 it is clear that although
the GARCH(1, 1) process can accurately describe the At = 10° = 1 minute
empirical leptokurtic p.d.f. of price changes, it fails to describe the scaling prop-
erties of the empirical p.d.fs of the high-frequency S&P500 data for all higher
time horizons, using the same control parameters. The absolute value of the
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10"

100

P(0)

1071

| | | |
100 101 102 10°
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Figure 4.3 Comparison of the scaling properties of the unconditional p.d.f. of a
GARCH(1, 1) stochastic process (black squares) with the ML estimated param-
eter values ap = 2.30 x 107>, g¢; = 0.09105 and b; = 0.9 with the scaling
properties of the p.d.f. of the S&P500 high-frequency data (white circles). The
scaling of the GARCH(1, 1) process fails to describe the empirical behavior in
the S&P500 high-frequency data.

empirical slope of the GARCH (1, 1) simulated price change data (black squares)
is a Gaussian Hurst exponent H = 1/az = (In10')/(In 10%) = 0.5, while the
slope of the high-frequency S&P500 data (white circles) has a Hurst exponent
H = 1/az = (In10%)/(n10%) = 0.67.%

The Integrated variance GARCH, or IGARCH models of Bollerslev (1986),
a further generalization of his GARCH model, are characterized by infinite uncon-
ditional variance, because they contain a unit root. In those models, current
information remains important for the forecasts of conditional variance for all
investment horizons. Itis still an open research question if these models produce the
proper dynamic scaling properties (cf. Alexander, 1998). Numerical simulations
are easy to execute, but the derivation of the theoretical scaling properties of these
models is quite a difficult matter and the possible topic for a doctoral dissertation.

4.5 Fractional Brownian Motion

Thus, we have finally arrived at one of the most useful generic research models
for a random process currently in existence in the financial markets literature,
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the FBM. This random process model encompasses virtually all of the observed
empirical phenomena in the time series of financial markets. A recent theoretical
paper by Elliott and van den Hoek (2000) discusses the theoretical niceties of the
FBM and shows how easy it is to replace the GBM by the FBM in all the familiar
dynamic valuation and hedging models in the finance literature, to present models
that are much closer to empirical observations in their scaling properties. In this
chapter, we’ll focus on the empirical measurement analysis of the FBM and the
wide range of empirical phenomena it is able to represent.

Definition 167 FBM is defined by the fractionally differenced time series
(1—Lyxt) =), d e (5. %), withe(t) ~ i.id.(0,02) (4.38)
where the gross rates of return x(t) =In X () —InX(t — 1) = (1 — L) In X (¢).

A completely equivalent definition is that FBM x(¢) is fractionally integrated
white noise, since

x()=1—-L)""@r),de (-1 1), withe®) ~iid(0,02) (4.39)

Remark 168 The FBM can also be presented in terms of the original market
price series X (t) as

1-L)Y¥(1-=L)InX(®)

=1-L)%"""InXx@)
=¢(r), withe(t) ~i.id.(0,02) (4.40)
Table 4.2 provides a comparison of the ACFs of two simulated fractionally

differenced time series, (1 — L)¥x(r) = &(t) ford = —% and %, with long-term
memory, with the ACF of a simulated AR(1) time series, x(t) = px(t — 1) + &(¢)

Table 4.2 ACFs of long- and short-memory series

Lagt d=-1/3 d=1/3 ARQ),a, =0.5
y(7) v (1) v (1)
1 —0.250 0.500 0.500
2 —0.071 0.400 0.250
3 —0.036 0.350 0.125
4 —0.022 0.318 0.063
5 —0.015 0.295 0.031
10 —0.005 0.235 0.001
25 —0.001 0.173 2.98 x 10~8
50 —3.24x107*  0.137 8.88 x 10716

100 —1.02x 107*  0.109 7.89 x 1073
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with p = 0.5 and short-term memory. The variance o> of the i.i.d. noise was
chosen to yield a unit variance for x (¢) in all three cases. Notice the very gradual
decline and infinite continuation of the ACF when d = % or when d = —% and
the initial steep decline and virtual non-existence of the ACF of the AR(1) after
only 10 lags.

The standard GBM is the special case of a fractionally differenced time series,
when d = 1, so that

Ax(t)=(1—L)x(t) =¢e@) (4.41)
or

x(t) = (1 — L) e(r), withe(r) ~1ii.d.(0,072) (4.42)
with its ACF decaying hyperbolically:

y(t) ~ 0521_1 (4.43)

which is proportional to the variance of the i.i.d. innovations &(¢): 03. Thus,
obviously, the GBM is self-similarly scaling. Brownian Motion is once integrated
white noise, since its innovations are white noise, i.e., they exhibit a flat, constant
spectral density: P (w) = %2'

Example 169 Figure 4.4 provides the standardized empirical ACFs (autocorrel-
ograms) of equally-weighted CRSP daily and monthly stock returns indexes. The
observation period for the daily index is July 1962—December 1987 and January
1926—-December 1987 for the monthly index. Notice that these empirical ACF's are
not as smooth and continuous as presented by the theoretical FBMs of Table 4.2,
thus emphasizing the problem of identification of the proper difference exponent
d from empirical ACFs. In Chapters 6 and 7 we’ll discuss more advanced and
better identification methodologies than the classical ACFs. What these empirical

Daily returns Monthly returns
0.40 0.40
0.30 0.30-
j c
Re] S
5 0.20 8 0.201
e £
8 8
S 0.104 3 0.104
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< <
0.00 0.00-
-0.10+—T—F———T T T T T -010+——F——F T T
0 10 20 30 40 50 60 70 80 90 100110120130140150160170180 0 1 2 3 4 5 6 7 8 9 10 11 12
Lag (days) Lag (months)

Figure 4.4 Autocorrelograms of equally-weighted CRSP daily (July 1962-December
1987) and monthly (January 1926-December 1987) stock return indices.
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ACFs show is that the processes of daily and monthly returns have long memory,
or long-term dependence, since they don’t vanish quickly.

We’ll now turn to Range/Scale Analysis, which is the basis for most of the
recent efforts to measure homogeneous Hurst exponents to determine the degree
of scaling in financial time series or in rates of return or in implied volatility.

4.6 Range/Scale analysis

To detect global, “strong,”’or long-term time dependence, Mandelbrot (1965) sug-
gested the use of Hurst’s “rescaled range,” or R/S statistic, which Hurst (1951)
had developed in his study of the Nile river discharges. As we will see, the Hurst
statistic leads to the Hurst or H-exponent. Although, recently, the H-exponent
has become quite popular in finance (cf. Peters, 1992), there are reasons to con-
sider this exponent as too limited to measure all forms of aperiodic cyclicities, in
particular, with financial turbulence and chaos (cf. Chapter 9). There are already
better defined exponents supported over larger domains, which cover more extreme
cases, as we will see in this chapter.

4.6.1 Hurst’s original Range/Scale statistic

Definition 170 (Hurst’s R/S statistic) Consider a sequence of investment returns
{x(t)} and its empirical mean (= first cumulant = first moment).

1 T
cr=m= ) X0 (4.44)
t=1

and its empirical variance (= second cumulant)

62=n12—m%

1 T
== Z[x(t) —m)? (4.45)
t

then Hurst’s R/S statistic is defined by

1 T T

RSu(T) = 55 [Maxlggr D Ix(@) —mil — Miny<<r ) _[x(t) — mll} >0
2 t=1 t=1

(4.46)

The first term in brackets is the maximum (over interval t) of the partial sums
of the first T deviations of x(¢) from the mean. Since the sum of all T deviations
of x(¢) from their mean is zero, this maximum is always nonnegative. The second
term is the minimum (over interval 7) of this same sequence of partial sums; hence
it is always nonpositive. The difference of these two quantities, called the “range”
is thus always nonnegative. This range is then scaled by the empirical standard
deviation for the whole data set cg's.
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4.6.2 Lo and MacKinlay’s (1999) “Modification”

Lo and MacKinlay (1999) modify the rescaled range measure of Hurst, so that
it becomes robust to short-term dependence, and derives its limiting distribution
under both short-term and long-term dependence. In contrast to many other authors
in the current literature, including Mandelbrot (1965, 1972), Mandelbrot and Taqqu
(1979), Mandelbrot and Wallis (1969), Lo and MacKinlay also claim that, when
they apply their modified R/S statistic to daily and monthly stock return indices
over different periods and sub-periods, there is no evidence of long-term depen-
dence, once the effects of short-term dependence are accounted for. Therefore, they
suggest that the time series behavior of stock returns may be adequately captured
by the more conventional (Markov) models of short-term dependence. For now,
the accumulated empirical evidence by Peters (1994) tends to shift the balance of
proof in the direction earlier indicated by Mandelbrot c.s. But considering the con-
flicting evidence, this remains an open, very interesting and challenging, empirical
and theoretical research question, which we’ll reconsider in Chapters 7 and 8.

4.6.3 Homogeneous Hurst exponent

The Hurst statistic provides us with a means to analyze the dependence charac-
teristics of time series and to determine if they are serially, or globally dependent,
since it delivers the Hurst exponent as a fractal dimension, Holder or Lipschitz
irregularity coefficient (Mandelbrot, 1972).°

Definition 171 The Hurst exponent H is defined as

InRS
0 < H= lim n—H(T)<1

(4.47)
T—>00 Int
For serially, or short-term, dependent time series, such as strong-mixing pro-
cesses, H — 0.5 when T — oo, but for globally dependent time series H —
0.5 4 d. In fact, the fractionally-differenced random processes satisfy the equality
H = 0.5 4 d. Thus, Mandelbrot (1965) suggests to plot In RS(t) against Int
to compute H from the slope of the resulting plot. He calls any time series x (¢)
which shows the R/S statistic time-scaling, RSy (t) 8 “Hurst noise.”

Example 172 As Hurst (1951) showed, based on the water-level minima
recorded in the period 622—1469, the annual water flow of the Nile river in Egypt
shows a strong long-term persistence with H = 0.91, that requires unusually high
barriers, such as the Aswan High Dam, to contain damage and rein in the floods.
(We’ll discuss such extreme risk value phenomena in Chapter 12.) As Mandelbrot
and Wallis (1969) showed, for the rivers Saint Lawrence in Canada, Colorado
in the USA and the Loire in France, the persistence is considerably lower with
0.5 < H < 0.9. The river Rhine (at the Swiss-French-German triple point near
Basel) is exceptional with a long-term exponent of H = 0.5, indicating that its
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water flow changes like white noise (Whitcher et al., 2002). In other words, the
Rhine river tends to produce no major catastrophic floods.

The ACF of the fractionally-differenced time series can now be written in terms
of the H-exponent, since we can now substitute d = H — 0.5 into the previously
defined ACF to get:

_ o202 —2H)I(t + H — 0.5)
T I'(H-05T(1.5-HTI(t+15—H)
~ 0_82.(2H—2

y(T)

as T — 00 (4.48)

where H € (0, 1).

4.7 Ciritical color categorization of randomness

4.7.1 Blue, white, pink, red, brown and black noise

Following Schroeder (1991, pp. 121-137) we can now present a color
categorization of randomness, or irregularity, by collecting the various descrip-
tive exponents and relating them to each other. This comparison of exponents will
facilitate the reading of a great variety of interdisciplinary research articles on phe-
nomena of time dependence. In Chapter 8, we’ll explain the intimate relationship
between our concept of “randomness,” as discussed in Chapter 1, and the concept
of “irregularity” as defined by the mathematician Lipschitz.

Definition 173 (1) When the Hurst exponent 0 < H < 0.5, i.e., —0.5 <d < 0,
the time series of increments is called antipersistent. (2) When H = 0.5, i.e.,
d = 0, the increments are independent or “white,” and the time dependence of the
series is neutral (or neutrally persistent). Examples are the increments of Random
Walks or Arithmetic Brownian Motions (for speculative prices) and of GBM (for
investment returns). The Brownian Motion series is once-integrated “white noise”
and is called “brown” noise. Its ACF decays hyperbolically:

agzI‘(r)
C(zT+1)
o2 — D)
7!
=0t} (4.49)

y(r) =

(3) When 0.5 < H < 1, i.e, 0 < d < 0.5, the time series of increments is called
persistent.
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In the case of extreme antipersistence, H | 0, so that the ACF of the time series
decays faster than hyperbolically in a quadratic fashion:

o2l (r —0.5)
I'(t+1.5)

oX(t — 1.5)!
(t 4+ 0.5)!

2
O¢

~ (1 1£05)(t —0.5)

2

T (22 -0.25)

~ 0821_2 as T — 00 (4.50)

y(t) =

At the other extreme of Hurst’s limited randomness spectrum H 1 1, so that
the ACF of the time series remains a flat constant and it never vanishes:

) = o2l (t +0.5)
Y = Trr 1 05)

= 052 aconstant,as T — o0 4.51)

4.7.2 Irregularity exponents

We can make a connection with the stable distributions discussed earlier in
Chapter 3, once we realize that, for globally (long-term) dependent time series,
for which the autocovariance function has the form

A _
y(z) = {‘( H(7) for A € [—1,0), or (4.52)

—t*H(r) fori e (=2,—1]

as the time-interval lengthens, T — oo, and H (7) is any slowly varying function
at infinity, the dependence exponent X equals

A=2d—1
=v-—1
=2H -2
2
=— -2
oz
=207 —2 (4.53)

where d is the difference (order) exponent, v is the spectral exponent (to be dis-
cussed in detail in Chapter 5), H is the aforementioned Hurst exponent, oz is
the stability exponent of the Zolotarev parametrization of the stable distributions
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Table 4.3 Equivalence of various critical irregularity exponents

Exponents: Dependence Difference Spectral Hurst Stability

Color: A d 7] H oz

Blue noise ) d=-0.5 v=-—1 H|O NA

Antipersistence —2 <i<—-1 —-05<d<0 —-1<v<0 O0<H<05 NA

‘White noise r=-—1 d=0 v=20 H =05 az =2

Persistence O0<i<-—1 0<d<05 O<v<l 05<H<1 l<az<?2
(pink)

Red noise A1 0 d=0.5 v=1 H~11 oz =

Brown noise NA d=1 v=2 NA az =2/3

Black noise NA 1<d<?2 2<v<4 NA 2/5<az <2/3

Note
NA = not applicable.

of Chapter 3, and «; is the Lipschitz regularity exponent (to be discussed
in Chapter 8).!9 Thus, the randomness, or irregularity, categorization can be
expressed in terms of each of these critical exponents. For completeness of
definition: A /2 is the so-called time-scaling exponent.

The complete spectrum of randomness, or irregularity, in terms of the five
critical exponents equivalent to the Lipschitz regularity exponent is given in
Table 4.3, which provides the essential relationships between the exponents of
the first difference of FBM (cf. also Keshner, 1982; Flandrin, 1989).

For example, for the Brownian Motion increments &(¢), which are white noise:

A=—-1, d=0, v=0, H=05 oaz=2 (4.54)
Thus, the time series of Brownian Motion increments is modelled by white noise:

x() = (1 - L))
=e(t) (4.55)

Fractional integration of such white noise, when d = 0.5 and H 1 1, results in a
red noise series (Gilman et al., 1963):

x(1) = (1= L) %) (4.56)

One complete integer integration of the white noise, when d = 1, results in a
brown noise series (= Brownian Motion)

x(t) = (1 = L) 'e@) (4.57)

Visual samples of time series of such white, red and brown noise are given by
Figure 4.5.

Inthe case of 0.5 < H < 1, the vital property of the FBM is that the persistence
of its increments extends forever: it never dies out and gives rise to the empirically
observed catastrophes. The strength of such persistence is measured by the critical
H-exponent.



Persistence of financial risk 125

Figure 4.5 Sample of (a) white noise with P(w) = w~° power spectrum; (b) pink
noise with P(w) = ™! power spectrum; and (c) brown noise with P (w) =
™2 power spectrum.

Example 174 The rates of return x(t) of the S&P500 stock market index show
mild persistence with H = 0.67. Indeed, their graph is less irregular than that
of ordinary GBM increments. Its fractional dimension D is thus between the
dimension of a line, D = 1, and the dimension of a plane, D = 2:

l<D=2-H=133<2 (4.58)
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In Chapter 8 we’ll discuss the fractional dimensions of financial time series
in more detail. Curiously, the Dow Jones Industrials stock index shows neutral
persistence, according to Li (1991), with H = 0.5.

Example 175 The fractional dimension of GBM increments, with H = 0.5, is

D=2-H=15= (4.59)

3
2
The case where 0.5 < d < 1.5, or, equivalently, 1 < v < 3, which cannot be
measured directly by the H-exponent, but only after one differentiation, has been
called the infrared catastrophe (Wornell and Oppenheim, 1992). It can be measured
by the wavelet multiresolution analysis discussed in Chapter 8. More fractional
integration, for example d = 2, results in heavily persistent, or pure black noise

x(1) = (1 — L) %) (4.60)
As Schroeder (1991, p. 122) comments:

Black-noise phenomena govern natural and unnatural catastrophes, like
floods, droughts, bear markets, and various outrageous outages, such as those
of electrical energy. Because of their black spectra, such disasters often come
in clusters.

In contrast, the FBM increments with O < H < 0.5 are antipersistent noise, hence
they diffuse more quickly than the Brownian increments. Such FBM increments
continuously return to the point they came from.

Remark 176 Notably this means that the theoretical Random Walk innova-
tions £(t) are rather exceptional. They exhibit the same stability, oz = 2, and
(in-)dependence, H = 0.5, as Gaussian random variables, but do not necessarily
have to be Gaussian! Furthermore, their ACF drops off geometrically with A = —1.
By measuring the financial-economic, e.g., stock price innovations to be close to
Gaussian, Granger and Morgenstern (1963) and Granger (1966) inferred that
such innovations had a typical spectral shape. However, we’ll learn in Chapters 6
and 7 that their inference was erroneous, and that there was nothing typical about
that inferred shape, because it was biased by thinking exclusively in term of Gaus-
sian innovations €(t) ~ N (0, ‘732)- For example, the covariance function of modern
foreign exchange rates, like the Japanese Yen or the German Deutschemark, shows
antipersistence, i.e., a slower drop-off of the ACF than the “typical” spectral shape
based on this assumption of Gaussian i.i.d. innovations.

4.7.3 Stability spectra

It is very important to understand that the Hurst exponent H is a rather lim-
ited measure of randomness and distributional stability with a very limited
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Figure 4.6 Relations between and constraints on d, H and «z. The axes measure x = d,
y=H,z=uaz.

measurement domain, and that the «z-stability exponent, and the v-spectral expo-
nent have much more extensive measurement domains. This becomes clear, when
we geometrically visualize the mathematical relationships, the constraints, and
the respective domains of the various critical irregularity exponents in Figure 4.6.

The implied equality oz = 1/H does not hold for all values of «z, since the
Hurst exponent, per definition, 0 < H < 1, implies that 1 < a7z < oo, while the
parametrized stable distributions of Chapter 3 are defined for the limited domain
0 < az < 2. Apparently there exist empirical ultra-stable distributions (not yet
parametrized!) in the domain 2 < az < o0, since we find in extremo oz 1 00
when H | 0 (andd 1 0.5), which is complete stability. These distributions are the
distributions of singularities, or singularity spectra, which can be characterized
and measured by the stability exponent «z. Considering that we have already
empirically measured antipersistence in the FX markets, we will discuss such
theoretical singularity spectra in Chapter 8.

As we recall from Chapter 3, and as is clearly visible in Figure 4.6, when the
Hurst exponent vanishes, H | 0, the Zolotarev stability exponent becomes infinite,
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az 1 oo. In other words, for very small values of the Hurst exponent, H | 0, we
acquire very uncertain measurements regarding Zolotarev’s stability exponent «z.

In addition, there are now theoretically defined, parametrized stable distributions
where 0 < oz < 1, which can also not be measured by the Hurst H-exponent
directly, but can be measured by «z, if we can compute oz in some other fashion.
These are the ultra-unstable distributions. However, empirically, there appears to
be a physical turbulence barrier at «z = 2/5. In other words, there appears not to
exist any empirical oz such that 0 < oz < 2/5, even though there are theoretical
Zolotarev-parametrized distributions defined for such oz values. Again, this is an
area open for further theoretical and empirical research.

In conclusion, the best domain for using the H -exponent to compute the stability
az-exponent is in the Gaussian neighborhood of H = 0.5, where oz = 2. Still, it
is important to recognize that there exists a stability spectrum of randomness, or
irregularity, completely specified by the stability exponent ot .

Remark 177 Of course, one can still use the H-exponent for measuring
infrared and black catastrophes, by measuring the H-exponent after proper
integer-differentiation. For example, we hypothesize that x(t) is pure black noise
and has a spectral exponent v = 4, then differentiation of two full times
(d =2) should theoretically result in white noise series with a flat spectrum,
v=0, so that H=0.5. However, when we empirically measure, for example,
H =0.2 - v= —0.6, then the original series must have a spectral coefficient of
v= —0.6+4=3.4and not 4.

4.8 Software

Benoit 1.3: Fractal System Analysis (for Windows), Trusoft International Inc., 204,
37th Ave. N #133, St. Petersburg, FL 33704 Tel: (813) 925-8131; Fax: (813) 925-
8141; sales@trusoft-international.com. See http://www.trusoft-international.com
for details. This Benoit software enables you to measure the fractal dimension
and/or Holder—Hurst exponent of your data sets using your choice of method(s)
for analysis of self-affine traces of speculative prices.

In the following Exercises you should use the Benoit software, Version 1.3. Once
you’ve accessed Benoit, enlarge the working screen by the maximizing $ button
in the upper-right corner of Benoit’s initial screen, otherwise you will not see the
crucial OK button. Always read the Benoit Help descriptions of the methods you
use and relate them to the text of this chapter. To feed the empirical data as inputs
into the Benoit program using EXCEL, read Benoit’s Help instructions on Data
Files (Data Formats).

4.9 Exercises

Exercise 178 Compare the ACFs of the four data series of the Exercises
of Chapter 1 against the theoretical benchmarks of Table 4.2. Are the series
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antipersistent, white noise, persistent (= pink) noise, red noise, brown noise or
black noise, respectively? How can you tell?

Exercise 179  Following Kasdin (1995), simulate three types of FBMs with Hurst
exponents H = 0.2, H = 0.5 and H = 0.8, respectively, by using Benoit’s
self-affine trace generator. Compare your results with the one in this chapter.
Generate no more than 250 points for each case. Use a vertical range of 0-25.
Generate both the traces and their first differences. The Benoit program provides
three methods for generating synthetic self-affine traces (the successive random
addition method, the Fourier Transform method and the wavelet method). Try all
three methods and describe in your own words how the results differ from each
other. In total you should generate 2 x 3 x 3 = 18 pictures. Save the traces
and their first differences and display them either in an EXCEL spreadsheet or in
Microsoft Power Point. These respective simulations will provide you with some
“benchmark” pictures for the following Exercises.

Exercise 180 Compute the Hurst exponent and the fractal dimension of our
S&P500 data of the Exercises of Chapter 1 using Hurst’s Rescaled-Range (R/S)
analysis for (1) the original share prices, (2) their total rates of return and (3)
for first differences of the rates of total return. (Use the double logarithmic plot
window.)

Exercise 181 Repeat the preceding Exercise, using the Irregularity (or
Roughness)—Length method, which relates the standard deviation of windows of
various length to the Hurst exponent, in the fashion described in this chapter. It
plots the logarithm of the standard deviation (or Root-Mean-Squared (RMS) error)
against the logarithm of the length of the window t.

Exercise 182 Repeat the preceding Exercise, using the Variogram method, which
is directly related to the autocovariance function.

Notes

1 The current unorthodox efforts to characterize nonstationary financial-economic time
series using more advanced signal processing technology are comparable with these
early out-of-the-mainstream technical efforts by Granger and Morgenstern. For exam-
ple, econometrician J. B. Ramsey of New York University performed the first wavelet
multiresolution analysis (MRA) of macroeconomic data series (Ramsey, 1997).

2 Los (1999, 2000) provides some empirical examples of such “periodicity” for Asian
FX markets, using non-parametric methods, based on high frequency data for 1997.

3 Cf. Los (1984) for theoretical discussions and Monte Carlo experiments with empirically
estimated Kalman filters for econometric time-varying parameter models, including
unstable ones.

4 We’ll discuss in Chapter 12 possible insurance against such extreme catastrophic events,
in the context of some dramatic hydrological and financial developments in mainland
China.
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5 Mandelbrot has questioned if Hosking’s ARFIMA models were an improvement over
his simpler fractionally differenced models, since such models with fractional expo-
nents can trivially represent the integer exponent ARIMA models. But Hosking wanted
to show the fractional and integer exponents separately within one modified frame-
work, because they represent different phenomena: non-periodic and periodic cyclicity,
respectively.

6 Cf. Meerschaert (1999) for the continuous time form of these long memory dynamic
processes.

7 Such classical ACFs support the econometric measurements of Vector Auto-Regression
(VARs) models. Classical VARs can represent higher order periodicities, but not the
long-term time dependent phenomenon of non-periodic cyclicities, because they are
expressed in terms of integer Markov processes. Of course, one can also, unconvention-
ally, model fractional VARs to properly represent globally dependent or long memory
processes.

8 And not the incorrect value of H = 0.53 provided by Mantegna and Stanley (2000,
p- 86), who are proven wrong by their own figure 10.7, which we borrowed as our
Figure 4.3.

9 Holder (1859-1937) was a German mathematician, who devised treatment of divergent
series of arithmetic summations, which led to a regularity exponent now recognized to
be similar to Hurst’s. However, Holder was thinking about microscopic (physics) pheno-
mena, in contrast to Hurst, who thought about macroscopic (hydrological) phenomena.
The Holder—Hurst exponents are also called critical Lipschitz irregularity exponents.

10 Somewhat confusingly presented in the literature, the Zolotarev stability «z = 1/ap,
where o, is the Lipschitz regularity exponent. In the literature, one often finds just o
and it is not always clear if the author(s) mean(s) the Zolotarev stability exponent oz
or the Lipschitz «;. We hope that this comparison of the various critical exponents
and the presentation of their relationships will lift the dense fog between the various
scientific disciplines, in particular in finance, physics and engineering, which deal with
essentially the same signal processing phenomena.
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Part 11

Financial risk measurement






S Frequency analysis of financial risk

5.1 Introduction

In Chapter 3 we analyzed the marginal distribution and in Chapter 4 the tempo-
ral dependence of investment returns identified as Fractional Brownian Motion
(FBM). We’ll now prepare to look at these two aspects of the research problem to
characterize the long-term temporal risks of such returns simultaneously in their
frequency and time domains. As we discussed in the preceding four chapters,
Geometric Brownian Motion (GBM) increments are, per definition, independent
and stationary (i.i.d.). Their stationarity allows for Fourier analysis, i.e., linear
analysis in the frequency domain, since their (co-) variances and therefore their
(co-) frequencies are constant. These increment series can be expanded in series
of scaling frequencies, the so-called frequency spectra. In the next chapter, when
we discuss windowed Fourier analysis, we’ll determine how the FBM scaling
frequency spectra depend on, and vary through, time.

In particular, in this chapter we’ll discuss first covariance or correlation func-
tions, which measure the degree of linear dependence, time and frequency
convolution, and Fourier (= frequency or spectral) analysis. This chapter will
prepare us for the next chapter, where we will visualize nonlinear dependence
measurements in the time-frequency domain using Gébor’s spectrograms based
on the Windowed Fourier Transform.

Our original financial-economic inspiration originated with the work by Granger
and Morgenstern (1963), Granger (1966) and Priestley (1981).! For the following
mathematical details of measuring the time-dependence of varying frequencies
we are indebted to Bloomfield (1976), Hsu (1984), Champeney (1990), Nikias
and Petropulu (1993) and Korner (1990). Additional and more recent examples of
applied Fourier analysis can be found in Folland (1992).

5.2 Visualization of long-term financial risks

5.2.1 Plot of absolute ACF against time horizons

Because of time-reversals and reversals-to-the-mean in time series, it is diffi-
cult to detect long-term dependence and geometric scaling laws by just plotting
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the Autocorrelation Function (ACF) y(t), of first differences of the returns on
investments

Ax(t) =Alln X)) —In X — 1)] (5.1)
or of first differences of foreign exchange (FX) rates
AXH)=X@)— Xt —1) (5.2)

The reason is that it is difficult to visually distinguish between the decays of the
various ACFs corresponding to various fractional difference constants d, as was
originally suggested by Box and Jenkins (1970). An only mildly better identifying
picture of these slow geometric declines in dependence, which are indicative for
long-term dependence, are plots of the absolute values of the ACFs, |y (7)|, or
of their squared values, |y (t)|?, against the time horizons 7, as in Figure 4.4 of
Chapter 4.

5.2.2 Time-frequency and time-scale visualizations

In addition, there is a more fundamental problem with this particular identifi-
cation methodology. The ACF, y(t), provides only second-order evidence for
linear dependence, i.e., evidence for weak linear dependence (cf. Chapters 1
and 3). Following up on our conjecture at the end of Chapter 2, that financial
risk involves more than just the second-order moments of variance and covariance
of financial variables, we prefer to visualize the shape of their complete distri-
butions, in particular, by way of their third- and fourth-order moments — their
skewness and kurtosis. This is similar to what we did for the stable distributions
discussed in Chapter 3. Moreover, we would like to visualize complete distri-
butional evidence for all relative frequencies of occurrence for a time series for
any form of time dependence, and not only for its correlation, i.e., for its linear
dependence.

Thus, our preferred methodology should be to simultaneously visualize the
marginal distributional evidence and the time-localized dependence evidence of
these nonstationary time series, so that we can also better distinguish between
serial (short term) time-dependence and global (long term) time-dependence. Such
visualization and identification methodology exists already for more than half
a century and it is very familiar to signal processing engineers.

In short, we need to analyze time-frequency pictures, or spectrograms, of finan-
cial time series, as discussed in Chapter 6, and time-scale pictures, or scalograms,
as discussed in Chapter 7 to enable the required, and proper, identification of
financial market risk.

5.3 Correlation and time convolution

In this section, we’ll define the ACF of classical time series analysis (Jenkins
and Watts, 1968; Box and Jenkins, 1970; Anderson, 1994) and establish its close
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relationship with the convolution of signal processing. It’s important to recognize
that all correlation functions, convolutions and Fourier Transforms discussed in
this chapter are scalar products, based on simple integrations.

Definition 183  The scalar product, or inner product, on the space of L*[a, b] of
square integrable functions is defined by

b
(x, ) =/ x()y (1) dt (5.3)

A scalar product of two vectors and a simple integral are essentially the same
thing. The two operations exactly coincide in the following situation (Burke-
Hubbard, 1998, pp. 159-160). The step functions f(¢) are defined forO <7 < T
and are constant, except possibly at the integers. For example, imagine a step
function Y (f) representing an average quantity of a commodity in time period ¢
and another step function X (¢) representing the average price of that commodity
in time period ¢. Then, the integral

b
/ X ()Y (t)dt (5.4

gives the total revenue of the sale of this commodity over the period (b — a) . But
the same information is given by the scalar product

Xa| [Ya
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X Y,

(X.Y)

XY+ -+ XpY,

XY (@) (5.5)
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In a 2-Dimensional (2D) price—quantity diagram, the scalar product (X, ¥) would
represent the space under the average price curve.

5.3.1 Covariance functions

Let’s now use this scalar product to specify the covariance and correlation
functions.
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Definition 184 The cross-covariance function of two (random) variables x1(t)

and x> (1) is

Rpp(t) = E{x1(t)x2(t — 1)}

+00
= / x1(8)x2(t — ) dt

+00
= / xl(I)thz(l) dt (5.6)

Of course, we also have

Ro1(7) = E{x2(t)x1(t — 1)}

+00
= / x2(t)x1(t —v)dt

+o00
= / x2(t)L7x(t) dt (5.7)

—0Q0

where L is the familiar linear lag operator.

The cross-covariance function R>(t), or Ry1(7), provides a measure of linear
similarity, or linear dependence, between the variables x (z) and x; (¢) as a function
of the parameter 7, the time shift of one variable with respect to the other. If the
cross-covariance function is zero for all time shifts 7, then the two variables are
said to be uncorrelated.

Definition 185 If the (random) variables x(t) and x;(t) are identical, the
covariance function

+0o0
R11(f)=/ x1(®)x1(t —1)dt

—00

+o0
_ / X1 L x1 (1) dt (5.8)

—00
is called the autocovariance function of x1 (¢).
Definition 186 The normalized quantity y (t) defined by
J23 xxi e = 1) dt
J23 P di
[ (O LT X (1) dt
RO e

is called the autocorrelation function (ACF) of x1(¢), and

y(t) =

y(©0) =1 (5.10)
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The ACF of the FBM, which we interpreted in Chapter 4 as a fractional
summation of white noise processes,

x(1) = (1 — L) “e@) (5.11)
with () ~ i.i.d.(0, 62), is given by

y(©) = E{x()x( — 1)}

+oo

:/ x(®)L*x(¢) dt
+00

=/ =Ly 4e)L*(1 — L)y e@r)dt
+00

=/ (1— L)L (1) dt

+oo | X
- / [Z‘(—l)r (_2d) Lf} LT&%(r) dt
—%© =0 T
00 +00
- |:Z(—l)’ (‘2‘1)] L2f/ e2(t) dt
=0 t -
=0l Y c(r) (5.12)
=0

using the results of Chapter 4. The coefficients c(t) can again be expressed in
terms of the gamma function

e(r) = (1) (‘fd>

_(=D7(=24)!
ToT(=2d = 7)!
_(=D7(=2d)(=2d — 1)+ (=2d — T + 1)

7!
_Q@d+t—1)--2d+ 1)(2d)
o 7!

_ @d4T -1
T (2d - Dlt!
_ T(r+2d)
T T (t+ 1!

(5.13)

As the time horizon increases, T — 00,

.L,Zd—l
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There are three cases: whend |, —%,
c(r) ~1t72 (5.15)

When d = 0, the Gaussian case occurs

c(t)y~77! (5.16)
Whend 1 1,
c(r) ~ 1 (.17)

Thus, the ACF of the FBM is proportional to

2_2d—1
y(r) ~o;t

— o272H2 (5.18)

This clearly shows that the ACF of the FBM is time-dependent, since it scales
according to the time horizon t. How fast it decreases in scale depends on the
scaling exponent 2d — 1 = A =2H —2or2d + 1 = A + 2 = 2H, respectively
(Table 4.2 in Chapter 4).

5.3.2 Symmetry properties of covariance functions

It is easy to show that, because of symmetry,
R12(t) = Ry1(—1) (5.19)
and

R11(t) = Ri1(—71) (5.20)

5.3.3 Time convolution

Signal engineers prefer to use the concept of time convolution, in contrast to time
series statisticians, who prefer to use the concept of a covariance function. Shortly,
we’ll show that time convolution and the covariance function are equivalent.

Definition 187 The convolution of two variables x1(t) and x;(t) is

+o00
f(t)=/ xy(u)x1(t —u)du (5.21)

—00

which is often symbolically expressed by a “star” symbol x as

f(@) = x1(2) % x2(2) (5.22)



Frequency analysis of financial risk 141
5.3.4 Properties of time convolution

Time convolution has three important algebraic properties, which are often used
in theoretical Fourier analysis (Hsu, 1984):

(1) Convolution is commutative

x1(t) * x2(t) = x2(1) % x1 (1) (5.23)
(2) Convolution is associative

[x1 (1) * x2(0)] % x3(1) = x1(2) * [x2(2) * x3(1)] (5.24)
(3) Convolution is distributive

x1(1) * [x2(2) + x3(1)] = x1(1) * x2(2) + x1 (1) * x3(2) (5.25)

5.3.5 Covariance as time convolution

The cross-covariances of x;(¢) and x(t) are related to the convolutions of xj ()
and xp(—1), as follows. Let, by the definition of time convolution,

Gi2(t) = x1(t) x x2(—1)

400
:/ x1(w)x2[—( —u)]du

—00

+o00
/ x1(w)xo(u —t)du (5.26)

Changing the variable ¢ to T and the dummy variable u to ¢, we have

+00
Gi() = / (0 — ) dr

—00

= R2(7) (5.27)
Hence, a cross-covariance equals the following time convolution

Ri2(7) = G1a(7) = x1(1) * x2(=1) 1= (5.28)

5.4 Fourier analysis of stationary price innovations

We will now first discuss the Fourier analysis of stationary periodic variables, e.g.,
of Random Walk price innovations, and, next, the Fourier analysis of stationary
aperiodic variables.? Fourier analysis is a mathematical technique for transforming
the view of a time series from a time-based one to a frequency-based one (Korner,
1990). It analyzes the “frequency content” of a time series.



142 Financial risk measurement

This particular property is also the drawback of Fourier analysis, since in
this transformation from the time domain to the frequency domain, the timing
of information is lost, because a Fourier Transform (FT) is a global represen-
tation of a time series over the whole time domain (—oo, +00). But if a time
series does not change much over time — i.e., if it is stationary — this draw-
back isn’t very important. In fact, it’s properties make it a very suitable tool
for studying linear time-invariant operators (cf. Chapter 3), such as differentia-
tion or integration with integer orders. Such classical research was the basis for
the very first forays into empirical periodic analysis of financial price formation
(Osborne, 1962).

However, if a given frequency is present in a time series x (¢) over only a limited
time interval, the FT is unable to accurately detect this frequency and to give any
information about its lifetime or coherence and about the moments of its appearance
and of its disappearance.

The following analysis will culminate in the definition of the (constant)
risk or power spectral density (PSD) for stationary aperiodic variables. This
PSD can be visualized by a spectrogram. A spectrogram is a powerful visu-
alization for empirical analysis of stationary random variables. The important
Wiener—Khinchin Theorem will show that the risk spectrum is the FT of the
auto-covariance function. Thus, we can analyze stationary aperiodic variables
x(t) by computing their covariance functions, or equivalently, their PSDs. This
Fourier analysis of stationary series will be followed by the even more use-
ful windowed Fourier analysis of slowly changing nonstationary variables in
Chapter 6, since we have already observed that most financial market time series are
nonstationary.

Definition 188 A periodic variable is any variable for which

x(t) =x(t —1) forallt (5.29)

The smallest constant T that satisfies this equation is called the period t of this
variable.

Remark 189 By iteration, we have for periodic variables the following
relationship

x(t) =x(t —nt) forn=0,£1,%£2,... (5.30)

5.4.1 Fourier series for periodic variables

Definition 190 A periodic variable can be represented equivalently by two
trigonometric forms and one complex exponential form of the Fourier series,
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as follows
aop = .
x(t)=—+ Z(an cos nwot + by, sinnwot) (5.31)
2 n=1
+00
=Co+ Z C,, cos(nwot — 6,) (5.32)
n=1
+00
= Y cpelm (5.33)
n=—0oo

where wy = 2m /T and the imaginary number j = «/—1.

The Cartesian coefficients a, and b,,, respectively the polar coefficients Cy,, as
well as the exponential coefficients c, are collectively called: the Fourier reso-
nance coefficients. The second equivalent trigonometric Fourier series is called
the harmonics form.

Notice that the Fourier series expansion of a periodic time variable describes a
periodic variable as a sum of sinusoidal components having different frequencies.
The sinusoidal component of frequency w, = nwy is called the nth harmonic of the
periodic variable and n is called the wave number. Here wg = 27 fy = 27/ T is the
fundamental angular frequency and fy = 1/T is the fundamental frequency and
the first harmonic Cy cos(wot — 61) is called the fundamental component (because
it has the same period as the variable x(#)). An increase in frequency decreases
the wavelength.

The coefficients C, and the angles 6, are the harmonic amplitudes, i.e., they
scale the amplitude of the sinusoidal waves, and phase angles, respectively, i.e.,
they shift the position of the sinusoidal waves, respectively. Thus, Fourier analysis
scales and shifts the sinusoidal bases e/"®’ to achieve a complete analysis of the
time series.

Example 191 Fourier series can be used to approximate target time series x (t),
in this example, a step function, or square wave, as in Figure 5.1. We start with a
mean fy = Co = 1 and, successively add the large wave fi = cos wy, subtract
three times smaller and three times more frequent wave f>» = %cos 3wy to cre-
ate the general “hat” shape. Next we add a five times smaller and faster wave
fz= % cos Swy. In the left column of Figure 5.1 are the target and terms f through
f3. In the right column are fy and the succeeding sums, as each term is added
to fo. Notice that the approximation improves (i.e. each successive sum approxi-
mates the square wave more precisely) as the number of Fourier terms in the series
increases. In the last graph, terms fs5 and f¢ are added (but not shown separately)
to show further improvement in the approximation. Notice the Gibbs phenomenon,
consisting of spurious sinc(t) oscillations over the whole time domain. In older
sound systems, which use Fourier approximation expansions for communication
and transfer of information, this approximation error phenomenon causes a slight
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Figure 5.1 Fourier series approximation of a square wave.

“hiss.” The Gibbs phenomenon will be discussed in greater detail in Chapter 11,
when we are looking at the various finite element numerical solution methods
for nonlinear diffusion equations. We’ll find that interpolating wavelet expan-
sions more precisely locate the Gibbs phenomenon than the Fourier trigonometric
expansions thereby eliminating most of the Gibbs phenomenon.

Remark 192 [t is easy to proof (by checking) the following conversion formulas
of the Fourier resonance coefficients.
Forn #0

b
Cp = /a2 +b2=2|c,| and 6, =tan"! (a—> (5.34)
n
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and
0 L [ e 1 (b
Cn = |cnle!® where |c,| = 3/ 4 +b; and ¢, =tan —— | =-0,
dn
(5.35)
or
Cn = %(a” —Jjby) and c_, = %(an + jby) = CZ (5.36)
where the asterisk * indicates the complex conjugate, so that
an =2Relcy] and b, = —21Im[c,] (5.37)
Forn =0
ag
5= Co=cp (5.38)

Example 193 The sophisticated heat analysis, conducted by J. B. J. Fourier
himself during Napoleon’s campaign in Egypt, allows for time-varying Fourier res-
onance coefficients, which are better analyzed in Chapter 6, when we analyze
nonstationary time series. It illustrates how Fourier analysis can be used to solve
problems that are difficult to analyze in the time domain, but easier to solve in the
[frequency domain, as can be seen in Figure 5.2. (adapted from Burke-Hubbard,
1998, p. 13). To determine the temperature at time t of a metal bar (in the case of
J. B. J. Fourier, the barrel of a cannon in Napoleon’s Grand Army) that is cooling,
one starts by measuring the bar’s initial temperature (att = 0), representing it as
a temperature function x (s, t) that depends on space s (= distance along the bar)
and time t. Next one moves from physical space to the frequency domain, com-
puting its time-dependent FT F(w, t), which tells us the coefficient c, for each
frequency w,, = nwy, or heat wave number n, making up the heat function x(s, t)
at time t = 0. The Fourier resonance coefficients at time t = 0, are given by the
Sformula

n(0) =n~0? (5.39)
The Fourier resonance coefficients at time t are computed with the formula

en(t) = cu(0)e =" 1/1%0

— ;—05,(=n’1/100) (5.40)

It’s clear that these time-dependent Fourier resonance coefficients decay over
time: the heat waves vanish over time. Consider here just the coefficients for times
t =1, 5, 10 and 50. For each such time, the coefficients are the same for the entire
bar (Fourier resonance coefficients are global coefficients) and the information on
space x seems to have disappeared. But this space information reappears when
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Temperature at time 0 Fourier coefficients
attime 0

:

Degrees

[ 1]]

8 9101112
Wave number

Distance along the bar

Temperature at times
0, 1,5, 10, 50

Fourier coefficients at times
0,1,5,10, 50

UIIHII

2 3 4 7 8 9101112
Wave number
Physical space Fourier space

Figure 5.2 Heat diffusion analysis: by following the arrows we find a FT from the measured
temperature in physical space to the heat wave frequency domain, and then
analyze and return to physical space by the inverse FT.

we return from the frequency domain to the space domain: we invert the resolved
FT F(w, t) to obtain the function x(s, t), which provides the exact temperature
for each point s of the bar at any time t.

5.4.2 Computation of the Fourier resonance coefficients

The constant Fourier resonance coefficients can be computed directly from the
data, once we take account of the fundamental orthogonality of the sinusoidal
bases.

5.4.2.1 Orthogonality of sinus and cosinus

Definition 194 A set of functions {¢y(t)} is orthogonal on an interval a < t <
b, if, for any two functions ¢,,(t) and ¢, (t) in the set {¢r(t)}, the following
relationship holds

b
/ ¢m<t)¢n<t>dr={0 form # n (5.41)

r, form=n
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Definition 195  The set of functions {¢y(t)} is orthonormal, when it is orthogonal

andr, = 1 form = n.

Using elementary calculus, one can easily show that sines and cosines form an
orthogonal set of functions on the interval —7/2 < t < T /2, since

T/2
/ cos(mwot) =0 form #0 (5.42)
-T)2
T/2
/ sin(mwot) =0 for all m (5.43)
-T/2
T/2 0 f
f cos(mwot) cos(nwot) dt = orm # (5.44)
-T/2 T/2 form=n#0
T/2 0 f
f sin(mawor) sin(nwor) dt = orm # (5.45)
-T/2 T/2 form =n 750
T/2
/ sin(mawot) cos(nwot) dt =0 for all m and n (5.46)
-T)2

where wyg = 2/ T.

Such a well-defined set of orthogonal analytic functions is called a frame of ref-
erence. When a frame of reference is complete, it forms a basis for analysis. Such a
basis may contain functions that are not necessarily orthogonal (or orthonormal),
but its analytic results, i.e., the computed correlation coefficients, are easier to
understand when they are. Fortunately, each frame of reference can be orthog-
onalized. When we discuss wavelets in Chapter 7, we’ll discuss more details of
these important analytic frames of reference and bases.

5.4.2.2  Valuation of the trigonometric Fourier resonance coefficients

Using these orthogonality relations of the sines and cosines, we can now compute
the Cartesian Fourier resonance coefficients a, and b,, of the Fourier series x (¢) and,
by using the conversion relations, also the polar Fourier resonance coefficients C,
and 6,,, and the exponential Fourier resonance coefficients of ¢, and ¢,,, as follows:

2 T/2

a, = —f x(t)cos(nwot)dt forn=0,1,2,... 5.47)
T )1
2 [T)2

b, = —/ x(t) sin(nwpt)dt forn=0,1,2,... (5.48)
T ) 1)

and

2 T/2

ag = —/ x(t)dt (5.49)
T J_rp
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5.4.2.3  Valuation of complex Fourier resonance coefficients

First, we have the simple mean

1 T/2
co=2_-_ / x(t) dt (5.50)
2 T -T2

Then, with the use of the identity

e 7% = cosf — jsinb (5.51)

we find

Cn = %(an — jbn)

NS /2
=7 |:/ x(t) cos(nwot) dt — j/ x(1) Sin(nwot)dt]

T/2 )

1 T/2
== |:/ x(t)[cos(nwot) dt — j sin(na)ot)]dt:|
T ) 1)

T/2

1 4
= —/ x(t)e /"y (5.52)
T J 1p

Similarly,

Cpn= %(an + jby)

1 T/2 .
- — x(£)el" N gy (5.53)
T J_rp

These two formulas for ¢, and c_,, respectively, can be combined into a single
exponential formula

1 T/2 .
= — / x(H)e /"™ dr forn =0, +1, £2, ... (5.54)
T J 1p

These results have led to the powerful analytical identity of Parseval, which
provides us with an exact accounting of the total amount of risk = volatility =
energy = power contained in the financial time series x(¢), when decomposed
into an infinite series of wave functions.



Frequency analysis of financial risk 149

Proposition 196 (Parseval’s identity) If ag, a, and b, are the coefficients in the
Fourier expansion of a periodic function x(t) with period T, then

112 al 1
- f T/z[x(t)]zdt = TO +3 > (ay +by) (5.55)
- n=1
+00
=c2+ 22 len|? (5.56)
n=1
+00
=D el (5.57)
n=—0o0

This mean-square value is called the risk content of the periodic function x (¢).
Thus, the finite estimate of the second moment of the periodic x(¢) equals this
infinite sum of the squared Fourier resonance coefficients!

5.4.2.4  Orthogonality of complex exponential functions

The complex form of the Fourier series is the most useful. It is the initial platform
for our discussion of wavelets in Chapter 7. Consider a set of complex exponen-
tial functions {e/"®"} where the fundamental frequency is wy = 27/T. Using
elementary calculus, one can show that the mean

1 (T2
—f /"™ gy =0 forn #0 (5.58)
T J 1)

and the (complex) variance

T/2
1 f ® eimns ginontygy - {0 form #m (5.59)
T J_rp 1 forn=m
The complex exponential functions {ef”‘”"’}, n=0,=+1,+2,..., form a set

of orthogonal basis functions over the interval —7/2 < t < T /2. They form a
complete frame of reference and, thus, a basis for analysis.

5.4.3 Frequency spectra

Definition 197 A plot of the magnitude |c,| of the complex Fourier resonance
coefficients c,, versus the angular frequency w is called the amplitude spectrum of
the periodic variable x(t). A plot of the phase angle ¢, of ¢, versus w is called
the phase spectrum of x ().

Since for periodic series the index n assumes only integers, these two spectra
are not continuous curves, but appear only at discrete frequencies nwg. They are
discrete frequency spectra or line spectra.
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Figure 5.3 A sample signal constructed from sine functions representing three pulsations:
w) = 6,w; = 12, w3 = 3 with the same amplitude. The time coherence of
w; and w3 is identical. Discontinuities are present at the time of change of
frequencies.

Example 198 Figure 5.3 presents a sampled continuous time signal function
s(t) constructed from three successive sine functions with the same coherence or
lifetime T\ for frequency w1 and w3z < w1, and shorter coherence T, for frequency
wy > w1 (Bendjoya and Slezak, 1993, pp. 233-234). The signal s(t) shows discon-
tinuities at the time of change of frequencies. Figure 5.4 displays the modulus of the
Fourier resonance coefficients |c,|, i.e., its line spectrum. Notice the rather good
detection of the three frequencies present in s(t) and how the high frequency wj is
less precisely detected because of its shorter coherence. The spurious fluctuations
all over this spectrum are due to the discontinuities. No information can be obtained
from the line spectrum about the sequence of the changes in frequencies, the time at
which the different frequencies appear and disappear in s(t), or about their coher-
ence. Only a “timeless” frequency analysis is performed, which can be distorted by
discontinuities.

Example 199 Figure 5.5 shows examples of the magnitude spectra of sev-
eral musical variables, which are, clearly, periodic, sinusoidal waves (Kemp,
1991, p. 12). The clarinet, the violin and the highland bagpipe playing the
same note (B flat above middle C, 466 Hz). The interferograms (= correlograms)
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Figure 5.4 The FT of the sampled signal s(¢). The three frequencies w3 < w; < w, are
detected, but the frequency w, with he shortest time coherence has the smallest
resonance coefficient. The spurious fluctuations all over this spectrum are due
to the discontinuities in the signal.

Clarinet

Clarinet ) WWMN
Bagpipes
|

2,000 1,000
v/Hz 466 1
. Violin ) A A X i

4,000 3,000 2,000 1,000 |

v/Hz 466
Bagpipes | | L S
7,000 6,000 5,000 3,000 2,000 1,000 46!6

Figure 5.5 Fourier series analysis of pure musical harmonics: dominant frequencies of the

clarinet, violin and bagpipe.
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at the upper right-hand side were Fourier transformed to show the resonance
coefficients of their individual frequencies, or resonances emitted, as shown
at the lower left side. Notice that the clarinet is almost pure, with one domi-
nant frequency at 466 Hz. The violin shows several dominating higher frequency
overtones in addition to the 466 Hz. And the bagpipe shows both a dominant
lower harmonic (from the bas drone) and several dominant higher frequency
harmonics.

5.5 Software

The computations of the following Exercises can be executed by using the
MATLAB® Signal Processing Toolbox and by the MATLAB® Higher-Order Spec-
tral Analysis (HOSA) Toolbox (Swami et al., 1998). Both Toolboxes are available
from The MathWorks, Inc., 24 Prime Park Way Natick, MA 01760-1500, USA.
Tel (508) 647-7000; Fax (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

The HOSA Toolbox (2.0.3) is a collection of MATLAB® M-files containing
specialized tools for signal processing with higher order spectra. It was created by
Jerry M. Mendel, Chrysostomos L. (Max) Nikias and Ananthram Swami of United
Signals and Systems, Inc. The toolbox is a collection of MATLAB® routines whose
primary features are functions for: higher order spectrum estimation either by
conventional or parametric approaches; magnitude and phase retrieval; adaptive
linear prediction; harmonic retrieval and quadratic phase coupling; time-delay
estimation and array signal processing.

5.6 Exercises

Run MATLAB® Help, Examples and Demos, Toolboxes, Signal Processing:

Exercise 200 Filtering a sinusoidal signal: look carefully at the creation of a
sinusoidal signal with different frequencies by superposition, the creation and
implementation of the IIR (= Infinite Impulse Response filter), the way the various
series are plotted, the magnitude versus frequency diagram of the Fast Fourier
Transform (FFT) (cf. Brigham, 1988).

Exercise 201 Spectral Analysis of the DTMF signal (with sound): study the
spectrum diagram

Exercise 202 Discrete Fourier Transform (DFT) (try different windows): study
the effects on the DFT by changing frequency and amplitude of the signal. Notice
that there doesn’t exist a DFT for an infinite signal. (It’s somewhat confusing that
the command for the DFT in MATLAB® is fft. For the inverse DFT it is ifft.)

Exercise 203 Continuous FT: study the effects of different modulation fre-

quencies on the FT of the modulated Gaussian pulse. Notice the symmetry
of the FT.
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Notes

1 Chapter 6 contains a visual example of the original spectral analysis of the Standard and
Poor stock market series by Granger and Morgenstern (1963).

2 Jean Baptiste Joseph Fourier (1768-1830) was a French mathematician, who became
famous for his mathematical treatise on the Theorie Analytique de la Chaleur (Analyt-
ical Theory of Heat), 1822. He established the partial differential equation governing
the heat diffusion in the barrels of the canons of Napoleon’s Grand Army to deter-
mine how quickly these cannons could be safely reloaded. He solved it by using an
infinite series of trigonometric functions. His diffusion (= partial differentiation) equa-
tion was used in 1973 to derive the Black—Scholes European option pricing model.
This heat diffusion equation is also used in the theory of turbulence, as we will see in
Chapter 11.
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6 Fourier time—frequency
analysis of risk

6.1 Introduction

As we discussed in Chapter 5, Fourier series are powerful tools for analyzing
periodic variables, such as musical tones of instruments, or for determining the
spectral lines of inorganic and organic chemical components. But very few prac-
tical problems of financial-economic analysis do involve such rigidly periodic
variables. We need a form of Fourier analysis that can deal with aperiodic, but
still “cyclical” variables and that can identify Mandelbrot’s aperiodic cyclicity
prevalent in the long memory financial return series. Therefore, we’ll discuss a
frequency representation of aperiodic variables by means of the Fourier Trans-
form (FT), which analyzes the frequency contents of any time series, periodic or
aperiodic, as the case may be.

The many properties of the FT make it particularly suitable for representation
in terms of linear time-invariant system operators, such as integer differentiation
or integration, discussed in Chapter 4. Its immediate shortcoming is the same as
that of the Fourier series: the FT is a global, and not a local, representation of
a time series, since it takes an integral, or average, of the available set of time
series observations.

In the second half of this chapter we’ll discuss the Windowed FT, which is
suitable to analyze transient phenomena localized in time, although, perhaps,
only suboptimally, since the support of the Fourier wave bases remains infinite.
This Windowed FT was discovered by Gabor (1946) and produces the color-
ful spectrograms of instantaneous frequency distributions familiar from speech
analysis and other, rather entertaining internet media, such as RealPlayerTM,
which lists real-time spectrograms among its audio statistics. Considering that
financial time series of investment returns or foreign valuta prices are as nonsta-
tionary as speech, Windowed FT forms a powerful, and still heavily under-utilized,
research tool for the time—frequency analysis of financial risk (Priestley, 1988;
Cohen, 1989).

A very recent, optimal and complete way of analyzing such localized phenom-
ena, which does not suffer from the “infinite support syndrome” of the FT, but
which relies instead on finite support, will be discussed in the next chapter, when
we focus on time series analysis by finite wavelet bases.
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6.2 FT for aperiodic variables

The continuous FT for aperiodic time series is analogously defined to the dis-
crete Fourier series for periodic time series of Chapter 5, as follows (Hsu, 1984;
Champeney, 1990).

Definition 204 The FT of time series x(t) (symbolized by F) in the square-
integrable L? space is defined by the inner product (or correlation):

F(w) = Flx(@)]

+0o0

= / x(H)e I dt 6.1)

—00

Definition 205 The inverse FT of F(w) (symbolized by F~') represents the
time series x(t) as an infinite integral (“sum”) of sinusoids:

x(1) = FF ()]

1 +00

= F(w)e!” dw (6.2)
27 J_ oo

Remark 206 These two equations are often called the FT pair, symbolically
denoted by

F(w) < x(1) 6.3)

The condition for the existence of the FT F(w) is given by

+00
f Ix(1)| dt < o0 (6.4)

—00

In other words, the variable x () must be absolutely integrable. This is the same
restrictive condition as exists for martingales (cf. Chapter 2) and, again, it excludes
discontinuities and jumps, but also periodic functions, because, for example, for
any periodic function:

+00
f Ix(1)| dt = o0 (6.5)

Thus, strictly defined, the FT (which is NOT the Fourier series) cannot properly
deal with discontinuities or singularities (catastrophes) and periodic functions.
However, the Windowed FT can detect other transient phenomena. So let’s see
how we can understand this form of windowed analysis.

Since any periodic variable x(¢) is a function of slow growth, its FT exists in
the sense of a generalized function, as follows.
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Definition 207 A function x(¢) of slow growth is defined if there exist real
numbers C and R such that

x(@) <Ct" wherelt|] > R >0 (6.6)

Immediately related to this concept of slow growth is the concept of a restricting
device, such as a taper, which “tapers” the influence of the individual observations.

Definition 208 A continuous function ¢ (t) is a testing function of rapid decay,
or taper, if

lim "¢ @) =0 forsomen,r >0 (6.7)
t—+o0

where the rth derivative

d"¢(1)
dt”

¢ (1) = (6.8)
In the Exercises, you’ll find an application of such a taper for FT analysis. Such
a taper can be used to define even more generalized functions, as follows.

Definition 209 A generalized function of slow growth g(¢) is defined as a
symbolic function, such that to each testing function of rapid decay ¢(t) there
is assigned a finite number to the inner product:

+00
(g, 8) =/ g (ndt < o0 (6.9)

—00

with the linear properties of additivity and homogeneity. Thus
(8, a191 + aren) = ai(g. ¢1) + ax(g. $2) (6.10)

Remark 210 If ¢(t) is a taper, then we can use advanced calculus to show
that ¢ (t) is absolutely integrable:

“+oo
/ ¢ ()| dt < o0 (6.11)
—00
Hence, the FT of this taper, ® (w), exists.

In the next chapter we’ll discuss the relaxation of this particular restraining
condition of either ffooo |x(t)|dt < oo or ffooo |p(t)|dt < oo for the Wavelet
Transform. The Wavelet Transform v/ (¢) of x(¢) exists, even when x (¢) includes
discontinuities, jumps, periodicities and cyclicities — in other words, when x ()
includes all the phenomena we observe in empirical financial time series! Because
the Wavelet Transform has finite and not infinite support.

But let’s now first define the generalized FT.
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Definition 211 The generalized FT F(w) of a function of slow growth x(t) is
defined by the commuting integrals

+00 +00
f Fu)ow)du = / x(u)®(wu)du (6.12)

Remark 212 [t can be shown that all the properties of ordinary FTs also hold
for the generalized FTs of functions of slow growth (Hsu, 1984; Korner, 1990).

6.2.1 Algebraic properties of FTs

FTs have some very useful properties, which makes it easy to exactly compute
an enormous variety of FTs, which are discussed in a historically very interesting
and enjoyable presentation by Korner (1990). Let F(w) < x(t) denote the FT
pair. Then it’s easy to prove the following nine properties (cf. Hsu, 1984, for the
particulars of these proofs). In particular, translation = time shifting and scaling =
frequency shifting, will be very useful, when we study empirical financial series
that exhibit long time-dependence, such as the Fractional Brownian Motion (FBM)
defined in Chapter 4. Here follow the nine fundamental properties of FT pairs often
used in theoretical signal processing analysis, and now also in theoretical dynamic
asset valuation:

(1) Convolution in the time domain = multiplication in the frequency domain:
x1(2) *x x2(1) = Fi(w) F2(w) (6.13)
(2) Multiplication in the time domain = convolution in the frequency domain:
1
x1(D)x2(r) = 7, () * F2(w) (6.14)
(3) Linearity in the time domain = linearity in the frequency domain:

ar1x1(t) + axxr(t) < a1 Fi(w) + ar Fr(w) (6.15)

(4) Translation (= time shifting) = complex exponential decay in the (imaginary)
frequency domain:

x(t — 1) < F(w)e /@0 (6.16)

(5) Modulation (= frequency shifting) = complex exponential increase in the
(imaginary) time-domain:

x(1)e!™" < F(w — wp) (6.17)

(6) Scaling up in the time domain = scaling down in the frequency domain, and
vice versa:

1 w
x(et) o oo F (?) (6.18)
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(7) Time-reversal in the time domain = frequency-reversal in the frequency
domain:
x(—1) < F(—w) (6.19)

(8) Symmetry of functions in time and frequency domain:
F(t) < 2nx(—w) (6.20)

(9) Differentiation in the time domain = frequency exponential in the frequency
domain and vice versa:

xP (1) & (jo)’ F(w) and (6.21)
(—jnPx(t) < FP(w) (6.22)

Using the fundamental linearity and time shifting properties, we can now find
the FT of the Geometric Brownian Motion (GBM) as follows:

F(w) = Flx(@)]
=Flxt — 1)+ e@)]
= F(w)e /” + Fle(t)] (6.23)

Notice the frequency translation of the time shift! This implies that we can
concisely represent the GBM in the frequency domain as follows:

Fopm(@) = (1 — ™) 7 Fle(n)] (6.24)
Similarly, the FT of the FBM is modeled in the frequency domain as follows:

Fram(@) = (1 — /) Fle()] (6.25)
We’ll need these spectral representations later in this chapter, when we focus on
the spectral density of the stationary increments of the FBM.

6.2.2 Some exact FTs

Here are some additional important FTs of exact time functions, which can be
easily checked (Hsu, 1984):

(1) The FT of a constant is an impulse function §(-), which is the first derivative
of the unit step function u(-):

1 < 278(w) =21 du(@)

(6.26)

(2) The FT of a complex exponential function results in an impulse with a shifted
frequency:

el < 27 8(w — wp) (6.27)
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(3) The FT of a cosine function consists of the sum of two frequency shifted
impulse functions:

cos wot <> mé(w — wo) + 7 (w + wp) (6.28)

(4) The FT of a periodic function with period 7, which, as we have seen, can
always be expressed as a Fourier series of exponential functions, consists of a
sequence of equidistant impulses located precisely at the harmonic frequencies
of the function (cf. Chapter 5):

+oo ' 2
X0 = Y e withwy = - (6.29)
n=—oo
—+00
< F(w) =27 Z 8 (@ — nay) (6.30)
n=—0o0

Remark 213 7o speed up the calculations by reducing the number of computing
operations, often we implement the so-called Fast Fourier Transform (FFT), which
separates its odd and even harmonics. The vector-matrix implementation of this
FFT, discovered by Cooley and Tukey (1965), provides an interesting advanced
topic in numerical analysis.

6.2.3 Fourier spectra

The operational raison d’étre for FTs is to enable the computation of frequency
spectra of any continuous or discrete time series.

Definition 214 The Fourier spectrum F(w) = F[x(t)] is, in general, complex,
and thus represented by the sum of real and imaginary parts:

F(w) = R(w) + jX (o)
= |F(w)]e/®@ (6.31)

where | F ()| is called the magnitude (amplitude) spectrum of x(t) and ¢ (w) its
phase spectrum.

When x(¢) is a real-valued time series (and, empirically, it always is!), then,
using the familiar goniometric identity for a complex exponential,

e /P = coswt — j sinwt (6.32)
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its FT can be rewritten as

+oo '
F(w) = / x(t)e I®dt

—00

+o00 o0
:/ x(t) cos(a)t)dt—j/ x(t) sin(wt)dt

—0Q —0Q

= R(®) + jX(») (6.33)

so that, equating the real and imaginary parts of the complex F(w), we have the
real terms

+o00
R(w) = / x(1) cos(wt)dt (6.34)
+00o
X(w) = — f x(1) sin(wt)dt (6.35)

which are both easy to compute.

6.2.4 Convolution Theorems

The (general) FT can now be related to the earlier sections of Chapter 5, where we
discussed correlation and convolution, by way of two powerful Theorems. These
Theorems allow convolutions to be replaced by simple products (cf. Hsu, 1984;
Champeney, 1990; Korner, 1990, for the respective proofs). The first Theorem
shows that convolution in the time domain can be replaced by a product in the
frequency domain. The second Theorem shows that convolution in the frequency
domain can be replaced by a product in the time domain.

Theorem 215 (Time Convolution) If F[x1(t)] = Fi(w) and F[x2(t)] = F>(w)
then

Flxi1(@) * x2(t)] = Fi(w) F2(w) (6.36)

Theorem 216 (Frequency Convolution) If F~'[Fi(w)]=x1(t) and
FUF>y ()] =x2(¢) then

FUF (0) * F>(w)] = 27 x1(1)x2(2) (6.37)

or, equivalently,

“+o00

f[xl(t)-xz(t)] = / [_xl (t)x2([)] e—jwldt

—00

1
= 5 Fl@)» (o)
T

1 +00
- / FIO0) Fa(o — y)dy (638)
T J-co
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Using the second Theorem and setting the frequency w = 0, we obtain

400 1 +00
/ o1 (@201 = 5 / FL() Fa(—y)dy

+o0
_ / Fi(0)F(—w)dw (6.39)
27 J_oo

by changing the dummy variable of integration. If x (¢) is real valued, then
F(—w) = F*(w) (6.40)

where F*(w) is the complex conjugate of F(w). By substitution in the preceding
equation we derive the following financial version of the well-known ergodic
Theorem of Parseval, which provides a crucial link between the risk content of a
financial time series, as measured in the time domain and in the frequency domain,
respectively.

Theorem 217 (Parseval) If the FT F[x(t)] = F(w), then the risk content
(= second moment) of the aperiodic stationary financial time series x (t) is

+0o0
ELx()’] = / () Pdi

e¢]

1 +o00
=— f |F(w)|*dw
27 J_ o

+00
= / |F(2nv)|2dw (6.41)

—00

where the angular frequency is w = 2mv and the frequency v is expressed in Hertz.

The quantity |F (w)|* is called the risk or power spectrum, or power spectral
density (PSD) of x(¢). It is the frequency domain equivalent of risk in the time
domain.

6.2.5 Wiener-Khintchin Theorem

Using the foregoing results, we can now present the FTs of the various covariance
functions.

Corollary 218 If Flx;(t)] = Fi(w) and Fx»(t)] = F>(w), then

S12(w) = FIR12(v)] = Fi(0) F(—w) (6.42)
S1(w) = FlR21(7)] = Fi(—w) P (o) (6.43)
Si1(w) = FIR11(1)] = Fi(o) Fi(—w) (6.44)

The measures S12(w) and S>1(w) are referred to as cross-risk or cross-spectral
densities (CSD), and S11(w) is, as we saw, the risk spectrum or PSD of x1(t).
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If x (¢) is real valued, then
Si(w) = F[Rui(7)]
= Fi(0) Fi(~w)
= Fi() F} (0)
=|F(@) (6.45)

Thus, we have arrived at the famous Wiener—Khinchin Theorem relating the
autocovariance function of a financial time series to its risk spectrum, and
vice versa.! Thereby, the time dependence of a time series is translated into its
frequency dependence, and vice versa.”

Theorem 219 (Wiener—Khinchin) The autocovariance function Ry (t) and the
risk spectral density | F (o) |2 constitute a FT pair:

|F()|* = F[Ri1(7)]

+o00
:/ Rll(l’)eijwrdl' (646)
and
Rii(t) = F'[IF ()]
1 400 .
_ L / |F(@)2ei*" de (6.47)
2 J_ o

Since for periodic or random variables that exist over the entire time interval
(—00, 00), the risk contents are infinite,

+o00
Elx(®)*] = f [x(1)]?dt — oo (6.48)

the covariance functions, as defined earlier, do not exist as finite numbers, nor do
their FTs. Therefore, pragmatically we must work with truncated, approximating
average covariance functions, based on the assumed ergodicity of the time series,
i.e., the assumed equivalence of the represented time series volatility in the time
and frequency domains.

Definition 220 The average autocovariance function of x| (¢) is the limit

B 1 T2
Ri1(r) = lim 7/ x1(Ox1(t — 1)dt (6.49)

li
T—o0 —T/2

Definition 221 Similarly, the average cross-covariance function of x(t) and
x2(t) is the limit

B 1 T/2
Rix(r) = Tli—>moo ?/T/z x1(®)x2(t — T)dt (6.50)



164  Financial risk measurement

These definitions assist us to precisely define what we mean by uncorrelatedness
of two time series, which is defined as their linear independence.

Definition 222 Two variables x|(t) and x;(t) are uncorrelated, if we can
decompose their cross-correlation into a product of two independent time
averages:

_ 1 T/2
Rip(r) = lim —/ x1(Oxx(t — T)dt
-T2

1 T/2 1 T/2
/ xl(t)dti| [ lim — / Xt —r)dti| (6.51)
T -T2 T—ooo T -T/2

Then, if one time series, say x;(¢), has also a zero average value (e.g. because
it is measured as deviations from the mean)

Il
1
=
85
|

1 T/2
lim —/ x1()dt =0 (6.52)
T—o0 -T/2

then their cross-correlation equals zero:
Ri2(x) =0 forall t (6.53)

Thus, uncorrelatedness of two financial time series is empirically easy to verify:
compute the deviations from their means and cross-correlate to see if the result
equals zero. However, this procedure only measures uncorrelatedness = linear
independence, and does not demonstrate anything about nonlinear independence
or global independence, i.e., the kind of independence that financial risk analysts
are currently most concerned about. Global dependence has major consequences
for the way we conduct financial risk measurement, analysis and management if
it does not exist, as we will see in Chapter 12.

Definition 223  For time series with infinite risk content, the average risk of time
series x(t) is defined as the approximation

1 T/2
lim — / [x())dt (6.54)
T—oo T -T/2

Definition 224  The risk spectrum or PSD of the financial time series x1(t) is the
FT of the average autocovariance function of x1(t), which does exist, since the
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average autocovariance function is finite. Thus
P(w) = F[R1(0)]

+oo .
= / Rii(v)e /°%dr (6.55)

—0Q0

Then, of course, the average autocovariance function is the inverse FT of the risk
spectrum or PSD:

Ri(r) = F ' [P(w)]

1 +00 .
P(w)e!“"dw (6.56)

:E -

These are pragmatic, practical definitions for situations which are likely to
occur. However, these pragmatic definitions can lead to distortions, in particular
when the risk is infinite, as is the case when time series contain discontinuities, or
other singularities. These formulas define only approximations to the information
content of a financial time series and do not provide a complete analysis.

Corollary 225 The average risk (or mean-square value) of a financial time series
x1(t) is given by the integration of the PSD P (w) over the entire frequency range,
since

. 1 (T2 ,
R0 = Jim - f mord
- -7
+o0
= — P(w)dw (6.57)
27 J_oo

In the case of a stationary financial time series, it does not matter if we investigate
its risk content in the time domain or in the frequency domain, since they are
equivalent representations. But it does very much matter in which domain we
investigate the risk content when the time series is nonstationary, since then the risk
contents in the time and the frequency domains, respectively, are not equivalent.
They cannot be transformed into each other and have to be looked at simultaneously
to achieve a complete analysis.

Example 226 Figure 6.1 shows the truncated financial risk spectrum of the
Standard and Poor series computed by Granger and Morgenstern in 1963, after
an important trend in the mean is removed, by using moving averages of lengths 80
and 36. In other words, the original time series was nonstationary! The spectrum
was computed at 240 frequency bands, but only the first 100 are shown. A small
resonance peak at 40 months can be observed, but is not statistically significant.
Even after the trend removal, this peak only accounts for slightly less than 10
percent of the total remaining variance. Thus, the component corresponding with
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Figure 6.1 Granger and Morgenstern’s global risk spectrum of Standard and Poor
series, based on annual data, 1875-1952.

the American business cycle of approximately 40 months, although noticeable, is
not of particular importance and is much less pronounced than the components
with resonance periods of five years or more (Granger and Morgenstern, 1963).

Finally, we can now also properly define white noise in spectral terms.

Definition 227 White noise is defined as any random variable whose risk
spectrum or PSD is a constant flat line (= independent of frequency):

when measured in the 2-dimensional (2D) spectrum-frequency { P, w}, space.

Thus, white noise is a very specific kind of noise with a particular characteristic:
the flatness of its risk spectrum. Therefore, it cannot be considered “general noise,”
as is often, but erroneously, suggested by statisticians, econometricians, financial
analysts, etc. Later on we will find how “general noise” is visualized and measured
in both the time and frequency domains.

6.2.6 Average financial risk spectrum of FBM

From Chapter 4, we recall that the FBM provides a useful model for long-term
dependent financial time series, whose empirical spectra obey self-similar power
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laws of a fractional order d € (—0.5, 0.5). However, due to the non-stationarity
of these financial pricing processes, it is not clear how to measure their time-
varying spectra, since the classical measurement by Fourier spectra requires the use
of time-averaged measurements based on stationarity. An apparent contradiction
exists between the stationarity assumption upon which the usual Fourier spectra are
based and the fact that time-varying spectra cannot be associated with stationary
processes.

The usual way to approach this difficult measurement issue is as follows.
Although the FBM itself is nonstationary, its increments (and hence its deriva-
tives) are stationary. This allows one to associate well-defined average spectral
representations with the increments of FBMs.

The financial risk spectrum or PSD, of the FBM at frequency zero is the FT of
its ACF, which, according to the Wiener—Khinchin Theorem, is the product of the
two conjugate FTs of the FBM process, as follows. Recall that the FT of the FBM
is modeled by:

Fram(®) = (1 — e /)4 Fle()] (6.59)

Next, apply the two exponential series expansions for e/ and e/, with j =
+/—1, the imaginary number and w is the angular frequency, and take the limit for
o — 0. Then we obtain the FT of the ACF of the FBM as follows:

P(w) = Fly(0)]
= F(w)F(—w)
= (=)™ = /) FIP 0]

=02(1 —e/?)™ (1 — e /o)~

P32
:082|:1—<1+jw+(];) +)i|

_iw)?
x|:1—(1—ja>+( g’)) _)]

w? 7d w? -
=082|:—ja)+7+---i| [jw+§+-~-}

—d

—d

~oll-jol jol™ asw—0
=020 M (6.60)
Again, ford =0
P(w) = o2 (6.61)

the spectral density of white noise. Thus, the spectral density of the anti-persistent
FBM increments, or fractionally differenced white noise time series with d < 0
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Table 6.1 Risk spectrum of FBM increments

Noise characteristic Difference  Spectrum P(w)

Fractionally differenced d <0 ol - 0,0 — 0
white noise

White noise d=0 oo =2

Fractionally integrated d>0 dlo ™ — 00,0 — 0

white noise

will be zero, when the frequency approaches zero w — 0. Vice versa, the spectral
density of persistent FBM increments, or fractionally integrated white noise with
d > 0 will be infinite when the frequency approaches zero w — 0, as summarized
in Table 6.1.

Therefore, neither extreme can be observed in a risk spectrum P(w). But, as
we’ve observed in Chapter 4, there are different degrees of fractional integration
of white noise in between these two extremes. For fractional differentiation of
white noise by d = 0.5, the result is blue noise. For fractional integration of the
white noise by d = —0.5, the result is red noise; for integrating white noise once,
d =1, the result is brown noise (= Brownian Motion), and for integrating it once
more, d = 2, the result is black noise.

Since the financial risk spectrum of the fractional increments of the FBM is
scaling and proportional to

oM =" 450w —0 (6.62)

this suggests that the FBM self, which consists of once integrated FBM increments,
has a scaling spectral density proportional to

=2+ _ [ —2(H+0.5)

= PHTD a5 — 0 (6.63)

since the Hurst exponent H = d + 0.5 (cf. Chapter 4).

Remark 228 Notice that these average financial risk spectra do not depend
on time t. In other words, the average FBM spectra are not time-varying. This
fundamental fact results from the stationarity of the FBM increments combined
with the linearity of the integration!

It is also clear that the financial risk spectrum of a scaled FBM, x(ct), is
frequency-scaling (= characterized by a power law of a fractional order d), which
is in accordance to the fact that its second-order moments, represented by the ACF
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y (7) are time-scaling:
y (@) ~ ot (6.64)

Recall that, according to the scaling property of FTs, there is the transform pair

xet) & L F (9) (6.65)

e Ve

Thus, the financial risk spectrum of the scaled FBM is
1 w\ 1 )
Fly@l=—F(2) =F(—
le|]  Ne/ el c

= (?)
TP \e

2 —2d
o /w
_52 (_) _ CZd—zagzw—zd _ CZH—3O_82w—(2H—1)
lc|* \ ¢
for the FBM increments, and

2 -2
of (w\—2@d+D)
€ ( ) = M2 2d+D) = (2H1524)=QH+D)

le? e

for the FBM self
(6.66)

McCulloch et al. (2001) provide an alternative approach to spectral measures
of the stable distributions of Chapter 3.

6.3 Hurst exponent identification from risk spectrum

It is this frequency scaling property of the FBM, which allows us to compute its
financial risk spectrum to determine the Hurst exponent. How? Plot the logarithm of
the financial risk spectrum P (w) of the FBM against the logarithm of frequency w:

1 w
In Fy ()] = In [WP (;)]

=—QH+ DHlnw+[2H — D In[c] + Ino?]
=—bhhw+C (6.67)

The slope coefficient of the resulting negative line is

b=QCH+1) (6.68)
so that
b—1
H=— (6.69)
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Figure 6.2 Semi-log plot of the autocorrelation function y (t) for the S&P500 index,
sampled at a 1-minute time scale.

and the intercept is
C =QH — DIn[c] +Ino? (6.70)

With H so computed and the intercept C and the scaling constant ¢ known, we
can even find the value of the noise variance 2. This could not be done with
Mandelbrot’s logarithmic plot in Chapter 4. Let’s now look at some empirical
examples.

Example 229 Figure 6.2, displayed also in Mantegna and Stanley (2000, p. 55;
courtesy of Gopikrishnan et al., 1998), provides the semi-logarithmic plot of
the autocorrelation function for the S&P500 index, sampled at the At = 1 minute
time scale. The straight line corresponds to exponential decay with a character-
istic decay time of T = 4 minutes. It is apparent that after about 20 minutes the
correlations are at the level of pure noise.

Example 230 Figure 6.3, displayed in Mantegna and Stanley (2000, p. 56;
adapted from Mantegna and Stanley, 1996), shows the spectral density of the
S&P500 index, of which high-frequency minute-by-minute data were recorded
during the four-year period from January 1984 to December 1987. The empir-
ical behavior of the index is clearly described by the linear slope coefficient
A/2 = (H —1) = —0.5 in the time window from approximately 30 trading minutes
to 100 trading days, corresponding with the independent increment case, H =0.5.
Such a linear slope coefficient is characteristic for the particular financial mar-
ket investigated. Mantegna and Stanley (2000, p. 56) mention comparable studies
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Figure 6.3 Spectral density of high-frequency data from the S&P500 index.

analyzing daily data on stock indices of New York (the New York Composite index),
Frankfurt (the DAX index), and Milan (the MIB index) exchanges, with the empir-
ical results of A = —1.04, —1.06 and —1.14, or, equivalently, H = 0.48, 0.47
and 0.43, respectively (Mantegna, 1991). These values show the presence of weak
long-term dependence, in particular, of anti-persistence, since the empirical val-
ues of H are always slightly lower than 0.5. Based on our own empirical research,
we concur with their conclusion that the strength of such long-term dependence
is dependent on the particular financial market and that it “seems to be larger
for less efficient markets.” Using high-frequency data for the S&P500 index, one
finds that the market’s volatility, which is a measure of the market’s risk, has two
regimes: for very short trading horizons (t < 30 trading minutes), superdiffusive
(—A/2 < —0.5), or anti-persistent (H < 0.5) behavior is observed. In the longer
term (30 < © < 10* minutes = 167 hours = 7 days) the behavior is closer to
diffusive or neutrally persistent (A/2 = —0.5 or H = 0.5). In the very short-term
A/2 = —0.8 or H = 0.2 with strong superdiffusive or ultra-anti-persistent behav-
ior, which borders on chaos. This anti-persistent behavior is most likely due to the
fact that in the very short-term the time series has a memory of only a few minutes,
as shown in the preceding example. For another example of spectral analysis of
heavy-tailed data, cf. Mikosch (1998).

6.4 Heisenberg Uncertainty Principle

The fundamental Uncertainty Principle of Heisenberg states that there exists no
time series with finite risk which is compactly supported both in the time and fre-
quency domains.? Since this principle has important consequences for our financial
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market risk analysis (Los, 2000), we will provide a very simple proof using the
concepts of equivalent time duration and spectral bandwidth.

Definition 231 The equivalent time duration Tp of x () is defined by

1 +00
Tp = m/;oo |x ()| dt (6.71)
where x(0) # 0.

Definition 232 The equivalent spectral bandwidth Wg of x(¢) is defined by

1 o0
Wg = m/_m |F(w)| dw (6.72)
where F(0) # 0.

Proposition 233 (Uncertainty Principle of Heisenberg): The product of the
equivalent spectral bandwidth and time duration of a time series x(t) cannot
be less than a certain minimum value.

WgTp > 27 (6.73)

Proof By definition of Tp, we have

+00
x(O)TD=/ lx(t)| dt

—00

+00
> / x(t)dt

—00

= [/OO x(t)e_j“”dt]
—0o0 w=0

= F(0) (6.74)

Similarly, by definition of Wg, we have
+o0
F(O)WB=/ |F(w)| dw

—00

+00
> / F(w)dw

—00

+0o0 .
= [ / F(a))e"‘”da{|
—00 =0

— 27x(0) (6.75)
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Thus, we obtain

HOTp = F(0) = 22O 6.76)
Wg

from which we conclude that

WgTp > 27 (6.77)

6.5 Windowed FT for transient price innovations

Classical time series analysis devotes most of its efforts to the design of time-
invariant and frequency-invariant operators, that modify essentially stationary time
series properties. The FT dominates linear time-invariant time series analysis,
because the sinusoidal waves e/® are the constant eigenvectors of linear time-
invariant difference operators (cf. Chapter 3 for the relevant properties of linear
time-invariant operators). As we discussed earlier, this makes it possible to com-
pute the Hurst exponent and thus to establish some indication about the irregularity
and the time and frequency scaling of financial time series.

Let’s be a bit more precise about this particular aspect of the use of the FT, by
defining the characteristic function of the linear time-invariant operator in terms
of its eigenvalues, i.e., the solutions of its characteristic function (Mallat, 1999).

Definition 234 A function satisfying the equation
A{x ()} = Ax(1) (6.78)

is called an eigenfunction (or characteristic function) of the operator A, and the
corresponding value of A is called an eigenvalue (or characteristic value) of A.

Definition 235 A linear time-invariant (convolution) operator L is entirely spec-
ified by the eigenvalue H(w), which is the FT of the linear function h at the
frequency w:

+00
Le/® = / h(u)e!“ gy
—00
+00

= ej“’t/ h(u)e /" du

—00

= ¢/ H(w) (6.79)
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The exponential basis e?®", which represents a sinusoidal wave, is the eigenvector
of the linear convolution operator L.

Consequently, the eigenfunction of a linear time-invariant system is an
exponential function, because we have the FT pair

1 Foo ;
x(t) = —/ F(w)e!"dw (6.80)
27 J_ oo
and
+00 .
F(w) :/ x(1)e ™I dy (6.81)

i.e., the Fourier coefficient obtained by correlating x (¢) and e~ 7% and thus
1 +o0 .
Lx(t) = — f F()H(w)e'! dw (6.82)
27 J_oo

This construction explains the global character of the FT. The linear operator
L amplifies, or attenuates, the sinusoidal component ¢/®’ of x(¢) by the transfer
Sfunction H(w), which is the frequency filter of x(t). Since the support of the
sinusoidal wave e/’ covers the whole real line (— o0, +00), the Fourier coefficient
F (w) depends on the values x (¢) for all times ¢ € R.

It is precisely this global “mix” of information spread over all the times con-
sidered by the set of observations why the FT F(w) can excellently analyze the
global frequency contents of the irregularity, or true risk, of x (¢), but not its local
frequency contents of its irregularity. Thus, we can determine the overall risk level
of the financial investment return series x (¢), but Fourier analysis cannot assist us
with the determination of its local risk content, i.e., the market risk level of this
financial series at a particular time 7. But this is precisely the kind of risk informa-
tion that fund managers require for proper market risk management by continuous
dynamic hedging!

On the other hand, when each of the stacked frequencies can be precisely iden-
tified, we can produce a frequency or risk analysis that is localized in frequency
as well as in time. Such an approach will require the understanding of the fime—
frequency localization of the systematic part of a time series, as already in 1946 had
been achieved by Gédbor’s or Windowed Fourier Analysis (Cohen, 1989; Delprat
et al., 1992). In fact, there exist now two time—frequency localization transforms:

(1) the Gébor Transform.
(2) the Wavelet Transform (to be discussed in Chapter 7).

Gabor’s Transform or Windowed Fourier Transform (WFT) replaces the FT’s
infinitely supported sinusoidal wave by the product of a sinusoid and a compact
taper, which is localized in time (Allen, 1977).
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6.5.1 Gdbor’s WFT

As we noted in the preceding section, the Uncertainty Principle states that there is
no finite risk time series x () which is compactly supported in both the time and fre-
quency domains. In other words, the risk spread of a variable and its FT cannot be
simultaneously arbitrarily small. Motivated by quantum mechanics, the Hungarian
physicist Gabor (1946) defined elementary time—frequency “atoms” or “kernels”
as wave forms that have minimal spread in the time—frequency plane. He demon-
strated the importance of localized time—frequency time series analysis, when he
implemented his invention in the form of the first holograph.* It took until the 1980s
before his vision came to complete fruition in Wavelet Transforms and (multi-
dimensional) wavelet multiresolution analysis, discussed in Chapter 7 and as now
used in 3-dimensional (3D) image compacting and transmission over the internet.

Definition 236 Gabor atoms (or kernels) are constructed by time translation (by
period t) and frequency modulation (by frequency & ) of the original time window

g():
gret) = g(t — 1)el¥! (6.83)

such that fj;o g% (t — t)dtdt = 2.

Notice that a Gdbor atom is the product of a sinusoidal wave e/¢* with a finite
risk symmetric window g. Thus, the risk of g; ¢(¢) is symmetrically concentrated
in the time neighborhood of t over an interval of size o;, measured by the stan-
dard deviation of |g|?, and it has a frequency center £. The atom 8re(t) can
be viewed as changing analyzing filters which adapt according to the frequency
change in the time series x (¢) associated with the frequency & in the neighborhood
of time horizon t. The time and frequency spreads of these atoms are constant.
The whole family of Gdbor atoms is generated by time and frequency translations
of one specific atom g (7).

Example 237 Figure 6.4 shows the Gdbor atom g, ¢ for three frequencies: a:
high frequency &, b: middle frequency & and c: low frequency &3, (Bendjoya and
Slézak, 1993, p. 235).

Definition 238 The FT of the Gabor atom is a frequency translation by & :
Gre(w) = Flgre(®)]

+00 ‘
/ gr (e /' dt

o0

+00 .
=f g(t — 1)e 7@ gy

—0o0

=G(w—§£)e /@97 (6.84)
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Figure 6.4 Gdbor’s atom go ¢ as a function of time for three frequencies: (a) high &, (b)
middle & and (c) low &;.

Thus, the risk of G¢ ¢ (w) is localized near the frequency &, over an interval of
size o, which measures the domain where the Gabor resonance coefficient G (w)
is non-negligible.

The original FT represents a time series as the sum of sinusoidal waves in
which the resonance coefficients are correlation coefficients. As we discussed
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Figure 6.5 Heisenberg boxes of two windowed Fourier atoms g, ¢ and g, , .

earlier, these sinusoids are very well localized in frequency, but not in time, since
their support has infinite length (—o0, +00). This is a consequence of their exact
periodicity. To represent the frequency behavior of a financial time series locally in
time, the time series should be analyzed by functions that are localized both in time
and frequency, i.e., that are compactly supported in both the time and frequency
domains, like Gabor’s atoms.

In a time-frequency plane (t, w), the risk spread of the atom g, ¢ is measured
in the mean squares sense and can symbolically be represented by the Heisenberg
box illustrated in Figure 6.5. Gdbor’s Heisenberg box is centered at («, £) and has
a time dispersion o; and a frequency dispersion o,,. Although the shape of this
time—frequency box may vary depending on the time width of the window g, the
Uncertainty Principle proves that its area satisfies the following inequality

1
010, > 3 (6.85)

where o; is the standard time deviation and o, the standard frequency deviation
of a time series x () € L2.

Remark 239 The area of the Heisenberg box is minimal and this inequality is
an equality if and only if the window, kernel or density function, g is Gaussian, in
which case the atoms g ¢ are called Gébor chirps. In other words, g is a Gdbor
chirp, if there are constants (1, &, c, b) € R? x C2 such that

gre(t) = ce b= pikt (6.86)

If the time series x(¢) is non-zero with a compact support, then its FT in the
frequency domain cannot be zero on a whole frequency interval. Similarly, if its
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FT is compactly supported, then the time series x () cannot be zero on a whole
time interval. Hence, even if the Heisenberg constraint is satisfied, it is impossible
to have a function in L? space, which is compactly supported both in time and
frequency domain. This means that there cannot exist an instantaneous frequency
analysis for finite risk time series. Thus, time—frequency localization is achievable
only in the mean squares sense as visualized by the Heisenberg box.

We can also represent Gabor’s Transform as a scalar function, with two
arguments, time horizon t and frequency &, as follows.

Definition 240 Gabor’s Transform or WFT correlates (= computes the inner
product of) the time series x(t) with each Gdbor atom g ¢(t) to produce the
following resonance coefficients:

G(r,8) = (x(1), gre (1))

+00
= / x(1)gy7 ¢ (D)dt

—00

+00 .
:/ x()g(t —v)e Idr

—00
+o0o
=5 . F(0)G7 s (0)dw (6.87)
The last equation follows from Parseval’s (ergodic) Formula, since we have
(without proof):

Theorem 241 (Parseval’s Formula)

+00 1 [T
/ x(Oh*(t)dt = —/ F(w)H* (w)dw (6.88)
o0 27 J_ oo
Remark 242 For h = x it follows from Parseval’s Formula that
+00 1 +oo
/ Ix(0)|?dt = — / |F (0)|*dw (6.89)
o 27 J_oo

i.e., Parseval’s Theorem.

The original time series x(¢) can be reconstructed from Gabor’s resonance
coefficients by the following double integral:

1 too pF00 e
x(t) = E/_ /_ G(t,8)g(t —1)e!5'dedr

1 +o00 +o00 +o00 ) .
= — / / x(Ngt — 1)el g(t — )e ' drdedr
2z —00 —00 —00
1 +o00 +o0
= — / x(1)g*(t — t)dtdt (6.90)
27 Jooo Joo
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The time series x (¢) can thus be viewed as a sum of localized waves weighted by the
profile of the chosen taper or window g. Gdbor’s Transform has a constant time—
frequency resolution. This resolution can be changed by rescaling the window g.
It is a complete, stable and redundant representation of the systematic part of the
time series. Hence, it is invertible and easy to model.

6.5.2 Spectrograms: varying spectral densities

Gabor’s WFT can be written both as a time integral and as a frequency integral.
Measuring time-varying harmonics is the most important application of WFTs. For
example, when listening to the human voice, we perceive sounds with frequencies
that vary in time. They are clearly nonstationary: they are modulated over time.

A spectral line of x (¢) creates high amplitude windowed Fourier resonance coef-
ficients S(t, &) at frequencies £(7) that depend on the time 7. The time evolution
of such spectral components is therefore analyzed by following the location of
such large amplitude coefficients. These color or grey level coded visualizations
of the amplitude resonance coefficients are called spectrograms.

Definition 243 A spectrogram is the squared modulus of the WFT, i.e., the time
varying spectral density

Ps(t, &) = |S(z, §)|?
+00 ‘ 2
= ’/ x(t)g(t — AL (6.91)

A spectrogram measures the risk of financial time series x(¢) in the time—
frequency neighborhood of (7, &) specified by the Heisenberg box of g; ¢ (¢). This
means that we can now measure and visualize the localized risk of a financial time
series, instead of the average risk.

6.5.3 Examples of spectrograms and sonograms

We will now show a few nonfinancial and financial examples, using these new
technologies of signal processing, like the creation of histograms and spectrograms
of the increments of financial rate of return series or the increments of foreign
exchange rate series.> We will conclude that such financial increment series consist
of series of singularities or jumps, with random arrival times and with modulated
amplitudes, i.e., non-stationarities, like the sonogram of human laughter.

Example 244  Figure 6.6 presents Gdbor’s time—frequency analysis using a grey
level coding, of the time series presented in Chapter 5. (Adapted from Bendjoya
and Slezak, 1993, p. 236.) The highest value of the Gdbor resonance coefficients
are coded in black and the lowest value in white. The Gdbor Transform can detect
the frequencies present in the time series x(t) and also their temporal location.
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Figure 6.6 Time—frequency analysis by the Gabor Transform with o adapted to the time
coherence of frequencies w; and ws. The Gébor resonance coefficients are
coded in grey level, with the highest values in black and the lowest values in
white. The abscissa represents time and the ordinate the frequency. The highest
frequency with the shortest time coherence is worse detected than the other,
lower frequencies for which the window size is well suited.

However, it’s also clear from this spectrogram that the Gdbor Transform has
difficulty with detecting frequencies with a coherence shorter than the size of the
window. In this spectrogram, the lower coefficients are associated with the highest
frequency wy present in the time series with a very short coherence T. Such high
frequency could be interpreted as “noise” instead of a bona fide systematic signal.
The contribution of the short coherence frequency is very easily underestimated. In
short, Gdbor’s WFT is well suited only for financial time series with a coherence
at least equal to and preferably larger than the temporal size of the window.

Example 245 Daubechies (1992, p. 5) shows three spectrograms Ps(t, &) of
the same periodic time series f(t), with only two discontinuities or unit steps
u(t) where the arrows are, as in Figure 6.7. The spectrograms show that the
basic time series consists of the sum of two sinusoidal time series each with a
different frequencies of 500 Hz and 1,000 Hz, respectively. The two discontinuities
are clearly detected and show up as impulses §(t) in the spectrograms, cutting
through all frequencies. Notice the demonstration of Heisenberg’s Uncertainty
Principle occasioned by three widths of windows g: in the first spectrogram of
panel (b): the emphasis is on precise determination of the basic frequencies of
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Figure 6.7 Signal, spectrograms and scalogram (a) the signal f(z). (b) Three spectro-
grams or WFTs Ps(t, &) of f(¢) with three different window widths. Actually
In|S(z, £)| is plotted, using grey levels, high values = black, zero = white,
intermediate grey levels are assigned proportional to In |S(z, £)| in the time ¢
(abscissa), frequency w (ordinate) plane. (c) Wavelet Transform Pw (7, a) of
f(¢). To make the comparison with (b) the |W(z, a)| is plotted with the same
grey llevel coloration and a linear frequency axis (i.e., the ordinate corresponds
toa ).

the sinusoids, but this blurs the precise localization of the impulses. Going to the
right, the precision of the localization of the impulses is increased, but this blurs
the precise determination of the basic frequencies. In panel (c): we’ve an example
of a wavelet-based scalogram, which will be discussed in Chapter 7. A scalogram
is an excellent devise for time localization of transient events, but is less useful for
the precise determination of basic frequencies. Thus spectrograms and scalograms
should be used in tandem for a complete time—frequency analysis of financial time
series.

Example 246 Figure 6.8 demonstrates that the spectrogram Ps(t, §) is a great
device to visualize non-stationarity, in particular of time-varying frequencies, or
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Figure 6.8 Spectrogram Ps(t, &) of time series with two superimposed time-varying fre-
quencies. Dark areas indicate large amplitude resonance coefficients |S(z, £)|?.

so-called “chirps.” The time series of T = 1,000 observations at the top is
analyzed in the spectrogram below it. The time series includes a linear chirp,
whose frequency increases linearly over time, a quadratic chirp, whose frequency
decreases quadratically over time, and two modulated Gaussian noise functions
located att = 512 and t = 896 (Mallat, 1999, p. 72).

Example 247 Human speech time series are very high frequency series, highly
nonstationary and they are known to exhibit frequency- and phase-coupling
phenomena, i.e., cross-correlation phenomena over time. The following analy-
sis was performed on a data set of T = 1,400 observations by some of the
Higher-Order Spectral Analysis (HOSA) Toolbox MATLAB®-files to illustrate such
non-stationarity features (Swami et al., 1998, pp. 1-122/125). Time is measured in
milliseconds. Figure 6.9 shows the sonogram of the laughter data in the first panel.
The corresponding binned histogram in the second panel shows that its univariate
frequency distribution is asymmetrical. The mean, standard deviation, skewness
and kurtosis (cf. Chapter 1) are computed as 0.5621, 536.69, 0.1681 and 1.3277,
respectively, indicting that these data are non-Gaussian, and that the univariate
probability density function (p.d.f.) is not symmetrically distributed. Figure 6.10
shows the spectrogram Ps(t, &) of the laughter chirp. An FFT length of 512 obser-
vation is used, so that the (Hanning) taper g has length 512/2 = 256, with an
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Figure 6.9 Laughter data and their global histogram.

overlap of 240 observations. The spectrogram shows three dominant frequency
tracks, approximately around 550, 1,100 and 1,550 Hz. The last frequency track
or formant begins around 30 milliseconds. Additional fragments are visible around
1,800 Hz and 2,100 Hz. The spectrogram indicates that human laughter is essen-
tially harmonic and that its frequencies appear to be approximately harmonically
related. However, not all its fundamental frequencies occur at the same time!

Example 248 Figure 6.11 shows that data for the changes in the three-month
Treasury Yield contains numerous one-day spikes, which strongly suggests that
such series are not continuous, but that they are highly discontinuous (Chapman
and Pearson, 2001, p. 86). They can be characterized as series of singularities with
modulated amplitudes, i.e., a nonstationary jump process, with random arrival
times of these jumps. These financial time series of changes in short-term cash
rates of Figure 6.11 look very much like the sonogram of the high frequency non-
stationary laughter data in Figure 6.9. However, the series of yield increments are
unevenly distributed series of modulated singularities, while the laughter data is a
sonogram with a continuous sound wave, consisting of superimposed sound waves
of a few fundamental frequencies. This small, but crucial difference is not observ-
able from the binned frequency distributions, which look very much alike. Under
close inspection it is somewhat visible in the time domain. But it would be most
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Figure 6.10 Spectrogram of laughter data with three dominant harmonics, approxi-
mately around 550 Hz, 1,100 Hz and 1,550 Hz. The last coherent harmonics
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a spectrogram displays than the statistician’s global histogram in Figure 6.9.
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Figure 6.11 Changes in the daily level of the three-month Treasury yield, daily data,
January 1962 to April 2000.
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clearly visible in the time—frequency spectrogram. We 've not been able to obtain
this particular yield data set and to produce a spectrogram of it. But in the follow-
ing example of foreign exchange rate (FX) increments we were able to analyze a
very similar data set. It will show that FX increments are not like laughter, since
there are no natural harmonics identifiable in the data. The FX increments consist
of series of singularities (for which we can compute and visualize a singularity
spectrum). It is a clear example of the situation where the frequency distributions
of the FX increments and of laughter are similar, but where their respective time
distributions are completely different.

Example 249  Figure 6.12 shows the comparison between the modulated spec-
trogram Ps(t, ) = |S(t, &)|* of minute-by-minute FX data compared with the
flat spectrogram of white noise. We compare 10,800 increments of the empirical
German Deutschemark DEM/US Dollar (USD) rate in the first week of June 1997
in the left panel with the same number of observations on simulated white noise in
the right panel with the same constant variance as the FX increments. The frequen-
cies are standardized between 0 and 1 and are measured by the vertical axis, while
the time intervals are measured by the horizontal axis. The lowest frequencies are
at the bottom and the highest frequencies at the top. Notice, first, that the German
FX increments have low financial risk (light grey and white) in the low frequencies
and high financial risk (dark grey and black) in the high frequencies: the risk spec-
trum is modulated over time. The series is nonstationary. In contrast, the white
noise has a constant financial risk over all frequencies and is evenly distributed
over time: it is clearly stationary and has a flat spectrum. The financial risk of the
German FX increments is intermittently distributed over time. The financial risk

Spectrogram of the increments Spectrogram of the random numbers
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Figure 6.12 Comparison of the modulated spectrogram of empirical DEM/USD increments
with the flat spectrogram of white noise.
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of the white noise is evenly distributed over time. Thus, to emphasize, this time—
frequency visualization shows that the German FX increments in Figure 6.12 are
nonstationary, or modulated: their frequency distribution varies over time. More-
over, the German FX increments are unevenly distributed over time. In contrast:
white noise is stationary, or unmodulated, and evenly distributed over time. This
empirical analysis clearly calls into question the use of the GBM for the modeling
of FX prices. In Chapter 8 we will see that scalograms improve the time location
of the spectrograms and that such scalograms contain information about these
singular FX increments, which can be extracted from the scalogram/spectrogram
by modeling the FX process as an FBM.

6.6 Software

The computations of the following Exercises can be executed by using Benoit
1.3: Fractal System Analysis for Windows, Trusoft International Inc., 204 37th
Ave. N #133, St Petersburg, FL. 33704 Tel (813) 925-8131; Fax (813) 925-
8141; sales@trusoft-international.com. See http://www.trusoft-international.com
for details.

They can also be executed by using the MATLAB® Signal Processing
Toolbox and the MATLAB® HOSA Toolbox (Swami ef al., 1998). Both
Toolboxes are available from The MathWorks, Inc., 24 Prime Park Way
Natick, MA 01760-1500, USA. Tel (508) 647-7000; Fax (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

The HOSA Toolbox (2.0.3) of Nikias and Petropulu (1993) is a collection of
MATLAB® M-files containing specialized tools for signal processing with higher
order spectra. It was created by Jerry M. Mendel, Chrysostomos L. (Max) Nikias
and Ananthram Swami of by United Signals and Systems, Inc. The toolbox is
a collection of MATLAB® routines whose primary features are functions for:
higher-order spectrum estimation either by conventional or parametric approaches;
magnitude and phase retrieval; adaptive linear prediction; harmonic retrieval and
quadratic phase coupling; time-delay estimation and array signal processing.

6.7 Exercises

Exercise 250 Using the Benoit 1.3 software, compute the Financial Risk Spec-
trum for (1) the original share prices of Chapter 1, (2) their total rates of return, and
(3) the first differences of the rates of total return. Use initially simple averaging
of the spectrum. Then try tapering with a rapid-decay function to avoid Gibbsian
edge effects and to minimize spectral leaking. Spectral leaking is the phenomenon
that financial risk is added to the estimate at some wave number from neighboring
wave numbers. In that case, there is no sharp discrimination between the risk
levels at different frequencies. Spectral leaking is a particular concern if the spec-
trum is very red, i.e., if the long-wavelength components have greater risk than the
short-wavelength components. This is always the case for self-affine traces, like
the globally dependent financial time series, like we discuss in this book.
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Exercise 251 Run MATLAB® Help, Help Desk (HTML), Online Manuals (in
PDF). In the Signal Processing Toolbox User’s Guide, study and implement
the examples in MATLAB® for the DFT (pp. 1/43—1/45), Spectral Analysis
(pp. 3/5=3/11), and FFT-based Time —Frequency Analysis (pp. 4 and 26). Find
out what is a risk spectrum or PSD (= power spectral density)? What is a CSD (=
cross-spectral density)? What is a periodogram? What is the Nyquist rate? What
is a spectrogram?

Run the following MATLAB® Help, Examples and Demos, Toolboxes, HOSA,
Case Studies:

Exercise 252  The classical sunspot data series (annual, 1700-1987): notice the
two representations of the data, as time series and as histogram. Why is differenc-
ing helpful? Interpret the summary statistics of the histogram: mean, variance,
skewness and kurtosis. How and why do we compute a singular value plot? Inter-
pret the various representations of the risk spectrum and the harmonic analysis.
Are the sunspot data periodic or cyclic? If periodic, what is their period? If cyclic,
why? What’s the difference between periodicity and cyclicity? Is the business cycle
of GDP returns periodic or cyclic?

Exercise 253 Canadian lynx data (annual, 1821-1934): do the same as for the
sunspot data.

Exercise 254 Speech data (laughter): this is an example of high-frequency (HF)
data. What is a spectrogram? How do you interpret it? How can you determine if
a series is stationary and why is that important? How do you determine if data is
harmonic? How do you determine if data is Gaussian? What is linearity and how
do you determine it (cf. Chapter 3)? What is a bi-spectrum and why it is useful?
What is a cumulative spectrum? What is quadratic frequency coupling? What is
self-coupling? What other terms don’t you know and do you need to define?

Exercise 255 Run MATLAB® Fourier analysis on a data set of one day of
High Frequency Foreign Exchange (HFFX tick-by-tick and minute-by-minute)
data for some Asian currencies, available from the author, or from an interna-
tional commercial, currency-trading bank like ABN-AMRO. Compute histograms
and their summary statistics, risk (power) spectra and cumulative spectra. Con-
duct harmonic analysis on all series and determine the Fourier “signature,”or
“fingerprint,”of each of the nine series, using MATLAB®’s programming facilities
(You must also figure out how the EXCEL Link works to feed the raw input data
in). Compute a spectrogram. Determine if the series are stationary, harmonic and
Gaussian or not. Compute a bi-spectrum and determine if the HFFX series are
linear.

Notes

1 The American mathematician Norbert Wiener (1894—1964), is best known for his devel-
opment of an interdisciplinary approach to the study of communication and control
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processes in living organisms and machines, for which he coined the word cybernetics.
He was doing work on automated control systems for anti-aircraft guns during the Sec-
ond World War, when he wrote his famous “yellow peril” report on the optimal tracking
solution in the frequency domain. Wiener also contributed to the theory of stochastic
processes and the theory of Brownian motion, by constructing a rigorous mathematical
description of physical processes that are subject to random change. He helped build
the mathematics department at the Massachusetts Institute of Technology (MIT) into an
outstanding research facility and taught there from 1919 to 1960.

2 Before Aleksandr Yakovlevich Khinchin graduated in 1916 he had already written his
first paper on a generalization of the Denjoy integral. This paper began a series of publi-
cations by Khinchin on the properties of functions retained after deleting a set of density
zero (probability zero) at a given point. He summarized these results in Fundamental
Mathematica in 1927. In that same year he became a professor at Moscow University
and published his Basic Laws of Probability Theory. Between 1932 and 1934 he laid
the foundations for the theory of stationary random processes, culminating in a major
paper in Mathematische Annalen in 1934. At Moscow University, Khinchin build the
influential school of probability theory, together with Kolmogorov and Gnedenko. From
the 1940s on he was interested in the theory of statistical mechanics and he helped to
develop Shannon’s ideas on information theory. Khinchin published his famous Mathe-
matical Principles of Statistical Mechanics in 1943 and in 1951 he extended it into his
Mathematical Foundations of Quantum Statistics. It included his fundamental treatment
of local limit theorems for sums of identically distributed random variables.

3 German theoretical physicist Werner Karl Heisenberg (1901-1976) was one of the leading
scientists of the twentieth century. The physical principles underlying the mathematics
of quantum mechanics remained mysterious until 1927, when Heisenberg — following
conversations with Bohr and Albert Einstein — discovered the uncertainty principle. An
important book of Heisenberg published in 1928, The Physical Principles of Quantum
Theory, described his ideas. The previous year he had become a professor at the University
of Leipzig, and in 1932 he was awarded the Nobel Prize for physics. He remained in
Germany during the Nazi period and became director of the Kaiser Wilhelm Institute,
also heading the unsuccessful German nuclear weapons project. In 1958, Heisenberg
became director of the Max Planck Institute for Physics and Astrophysics. He spent his
later years working toward a general theory of subatomic particles.

4 The British scientist and inventor Dennis Gdbor was born in Budapest, Hungary (1900—
1979) and won the Nobel prize for physics (1971) for his invention (in 1947) and later
development of holography, a means of numerically producing 3D photographic images
without using alens. Gdbor began his career as an industrial research engineer in Germany
but went to England with the rise of the Nazis in 1933. He began teaching in 1949 at the
Imperial College of Science and Technology in London and became professor of applied
electronic physics in 1958. In 1968, he was appointed staff scientist at CBS Laboratories
in Stamford, Connecticut and stayed in the United States.

5 A recent interesting example of the application of the WFT in options markets is
Benhamou (2002) of Goldman Sachs International, Fixed Income Strategy, Swaps, Divi-
sionin London, whois impressed by the non-lognormal densities of discrete Asian options
and examines the effects of fat-tailed distributions on price as well as on the delta. Using
this technology he finds that fat tails lead to larger jumps in the (hedging) delta.
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7 Wavelet time—scale analysis
of risk

7.1 Introduction

In this chapter we continue to simultaneously analyze the marginal distributions
and the temporal dependence of investment returns, as in Chapter 6, but we do it in
a time—scale frame of reference, instead of in a time—frequency frame of reference.
Scale is proportional to the inverse of frequency: a ~ 1/w.

Our basic model of analysis for the investment returns and foreign exchange rates
is again the Fractional Brownian Motion (FBM) presented earlier in Chapter 4. In
that chapter we discussed the analysis of stationary and of slowly varying nonsta-
tionary financial time series. In this chapter we discuss the analysis of financial time
series that contain numerous transient, nonstationary characteristics, such as drifts,
trends, discontinuities in higher derivatives of the series, the beginnings and ends
of particular events, as well as the self-similarity and scaling exhibited by the FBM.

As we discussed in Chapter 5, classical Fourier analysis is periodic wave analy-
sis. It expands signals or functions (of time) in terms of sinusoidal basis functions,
or, equivalently, in terms of complex exponentials. Therefore, it is especially
suited for the harmonic analysis of periodic, time-invariant, or stationary phenom-
ena. Next, in Chapter 6, we approached the analysis of nonstationary phenomena
in a time—frequency frame of reference by breaking the data set up into a sequence
of finite horizon “windows,” and implemented Fourier analysis to each consecu-
tively overlapping window, in a moving average fashion. The problem with the
windowed approach is that the Gabor—Fourier Transforms (FT's) are still not strictly
localized. This non-localization leads to approximation, “time-smearing,” and thus
some time ambiguity of the analytic results.

In contrast, the wavelets discussed in this chapter comprise a complete set of
finite basis functions, precisely localized in both time and frequency (or scale),
which, in linear resonance combinations, can provide an extremely flexible,
efficient and complete representation of a time series.

These wavelet basis functions have their risk concentrated in time. When cor-
related with a time series, the magnitudes of the resulting wavelet resonance or
correlation coefficients provide a tool for the analysis of nonstationary, transient,
rapidly or sharply developing dynamic processes (Wang, 1995; Ogden and Parzen,
1996). Such nonlinear dynamic phenomena often incorporate scaling behavior.
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Wavelets are very good tools for detecting, quantifying and modeling scaling
behavior at various resolutions. Thus, wavelet Multiresolution Analysis (MRA)
is an improvement over Gdbor’s Windowed Fourier Analysis. By using non-
overlapping, scaling and shifting windows wavelet MRA localizes the significant
resonance correlations accurately, both in time and in frequency.

This chapter is heavily indebted to signal processing engineers and mathemati-
cians like Mallat (1989a,b,c; 1999), Bruce et al. (1996), Burrus et al. (1998),
Burke-Hubbard (1994, 1998), Flandrin (1989, 1992), Jawerth and Sweldens
(1994), Kaplan and Kuo (1993), Rioul and Vetterli (1991), and Strang (1994).
Holschneider (1995) of the Centre National de la Recherche Scientifique (CNRS =
National Center for Scientific Research) in Marseille, France, and Cohen and
Kovacevic (1996) provide excellent and detailed mathematical overviews of
wavelet analysis, as do Benedetto and Frazier (1994). The Wavelet Transform
(WT) was first introduced by Morlet et al. (1982) to obtain time—frequency infor-
mation from seismic time series. The two (already) classic texts in wavelet theory
are written by two mathematical founders of the subject: Yves Meyer (1990) and
Ingrid Daubechies (1992). Meyer’s book requires a research-level background in
mathematics, but Daubechies’ text is acessible to a somewhat wider audience.
Simpler introductions to wavelets, using only linear algebra, can be found in Chui
(1992a) and in Frazier (1999).

In the meantime, wavelet analysis and its applications have become a truly inter-
disciplinary research methodology. Excellent first introductions to bridge the still
existent chasm between signal processing and statistical analysis using wavelets
can be found in Chui (1992b) and in Ogden (1997). In finance, this ingenious
wavelet analysis has already provided us with the tools to identify and, perhaps
even forecast, the pricing and trading processes that characterize our financial
markets. The first instances of this new empirical analysis are only now slowly
emerging in the financial literature, although much confusion remains regarding
what the best ways are to use these powerful analytic signal processing tools in
finance (Jensen, 1997). This situation is not unlike when the first instances of
econometrics appeared in economics 60 years earlier.

But there is no doubt that wavelet MRA is extremely powerful and will lead to
many new discoveries in both finance and economics (cf. Ramsey er al., 1995;
Ramsey and Zhang, 1996; Ramsey and Zhang, 1997; Aussem et al., 1998;
Ramsey and Lampart, 1998a,b; Gengay et al., 2001), as it already has in med-
ical and biomedical, seismic and oceanographic signal and image processing, in
quantum mechanics and asteroid family identification from cluster analysis, mete-
orology and turbulence research (Ruskai et al., 1992; Meyers et al., 1993; Lau and
Weng, 1995).

Wavelets have been used to solve serious electronic communications prob-
lems and, combined with fractals, they have been applied to time series that
are chaotic, as we will discuss in Chapter 8. Since wavelets are self-similar and
scaling, there is a natural affinity between wavelet MRA and fractal models,
in particular in the research of the self-similar cascading risk levels of the vor-
tices in turbulence research (Massopust, 1994; Wornell, 1995), as we will see in



192  Financial risk measurement

Chapter 11. Moreover, the use of wavelets as basis functions for the discretization
and numerical solution of nonlinear diffusion equations (e.g. used in the valua-
tion and dynamic hedging of American and exotic options) have already achieved
excellent success (Bendjoya and Slezak, 1993; Meyer, 1993).

7.2 'Wavelet analysis of transient pricing

Wavelet analysis has a diverse historical background. In reflection seismology
in the 1970s and 1980s, Morlet et al. (1982) found that modulated pulses sent
underground have a time duration that is too long at high frequencies to separate
the reflections of fine, closely spaced layers of rock, because of the Heisenberg
Uncertainty Principle (cf. Chapter 6). Instead of emitting pulses of equal time
and frequency duration, he then thought of sending shorter waveforms at high
frequencies. Such waveforms are obtained by scaling a single basis function, called
a (Morlet) wavelet.!

Alex Grossman of the Marseille Theoretical Physics Center recognized in
Morlet’s approach some ideas that were close to his own analysis of coherent
(= correlating) quantum states (Grossman and Morlet, 1984). Thus, nearly forty
years after Gabor et al., reactivated a collaboration between theoretical physics
and signal processing, this ultimately led to the formalization of the Continuous
Wavelet Transform (CWT).

The basic ideas of wavelet time—scale analysis were already familiar to math-
ematicians and engineers working with the harmonic Fourier analysis discussed
in Chapters 5 and 6. Thus, the acceptance of wavelets was rather rapid within
the community of signal processing engineers. Wavelet analysis is now invading
other applied fields in cognitology, biology and medicine, like computer vision,
machine sensors, neurology, e.g., the study of electroencephalographs (EEGs) to
find extreme brain waves, and in cardiology, e.g., the study of electrocardiograms
(ECGs) to identify cardiac arrhythmias (Aldroubi and Unser, 1996).2

Wavelet analysis has now also reached the financial markets, to determine the
periodicities, aperiodic cyclicities, intermittencies and arrhythmias of the financial
time series produced in great abundance by these markets. It’s our expectation that
a study of the spectrograms and scalograms of the financial markets can assist us
with their financial and economic diagnosis to prevent financial crises and other
market inefficiencies (Jensen, 1997).3

The specific mathematical methods of wavelet analysis have been developed
mainly by the French mathematician Yves Meyer (1985, 1993) and his colleagues.
Complete wavelet MRA was discovered by Stéphane Mallat in 1988 (Mallat,
1989a,b). Since then, research on wavelets has become truly international. It is
particularly active in the United States, where it is led by the work of math-
ematicians and scientists such as Ingrid Daubechies at Rutgers University and
AT&T Bell laboratories, and Ronald Coifman and Victor Wickerhauser at Yale
University (Coifman and Wickerhauser, 1992; Wickerhauser, 1994; Buckheit and
Donoho, 1995).
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After a lapse of more than thirty years, the thread of analyzing the fractality or
self-affinity of financial-economic time series was picked up by Ramsey and Zhang
(1996, 1997) at the Courant Institute of New York University by implementing
wavelet analysis. It is currently a wide open field of research, ripe for a more
complete exploration by students in finance and economics (Gengay et al., 2001).

7.2.1 Wavelet Transform

Let’s see how wavelet analysis works. Similar to the windowed Fourier Trans-
form (WFT), the WT decomposes a 1-dimensional (1D) time series into
2-dimensional (2D) time—scale (~ frequency ) space. In particular, while Fourier
analysis breaks down a time series of investment returns into constituent orthogo-
nal sinusoids of different frequencies (= constant periodicities), wavelet analysis
breaks down such a time series into constituent orthogonal wavelets of different
scales.

Similar to the Gabor Transform, the WT replaces the basic sinusoidal waves
of the FT by a family of basic wavelets generated by translations and dilations of
one particular wavelet atom. Figure 7.1 compares an infinite sine wave basis for
Fourier analysis with a finite Daubechies(20) wavelet basis.

Definition 256 A continuous wavelet atom v, ,(¢) is a wave function of zero
average, centered around amplitude zero, with finite risk:

“+o00
E{yra()} = Yra(t)dt =0 (7.1)

which is translated by a limited time interval T and scaled, or dilated, by a scale
parameter a as follows:

0= — (t_’) (7.2)
V) = v (7 .

This scaled and translated wavelet is time centered around t, like the Gabor
atom. If the frequency center of v is 1, then the frequency center of the dilated

(@) (b)

Figure 7.1 (a) A sine wave and (b) a Daubechies’ wavelet 1 pyg.
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Figure 7.2 Self-similarity of wavelets: translation (every fourth k) and scaling of a
wavelet .

wavelet is £ = n/a (thus the scale a o« 1/&). Figure 7.2 shows the translation
and scaling of a Daubechies(4) wavelet, which we’ll define later in this chapter.
A continuous wavelet is simply a finite risk function with a zero mean. Besides
its scaling and dilating Heisenberg box, the most important feature of a wavelet is
the number of its vanishing moments:

+oo
/ "y )dr =0 forO<r <n (7.3)
—00

This vanishing moments property of wavelets makes it possible to analyze the local
regularity of a time series x(¢). A theorem characterizes fast decaying wavelets
with r vanishing moments as the rth derivatives of a fast decaying function (cf.
Chapter 6 for such testing functions of rapid decay, or tapers). We will meet these
fast decaying wavelets again in Chapter 8, when we discuss the crucial Lipschitz
irregularity analysis.

Usually wavelet analysis is done by orthonormal wavelets, to effectuate the
completeness, or exhaustiveness of the analysis.
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Definition 257 An orthogonal wavelet V. 4 (¢) is a wavelet with the orthogonality
property

+00

Vra(OYop()dt =0 fort #v or a#b (7.4)

—0o0

Definition 258 An orthonormal wavelet vy, ,(¢) is an orthogonal wavelet with
the normalization

+00 +00

Va7, (0dt = / [Wre.a(®)Pdt =1 (1.5)

—00 —00

These few introductory definitions enable us now to define the CWT, which
forms the basis for wavelet MRA.

Definition 259 The CWT of x(t) at position t and scale a is an inner product
computed by correlating (or convoluting) the time series x (t) with a wavelet atom

+o00
W(t,a) = f x ()Y (Ddt

—00

oo 1 L (t—7
:/_oo x(l)ﬁl/f ( P )dl
=x(1) * Yra(=1) (7.6)

Thus, the CWT resonance coefficient is the correlation (convolution) between
the time series and the appropriate wavelets, as in Figure 7.3. In a (Morlet) Wavelet
Transform, a wavelet is correlated with different sections of a financial time series
x(t). The inner product of a section and the wavelet is a new function. The volume
of the area delimited by that function and computed by the integral is the wavelet
resonance (or correlation) coefficient. Sections of the time series x () that look like
the wavelet give large resonance coefficients, as seen in Figure 7.3(c) and (d). (The
(scalar) product of two negative functions is positive.) Slowly changing sections
of x(¢) produce small resonance coefficients, as seen in (e) and (f). Accordingly,
the time series x(¢) is analyzed at different scales, using wavelets of different
widths.

Thus, the dilating and translating wavelet atoms can be used as the orthonor-
mal basis for a unique, complete observation system, which allows continuously
varying levels of resolution, like a microscope. Similar to Gabor’s WFT, a WT can
measure the time—frequency variation of spectral components, but it has a sharper,
more localized time—frequency resolution than the WFT. One of the reasons is that
wavelets tend to be irregular, fractal and asymmetric, while sinusoids are smooth,
periodic and symmetric (Bruce et al., 1996).

The CWT can operate at any scale, from that of the original financial time
series up to some maximum scale, which is determined by trading off the need for
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Figure 7.3 Wavelet coefficients are “correlation” or “resonance” coefficients. Here a
wavelet is correlated with an irregular signal. Different sections of the signal
produce different resonance coefficients.

detailed analysis with available computational power. The CWT is not only conti-
nuous in terms of scaling, it is also continuous in terms of shifting (translation):
during computation, the analyzing wavelet v, ,(¢) is shifted smoothly over the
full domain of the analyzed series x (). When done, one has computed the wavelet
resonance coefficients produced by different sections of the signal, translated by
7, and at different scales a.

The CWT W (z, a) has four very useful mathematical properties:

(1) It’s linear: W (z, a){y1x1(t) + y2x2()} = i W(z, a){x1(1)}
+1W(r, a){x2(0)};
(2) It’s invariant under translation W(z, a) = W(r — 19, a);
(3) It’s invariant under dilation W(z, a) = (1/k)W (kt, ka), using k = 1/./a;
(4) It’s localized in time and frequency.

How to make analytic sense of the resulting multitude of wavelet resonance
coefficients? How can we interpret them? Usually one makes a visualization plot
in which the abscissa represents the position ¢ — t along the time axis, the ordinate
represents the scale a, and the grey scale or color at each (7, a) point represents
the magnitude of the wavelet coefficient |W (7, a)| as in Figure 7.4 (This is a grey
scale example of a scalogram, defined in Section 7.2.3). These plots of wavelet
coefficient resemble an irregular surface viewed from above. You can also represent
the same coefficients in a 3-dimensional (3D) plot as in Figure 7.5. Notice the slope
of the ridges from the small-scale to the large-scale coefficients. The maxima of
these ridges are the maxima lines. The speed of their decay from the large to the
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Figure 7.4 A scalogram: a plot of the magnitude of wavelet coefficients.
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Figure 7.5 A 3D scalogram: a plot of the magnitude of the wavelet coefficients in three
dimensions.

small scales can be used for very sophisticated irregularity analysis of singularities
and to compute singularity spectra, as we will see in Chapter 8.

By applying Parseval’s Formula (cf. Chapter 6), the CWT resonance coefficient,
which is a time integral, can also be written as a frequency integral (Walker, 1997):

W(t,a) = /oo x (DY (H)dt

o0

F@)¥} ,(@)do 7.7

=E .
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where F(w) is the FT of x(¢) and W7 () is (the complex conjugate of) the FT of
the wavelet atom ¥, 4 (¢):

Vo o(@) = Va¥(aw)e! (7.8)

In the time integral, the financial time series (e.g. of investment returns) x(¢)
is correlated with the wavelet v, ,(f). Its risk is concentrated in a positive time
interval centered at t. In the equivalent frequency integral, the FT of the time series
F (w) is correlated with the FT of the wavelet W ,(w). This means that ¥ (w) = 0
for w < 0. The risk of W, ,(w) is concentrated over a positive frequency interval
centered at T/a, whose size is scaled by a~!.

7.2.2 Relationship between frequency and scale

In the time—frequency plane, a wavelet atom v, , is again symbolically represented
by a Heisenberg box centered at (t, n/a), as in Figure 7.6. The time and frequency
spread are proportional to @ and a~!, respectively. When the scale a varies, the
height and width of the Heisenberg rectangle change, but its area or volume remains
constant. When a decreases, i.e., when the time resolution decreases, the frequency
support of the wavelet is shifted to the higher frequencies, and vice versa, in
accordance with Heisenberg’s Uncertainty Principle, discussed in Chapter 6.

As Figure 7.6 shows, the higher scales a correspond to the most dilated
(“stretched”) wavelets. The more dilated the wavelet ¥ , (), the longer the portion
of the time series x (¢) with which it is being compared, and thus the coarser the

w
1 u.s(@)
n %0
s
«~
S10¢
N
¥ g, so()! SoTt
1 = || 2
So / : So
Yus l//uo,so T
0 DIVATN AN\ [P\
Vv Uo t

Figure 7.6 Heisenberg boxes of two wavelets. Smaller scales decrease the time disper-
sion, but increase the frequency support, which is shifted towards higher
frequencies.
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Figure 7.7 Time—frequency resolution and basis functions of the Windowed FT and the
Wavelet Transform: (a) tiling of the time—frequency plane for the WFT, (b) for
the WT, (c) corresponding basis functions for the WFT and (d) for the WT.

time series features being measured by the wavelet resonance coefficients W (z, a).
Therefore, there is an inverse correspondence between the scale parameter a and
the radian frequency w:

Low scale a < compressed wavelet <> rapidly changing time series details <
high frequency w.

High scale a < dilated wavelet < slowly changing, coarser time series
features < low frequency w.

Remark 260 Gdbor’s Windowed or Short-Term Fourier Transform (STFT)
obtains frequency information with limited precision, and that precision is deter-
mined by the size of the window of the particular Gdbor atom, which remains
the same for all frequencies. In contrast, the WT uses wavelet windows that vary
according to their scale (= “inverted frequency”). This can be clearly seen in
Figure 7.7, which compares the basis functions and time—frequency resolution of
Gdbor’s WFT and the WT in tiling diagrams. The tiles in these diagrams represent
the essential concentration in the time—frequency plane of a given basis function
(Herley et al., 1993; Strang, 1993). Notice in (d) that the shape of the wavelet
basis functions is invariant under the changes in frequency. This is what produces
the precise and unambiguous interpretation of a time—frequency analysis by a WT.

7.2.3 Scalograms: varying scaled and localized densities

Thus, the wavelet coefficient W(t, a) depends on the values of x(¢) and its FT
F(w) in the time—frequency region, where the risk of the wavelet atom v, , and
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its FT W, ,(w) is concentrated. Measuring time-varying frequencies is again the
most important application of WTs. Sharp transitions in the time series x (¢) create
large amplitude wavelet resonance coefficients W(z, a) at scales a localized at
time 7. The time evolution of such spectral or scale components is analyzed by
following the location of such large amplitude coefficients. As we saw earlier,
these visualizations are called scalograms (Figures 7.4 and 7.5). They are already
used on an experimental basis in economics (Arifio and Vidakovic, 1995), and in
finance (Jensen, 1997).

Definition 261 A scalogram, or local wavelet spectrum, is the localized and
scaled wavelet density (= modulus squared of the WT)

Py (t,a) = |W(t,a)|?
2
(7.9)

= ‘/oo x (O] (Ddt

Thus, a scalogram measures the localized risk of a financial time series x () in
the time—scale neighborhood of (7, a) specified by the Heisenberg box of v, ,(¢).
If n denotes the frequency center of the base wavelet, then the frequency of a
dilated wavelet is £ = n/a.*

Definition 262 The normalized scalogram is

%Pw(r, a) (7.10)

Example 263 Figure 7.8 displays the scalogram of a wavelet analysis of our
example of the Gabor Windowed Fourier Analysis in Chapters 5 and 6, using a
Morlet wavelet for 25 different scale levels:

Yea(t) = e eIt 4 = @nl? (7.11)
for w, = 6, where the term in a)31 ensures admissibility (it is negligible for
w > 5)and j = «/—1 (adapted from Bendjoya and Slezak, 1993, p. 240).
Scale a and frequency w are related by a = wy,/w. Again, the abscissa mea-
sures time t and the ordinate the scale a. A grey coding is used with the
largest resonance coefficients in black and the smallest in white. Notice the
differences compared with the Gdbor analysis. First, all three monochromatic
frequencies present in the signal x(t) with the same amplitude are detected
in the same fashion. The three detected coherent frequencies have the same
weight. Moreover, the discontinuities are detected by the two cones pointing
towards the locations of these singularities at the small scales. The width of these
cones contains information about the type of singularity, as will be discussed in
Chapter 8.
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Figure 7.8 A scalogram with modulus |W (z, a)| using a Morlet (6) wavelet for 25 different
scales along the ordinate and time along the abscissa, with grey level coding. The
three detected coherent frequencies w3 < w; < w; in the signal x(¢) have the
same weight. Discontinuities are visible at all scales through the cones pointing
toward the location of their singularities at the smallest scale. The grey strip at
the smallest scale is a finite sampling effect.

Example 264 Figure 7.9 demonstrates that the normalized scalogram
(&/n)Pw(t,a) is also a device to visualize nonstationarity, in particular of
time-varying frequencies, or “chirps.” The time series of the one but last example
in Chapter 6 of T = 1,000 observations is analyzed in the following scalogram.
As we noted, the time series includes a linear chirp, whose frequency increases
linearly over time, a quadratic chirp, whose frequency decreases quadratically
over time, and two modulated Gaussian noise functions located at t = 512 and
t = 896. Compare this scalogram with the spectrogram in Chapter 6. Despite
the appearance to the contrary, the scalogram represents the data analysis more
truthfully than the spectrogram, since the scalogram visualizes also the relative
epistemic uncertainty of the computed frequencies, in particular, of the higher
frequencies, as required by the Heisenberg Principle and the Heisenberg boxes.

The reason for the varying relative epistemic (knowledge) uncertainty in scalo-
grams is perfectly clear from the dyadic time—scale tiling diagram in Figure 7.10,
which shows how a smooth sinusoidal function and an isolated singularity are rep-
resented in a scalogram. In contrast, the spectrograms in Chapter 6 represent
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Figure 7.9 Normalized scalogram (¢ /) Pw (t, a) computed from the “chirped” time series
of Figure 6.8. Dark points indicate large amplitude wavelet coefficients.

illusory analytic precision, where there can’t be any, because it is tiled by
scale-invariant, equally sized Heisenberg boxes.

Example 265 Figure 7.11 provides an empirical example of a 3D normalized
scalogram measuring a sharp discontinuity or break in a financial time series.
This scalogram is computed from 44,640 minute-by-minute increments of the Thai
baht quotations of July 1997. The large discontinuity at the beginning of the time
axis (from front towards the right) is caused by the financial crisis of July 2,
1997 and is represented by very large wavelet resonance coefficients (measured
along the vertical axis from 0 to 100 percent) over the various scales a along the
scale axis (from the front, where a = 1 minute, towards the left, where a = 60
minutes = 1 hour). Notice that most of the risk of the discontinuity is concentrated
on the smallest scale = highest frequency of Foreign Exchange (FX) trading: the
discontinuity generated a short-lived vortex.

Related to the scalogram is the scalegram or wavelet spectrum, which is the
wavelet analog of the average risk spectrum.

Definition 266 A scalegram, or global (average) wavelet spectrum is the scaled
wavelet density (= average modulus squared of the WT):

Pw(a) = /Oo W (z,a)|*dt

—00

= /Oo ’foo x () (Ddt

The wavelet spectrum is the scalogram projected (integrated) onto the scale
or (inverted) frequency axis. It provides the wavelet equivalent of the classical

2
dt (7.12)
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Figure 7.10 Time-scale tiling for a sinusoidal function with an isolated singularity
represented by a “cone” in the scaleogram at fy. The abscissa represents
time. The ordinate represents either increasing frequency or decreasing
scale (1/a).

marginal frequency distribution (cf. Chapter 2) and Fourier risk spectrum (cf.
Chapters 5 and 6).5 Like the average risk spectrum, it is used to look at the compo-
nents of a signal as a function of scale (or frequency), with disregard to location.
The wavelet spectrum based on the WT contains much the same information as the
risk spectrum based on the FT. The wavelet spectrum can be used to identify the
homogeneous H-exponent(s) from scaling financial time series, as we will see
in the next chapter. This, in turn, is used to identify special models of nonlinear
deterministic behavior called transient chaos or intermittency (Scargle, 1997).

Remark 267 When the noise model is based on counting photons, as in
Chapter 1, this noise simply adds a constant (independent of scale) to the true
average wavelet spectrum. That constant is the mean counting rate of the photon
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Figure 7.11 Empirical 3D scalogram of Thai baht increments in July 1997.

count. In practice, it is quite easy to identify the true scalegram, although the
identification remains uncertain when the signal-to-noise ratio is low.

7.2.4 Frame theory and wavelet bases

Subsampling of Gdbor’s WFT, or of the CWT, defines a complete representation
of the financial time series, if any such time series can be reconstructed from
linear combinations of discrete families of windowed Fourier atoms {gz, &, } (1, k)ez2»
or, respectively, of wavelet atoms {7 4 (n, j)ez2}. Frame theory discusses what
conditions the families of wavelets must satisfy if they are to provide stable and
complete representations of time series. Completely eliminating redundancy is
equivalent to building an orthogonal basis of the time series space. The following
discussion is meant to generalize for WTs what we already have learned from
the FTs.

Definition 268 A frame is a family of vectors ¢y (t), which can represent any
financial time series with finite risk by the sequence of its inner products with the
vectors of the family. More precisely, a family {¢(t)}kez of vectors in the real
square-integrable, or Hilbert space L*>(R), is a frame of this L? space, if there are
two constants A > 0 and B > 0 such that, for any x(t) in the space L*>(R),

Alx@®* <" 1x@). ge(0))* < Bllx(0)])? (7.13)

keZ
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where
2 o 2
Ix®I* = / lx(©)|"dt (7.14)
—00

is the risk content of x(t), aka the norm of financial time series x(t).
Definition 269 If A = B, the frame is said to be tight.

In general a frame is a stable, redundant and not necessarily linear representation
of a financial time series. It is a generalization of the more familiar fundamental
concept of the basis of a linear space, which we’ve encountered earlier. For exam-
ple, an orthogonal basis is a complete, tight frame. The frame vectors {@x () }rez
are supposed to be of unit norm, that is

+o0
(N> = / e () 2dt = 1 (7.15)

When is a frame not tight but redundant (Lawton, 1990)?
Definition 270 A frame is redundant, if 1 < A.

There exist some specific bases for the wavelet decomposition space. For
example,

Definition 271 A Riesz basis is a frame of linearly independent vectors

{x () }kez.

If the frame vectors {¢ (¢) }xez form a Riesz basis, then A < 1 < B.

Definition 272 An orthonormal basis is a tight (= complete = unique) Riesz
basis.

Thus, a frame is an orthonormal basis if and only if A = B = 1.
A financial time series x(¢) can always be expanded into a series of terms, as
follows.

Definition 273  An expansion is the linear decomposition

“+oo

x(0) =) agi(n) (7.16)

k=—00

where k is an integer index for the finite or infinite sum, ay are the real-valued
expansion coefficients, and ¢y (t) are a set of real-valued functions of t, called the
expansion set.
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We can always expand, decompose or analyze a financial time series into a series
of terms, but the question is: when is such an analytic decomposition complete
and thus unique? That depends on the set of terms {¢ (¢)}. If this set is complete
and thus unique, the expansion is.

Definition 274 [f an expansion (= linear decomposition) is unique, the set of
frame vectors {¢y (1)} is called a basis for the class of financial time series x(t)
that can be so decomposed.

Remark 275 For example, the set of exponential eigenvectors {e/®'} form the
expansion set for the FT. Since it is a unique expansion, this particular expansion
set forms a basis.

One of the crucial consequences of dealing with an orthogonal basis is that
the expansion coefficients a; can always be computed by the inner product (or
correlation):

ag = (x(1), ¢ (1))
+00
= / x(t)pr(t)dt (7.17)

—00

As we discussed in Chapter 5, this was, indeed, the case with the computation of
the FT resonance coefficients, and, we will see, it is also the case with a properly
defined wavelet basis! We need also to define the extend or span of the basis set
and what is maximally included in such a span.

Definition 276 The span of a basis set, span {¢i(t)}, is the set of all financial
time series x(t) that can be decomposed in terms of this set of bases:

+00

x()= Y axdi(t) (7.18)

k=—00

Definition 277 The closure of the space spanned by the basis set, span{¢y(t)},
contains not only all variables that can be expressed by a linear combination of
the basis functions ¢y (t), but also the variables which are the limit of these infinite
expansions.

The closure is usually denoted by an over-bar, as we will see in Definition 291,
when we discuss wavelet MRA, which is a particular form of unique expansion.
To do so, we need the definition of a wavelet expansion.
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Definition 278 A wavelet expansion is the two-parameter (or 2D) expansion,

such that
+o0 +o0
X0 =YY" aja¥jat) (7.19)
j=0n=-00

where the integer indices j,n € 7? and the V;.n(t) are the wavelet expansion
functions that (usually) form an orthogonal basis.

Similar to the preceding general frame definitions, we have for the wavelet bases
the following specific definitions.

Definition 279 An orthogonal wavelet basis is a complete set of orthogonal
wavelets:

{(Vjnmer (7.20)

Definition 280 An orthonormal wavelet basis (or tight wavelet frame) is a
complete set of orthonormal wavelets.

The term complete in these articular definitions means that there are no redundant
wavelets in these set and that the set is unique.

Definition 281 The set of expansion coefficients aj , are called the Discrete
Wavelet Transform (DWT) of x (¢) and the wavelet expansion is the inverse DWT.

The following is a most remarkable and powerful theorem. It is clearly the
foundation for the success and current popularity of wavelet MRA. For its proof
we refer to the aforementioned mathematical wavelet literature, in particular to
Mallat (1989a).

Theorem 282 (Wavelet expansion) Any financial time series x (t) with finite risk
can be decomposed over a orthogonal wavelet basis
+00  +00

X(0) =Y > xO, Y)Y (7.21)

j=0 n=—oo

This theorem is remarkable and powerful, because it states that any financial
time series can be so completely analyzed. There is no approximation involved!
In summary:

(1) A wavelet basis is a set of building blocks to represent a function or time series
x(t). Itis a 2D expansion set (usually a basis) for some class of 1- (or higher)
dimensional functions.

(2) The wavelet expansion gives a time—scale (frequency) localization of x(t).
Most of the risk of the financial time series x(¢) is well represented by a few
expansion coefficients a; .

(3) The computation of these expansion coefficients from x(¢#) can be done
efficiently in discrete time.
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7.2.5 DWT Systems

We will now present some specific examples of first-generation wavelet sets of
DWTs, which are all generated from a single scaling function, or a wavelet, by
simple time translation and frequency scaling.

Almost all useful wavelet sets also satisfy the so-called multiresolution condi-
tions. This means that if a set of data series can be represented by a weighted sum
of laterally shifted wavelets v (r — k), then a larger set (including the original) can
be represented by the weighted sum of ¥ (2t — k). The lower resolution coeffi-
cients can be computed from the higher resolution coefficients by a tree-structure
algorithm, called a filter bank. Mallat (1989a) provided the mathematical basis for
such an MRA, as we will discuss in detail in Section 7.3.

We will now first define some families of wavelets, which can be quite diverse.

7.2.5.1 Haar wavelet

The first recorded mention of the term “wavelet” was in 1909, in the PhD thesis of
Alfréd Haar (1910).° Haar realized that one can construct a very simple piecewise
constant function whose dilations and translations generate a complete dyadic
orthonormal basis in Hilbert space, i.e., in real quadratic linear space LZ(R), as
follows.”

Definition 283 A dyadic orthonormal wavelet basis in Hilbert space L*(R) is
defined by the set of dyadically scaling orthonormal wavelets:

)= 1 t—2/n
0= 759 (577)

=271y @277t —n) (7.22)

The discrete dyadic scale parameter a; = 27, while the translation interval is
7, = 2/n. The factor 27//2 maintains a constant norm independent of scale j.
Thus, we have the definition of the Haar wavelet.

Definition 284 The discrete Haar wavelet is defined by:

+1 if0<t<05
vl =1-1 ifos5<r<1 (7.23)

0 otherwise

The Haar wavelet is the (basic) wavelet that appears most useful for the anal-
ysis of financial time series, in particular of the increments or rates of return of
pricing series, since they are produced by independently shifting demand and
supply (curves), often in the form of discretely recorded tick data from trading
transactions, and contain many singularities.
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7.2.5.2  Other families of wavelets

Of course, there exists a whole family of considerably more sophisticated wavelets
other than the simple Haar wavelet. For example, other rather simple wavelets are
the discrete time triangle wavelet and the continuous time Gabor wavelet.

Definition 285 The discrete Triangle Wavelet is

+ if 0<t<0.25
0.5—1¢ if 025 <t <0.75
—1.04+¢t f075<t<1

0 otherwise

vl @) = (7.24)

Definition 286 The continuous Gabor wavelet is a particular Gdbor chirp (cf.
Chapter 6)

YO(1) =elMg (1) (7.25)

with a Gaussian window

D 7.26

for a?n* > 1.

The Gdbor wavelet wavelet family, which has a Gaussian flavor, is often used in
theoretical continuous time MRA, where it provides elegant solutions for difficult
problems, as we will see in Chapter 8.

The family of wavelets is growing rapidly, since customized sets of wavelets
can be carefully created to satisfy selected situations by applying particular zero-
moment conditions, as Daubechies (1988) first demonstrated. There now exists
already a remarkable Daubechies(N) wavelet family, where N = order of zero-
moments of the Daubechies wavelets. But there are no explicit closed form
Daubechies wavelets, except the Daubechies(1) wavelet, which is the same as
the Haar wavelet. The N > 1 order Daubechies wavelets are all defined numer-
ically by sets of recursive equations which define the filter coefficients of these
wavelets. This is a similar situation as the no-closed form of most stable frequency
distributions in Chapter 3.

7.3 Mallat’s MRA

An efficient way to implement the DWT in the form of an MRA was invented
in 1986 and developed in 1988 by Mallat (1989a—c). The operational Mallat
algorithm is in fact a classical scheme known to signal processing engineers
as a two-channel subband coder, or tree analysis. This very practical filter-
ing algorithm yields a Fast Wavelet Transform, similar to the Fast Fourier
Transform (FFT).
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For many financial time series, the low-frequency content of a time series x (¢) is
the most important part, since it gives the series its recognizable identity. Its high-
frequency content, on the other hand, imparts its flavor or nuance. Mallat showed
that one can completely decompose a time series x (¢) in terms of approximations
(A), provided by so-called scaling functions, and details (D), provided by the
wavelets. The approximations are the high-scale, low-frequency components of
the time series. The details are the low-scale, high-frequency components.

This decomposition process can be iterated, with successive approximations
being decomposed in turn, so that one time series x(¢) is broken down in many
lower-resolution components. This is called the wavelet decomposition tree. Since
the decomposition process is iterative, in theory it can be continued indefinitely.
In reality, the decomposition can proceed only until the individual details consist
of a single observation. For example, when one observes minute-by-minute data,
the one-minute data point provides the smallest detail of resolution. The choice
of the wavelet filters determines the shape of the wavelet we use to perform the
analysis.

The following discussion of Mallat’s MRA is adapted from Burrus et al. (1998)
and from Hubbard (1998).

7.3.1 Low- and high-pass filters

Mathematically, for the MRA of the financial time series x(¢), one needs two
closely related basic functions. In addition to the wavelet 1 (¢), which provides
the details, one needs a second basis function, called the scaling function, which
provides the low frequency approximation, e.g., like an average or mean. This
scaling function and the wavelets are conjugated, as we will see. One cannot exist
without the other. Mallat (1989a) proves that, using a combination of these scaling
functions and wavelets, a very large class of time series can be represented by the
following decomposition equation of scaling functions and wavelets:

x(t)=A+D
+o0o +o00 +o0

= D> aea®+) D dintin® (7.27)
n=—oo j:On:—OO

where the approximation (A) is provided by the 1D linear combination of the
scaling functions, which form the so-called low-pass filters:

+00
A= > capn(d)

n=—o00
+o0

> caplt —n) (7.28)

n=—oo
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Figure 7.12 Time signal observations on f(x) in panel (a) are subject to low-pass
filtering in panel (b) and subject to high-pass filtering in panel (c).

and the details (D) by the 2D linear combination of the dyadic wavelets, which
form the so-called high-pass filters:

+00 +o0
D=3 dja¥jat)

j=0n=—o00

+o0  +o0o

=> Y diav@ It —n (7.29)

j:O n=—oo

Example 287 Figure 7.12 shows a primitive form of MRA or decomposition:
1D time series fx (x) (a) subject to low-pass filtering, (b) as indicated by the <
sign, and high-pass filtering, (c) as indicated by the > sign. This kind of analysis
is discussed in finance by, for example, Fama and French (1988). Obviously,

fx(x) = fg ) + fx ) (7.30)

where 1/K is the scale of this filtering. This is a time series which possesses
structures on only two very different scales: a small scale (of the order of a few
millimeters) and a large scale (of the order of a few centimeters). The filter scale
1/K is chosen to be intermediate, say, c.1 cm. The passage from fg (x) to fg (x)
may be generalized to filters of arbitrary shape, such as the WTs.

The coefficients of this MRA expansion, or DWT, are again computed as inner
products, or basis correlations, as follows.
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Definition 288 The discrete (approximation) scaling coefficients are computed
by the inner product

cn = (x(O)n (1))

+00
:/ x(t)g,()dt, withn € Z (7.31)

—00

Definition 289 The discrete (detail) wavelet resonance coefficients are computed
by the inner product

dj,n = <x(t)l[/j,n(t)>

+oo
=/ x(Oa()dt, with jn el (7.32)

—00

Let’s look now at some more clarifying definitions and see why this decompo-
sition into approximating scaling functions ¢, (¢) and detailing wavelets ¥; ,, (t)
leads to a complete MRA of the time series x (¢), due to the conjugation between
these two functions.

Definition 290 A set of (time) scaling functions is defined in terms of integer
translates of the real square integrable basic scaling function by

o) =@t —n), neZ, ¢elL*R) (7.33)

Thus, a scaling function is a strictly periodic function, as defined in Chapter 3.
It exactly repeats itself with a lag n. Therefore, most of the concepts of the periodic
wave theory of FT's can be applied to scaling functions.

Definition 291 The square-integrable real (Hilbert) subspace of L*(R) spanned
by these scaling functions is defined as

Vo = span{g, (1)} (7.34)
for all integers k from —oo to +00. The over-bar denotes closure. This means that
400

x(t)=Y_ awpa(t) foranyx(t) € Vo (7.35)

n=-—oo

One can increase the size of the subspace spanned by changing the time scale
of the time scaling functions. A 2D set of functions is generated from the basic
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scaling function by translation and scaling, as follows
Qi) =272 It —n) (7.36)
whose span over 7 is

V] = Spann {@n(Z*jt)}
= span, {¢;,(¢)} for all integers n € Z (7.37)

This means that any time series x(¢) can be linearly expanded strictly in terms
of scaling functions as follows:

+00
X)) =Y apja

n=—0oo

+00 )
= Y a2/t —n) foranyx(t) €V, (7.38)

n=—oo

For j < 0, the span can be larger, since the ¢; ,,(¢) is narrower and is translated
in smaller steps. Therefore, it can represent finer detail. For j > 0, ¢; ,,(¢) is wider
and is translated in wider steps. The wider scaling functions can represent only
coarse information, and the space they span is smaller. Thus, the change in scale
provides a change in resolution. The scale j indicates the resolving power of the
analysis, similar to the resolving power of lenses in optics and photography.

7.3.2 MRA equation

Mallat formulated these intuitive ideas of scale and resolution into mathematical
requirements for a complete MRA, by requiring a nesting of the spanned spaces
V; as follows

ViyiCV; foraljeZ (7.39)
with
Voo = {0} and V_o = L*(R) (7.40)

Thus, the linear space that contains low resolution will also contain the linear
spaces of high resolution. This means that at the zero resolution, the only finite
risk time series is 0, while at the infinite resolution all finite risk time series are
perfectly reproduced. In other words, because of the definition of the spanned
spaces V;, the spaces must satisfy the natural dyadic scaling condition

(1) GV]‘ < 21 EV]'_H (7.41)

which ensures that elements in a space are simply scaled versions of the elements
in the next space. Thus, V1 is obtained from V; by factor 2 rescaling.
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This dyadic nesting of the spans of ¢(27/t — n), denoted by V j» 1s achieved
by requiring that ¢(¢) € V1, which means that if ¢(¢) € Vy, itis also ¢(¢) € V|,
the space spanned by ¢(2¢). The resolution of V; is generated by a basis which
is obtained by 27/ translations of a 2=/ rescaled ¢. The ¢ is such a function that
integer translations or lateral time shifts of ¢ creates a Riesz basis of V. As we
discussed earlier, a Riesz basis is a frame of linearly independent vectors.

Thus, we have now arrived at Mallat’s formal definition of an MRA.

Definition 292 (Mallat’s MRA) A sequence {V}jcz of closed subspaces of
L?(R) is an MRA, if and only if the following six properties are satisfied:

(1) Forall (j,n) € 7% x(t) € V;, & x(27/t —n) € Vi1 (Vjis 27/ dyadic
translation invariant)

(2) Forall j€Z, Vi1 CV; (nesting of resolutions)

(3) Forall j e Z, x(t) e V; & x(27 ') e V41 (dyadic scaling of resolutions)

(4) lim; . V; = ﬂ;rfo ooV = {0} (at zero resolution, finite risk is 0)

(5) limj,_V; = Closure(U"’oi V)= L?(R) (at infinite resolution, perfect
reproduction of finite risk)

(6) There exist a function @, such that {¢(t — n)},cz is a Riesz basis of V.

Remark 293 When the Riesz basis is an orthogonal basis, the MRA is orthog-
onal, and its base atom is called a scaling function. It is always possible to
orthogonalize any MRA. This implies that scaling functions always exist. However,
orthogonalities impose constraints, such as that a compactly supported orthogo-
nal scaling function cannot be symmetric and continuous, as Daubechies (1988,
1992) proved.

The definition of an MRA implies that the scaling function ¢(#) can be expressed
in terms of an expansion, i.e., a weighted sum of shifted ¢(2¢) as follows
(Strang, 1989).

Definition 294 The MRA (dilation or scaling) equation is

+00
o)=Y hm)V2p(Q2t—n), foranyn el (7.42)

n=-—00

where the coefficients h(n) are real or complex numbers called the scaling (func-
tion) coefficients (= the scaling filter or scaling vector) and the scaling factor
1/~/2 maintains the norm of the scaling function.

An equivalent way to present the MRA equation is

+00
%w (%) = 3 hme(t —n), foranyn ez (7.43)
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Its FT is

® () = %H (%) ® (%) (7.44)

where H(w) is the transfer function, i.e., the FT of h(n).

This recursive equation is fundamental to MR A and is analogous to a differential
equation with coefficients 4 (n) and a closed form solution ¢ (), that may or may
not exist, or be unique or nonunique. For example, only for the Daubechies(1)
wavelet (= Haar wavelet) exists an explicit expression, which is the Haar scaling
function. For all higher order Daubechies wavelets only numerical solutions exist
in the form of computed % (n) coefficients, although the square modulus of the
transfer function, |[H(w)|?, is explicit and often fairly simple.

The coefficients i (n) form a so-called conjugate mirror filter, which entirely
determines the scaling function and most of its properties. In particular, the scaling
function is compactly supported, if and only if /4 (n) has a finite number of zero
coefficients. In fact, we have the following crucial MRA design Theorem of Mallat
and Meyer, which we present again without its proof, since it can be found in Mallat
(1989a—c).

Theorem 295 (Mallat and Meyer MRA design) Let ¢ € L*(R) be any inte-
grable scaling function. The Fourier series of the MRA coefficients h(n), which
are computed by the inner product

1
h(n) = <72¢ (%) Lot — n>> (7.45)

satisfies the two dyadic equations

forallw e R, [H)|>+ Hw+m)]> =2 (7.46)
and

H(0) = V2 (7.47)

Conversely, if H(w) is 21 periodic and continuously differentiable in a neighbor-
hood of w = 0, if it satisfies the two dyadic equations, and if

Enin : H(w)| > 0 (7.48)

weE|—7,>

then

ﬁ" HQ2 Pw)

D (w) = 5

(7.49)
p=1

is the FT of a scaling function ¢ € L*(R).
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Remark 296 This important FT of the scaling function is currently used for
designs of new MRAs, which show up in the image compression filters, like the
JPEG and MPEG filters of digital cameras and in the storage of digital movies on
the Internet, and which are used for the digital restoration and coloration of old
classic black and white movies in Hollywood (Mulcahy, 1996, 1997).

7.3.2.1 Examples of MRA scaling filters

The following are examples of the scaling function and the corresponding MRA
equation for some of the wavelet families we’ve introduced earlier in this chapter:

(1) The Haar (= Daubechies(1)) scaling function is

1 if0<r<1
1) = - 7.50
v(t) 0 otherwise ( )

and its corresponding Haar MRA equation is

o) = pQ21) + Q21 — 1) (7.51)
i.e., the MRA equation with two scaling coefficients

h(0) = h(1)

1
= — =0.70711 7.52
NG (7.52)

(rounded to five digits).

Figure 7.13 (left) shows how the Haar MRA equation corresponds with the
graph of its scaling function.

|
o(b) = p(2t) + p(2t 1) o(t) = Lo2t) + p2t-1) + Lo(2t -2)

Figure 7.13 Haar (left) and triangle (right) scaling functions and their respective MRA
equations.
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(2) The triangle scaling function is

t if0<t <05
p)=31—1t if05<r<l1 (7.53)
0 otherwise

and the corresponding triangle MRA equation is

1 1
o(t) = E(p(Zt) + o2t —-1)+ E(p(Zt —-2) (7.54)

i.e., the MRA equation is with three scaling coefficients

1
h(0) = —— = 0.35355 7.55
0) W (7.55)
and
h(l) =h(Q2)
1
= — =0.70711 7.56

Figure 7.13 (right) shows how the triangle MRA equation corresponds with the
graph of its scaling function.

(3) The Daubechies(4) scaling function is the MRA equation with four scaling
function coefficients

h(0) = 0.48296 (7.57)
h(1) = 0.83652 (7.58)
h(2) =0.22414 (7.59)
and

h(3) = —0.12941. (7.60)

These scaling function coefficients are crucial for the “regularity” or
“zero-moment” properties of the scaling filter. They summarize the density of
information in the time series x (¢).

7.3.3 Relationship between wavelets and scaling functions

But what is the general relationship between wavelets and scaling functions? The
wavelets are used to build a basis on which to represent the details of a time series
that are gained between a particular resolution represented by a scaling function,
and the next finer resolution, as is seen from the following set of definitions.
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Definition 297 Sets of wavelets {; ,(¢)} are sets of functions that span the
differences between the spaces spanned by the various scales of a scaling function.

Remark 298 Usually it is required that the scaling functions and their corre-
sponding wavelets are orthogonal, because orthogonal functions allow simple
computation of expansion coefficients by inner (correlation) products and, con-
sequently, as we will see at the end of this chapter, have a Parseval’s Theorem
that allows the complete partitioning of the financial time series’ risk in the WT’s
time—scale domain.

Definition 299 The orthogonal complement (or disjoint difference) of V; in
V1 is W;. This means that all elements of V j are orthogonal to all elements of
W, or the inner products of all scaling functions and wavelets equal zero

o

(0jn @OV ji(1)) 2/ Pjn(OYj1()dt =0 (7.61)

for all appropriate j,1,n € Z.

This relationship between the orthogonal spaces is indicated as follows
Visi=V;0W; (7.62)

where the symbol & indicates that the space V ;1 consist of the subspace V; and
its orthogonal complement Wy. But then

Vo=V &W,
=Vod Wy W, (7.63)

and, in general, the whole real square-integrable (Hilbert) space is completely
divided up as follows

LPR)=VooWodW &Wr & - - (7.64)

where V) is the initial space spanned by the scaling function ¢ (¢t — n).
The scale of the initial space V) is arbitrary and can be chosen at any available
resolution. Thus also

W@ - @®W_1 =V (7.65)

which again shows the arbitrariness of the scale of the scaling space. In practice,
the scale of the scaling space is chosen to represent the coarsest detail, or largest
observation window, of interest in the time series x(¢). This will become clearer
when we exhibit some of the empirical MRA examples.

The MRA equation for scaling functions is complemented by the MR A equation
for wavelets.
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Definition 300 7he MRA equation for wavelets is the weighted sum of shifted
scaling functions

+00
() = Y hmV20Q2—n), nel (7.66)

n=—0oo

for some set of wavelet (generation) coefficients h{(n), since the wavelets reside
in the space spanned by the next narrower scaling function, Wy C V1.

This MRA equation for wavelets can equivalently be presented as

+00
%w <%> = n;whl(n)qb(t —n), neZ (7.67)
Its FT is
1 w w
W) = —=H (5) <1>(5) (7.68)

It can be easily proved, that, because of the MRA requirements and because of
the orthogonality of the translates of the scaling function, these wavelet generation
coefficients i1 (n) (modulo translates by integer multiples of two) are required by
orthogonality to be related to the scaling function coefficients by the following
equation

hi(n) = (=D"h(1 —n) (7.69)

The MRA equation for the wavelet ¥ (¢) gives the prototype or mother wavelet for
a class of expansion functions of the form

Vi) =224/t —n) (7.70)

7.3.3.1 Examples of MRA wavelet filters

The following are again examples of the wavelet resonance coefficients /1 (n)
that satisfy the wavelet coefficient equation, and show how easy it is to generate
wavelets from sets of particular scaling functions:

(1) For the Haar wavelet, the MRA equation for wavelets is
V() =¢@2) —¢Q2r—1) (7.71)
and the two wavelet generation coefficients are
hi(0) = —hi (1)

1
= — =0.70711 (7.72)
V2
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YWV

Y(t) =—F b2t —F p2t-2) + p(2t - 1)

i

w(t) = (2t) — (2t 1)

Figure 7.14 Haar (left) and triangle (right) wavelets and their respective MRA
equations.

Figure 7.14 (left) shows how the Haar MRA equation for wavelets corresponds
with the graph of its wavelet.

(2) For the triangle wavelet, the MRA equation for wavelets is

1 1
V() =—56@) + ¢ — 1) — 22 -2) (1.73)

and the three wavelet generation coefficients are

1
h1(0) = —— = —-0.70711 7.74
1(0) 7 (7.74)
hi1(1) = —0.35355 (7.75)
and
hi1(2) =0.35355 (7.76)

Figure 7.14 (right) shows how the triangle MRA equation for wavelets
corresponds with the graph of its wavelet.

(3) For the Daubechies (4) wavelet (cf. Figure 7.2), the four wavelet generation
coefficients are

h1(0) =0.12941 (7.77)
hi(1) =0.22414 (7.78)
h1(2) = —0.83651 (7.79)
and

h1(3) = 0.48296 (7.80)

The wavelet resonance coefficients summarize the detailed transient information
in time series x ().
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7.3.4 Design properties of MRA systems

Nowadays the optimal design of MRA systems consists of the choosing of the
scaling coefficients i (n) according to particular signal processing design criteria
to improve the resolution of a single time series x (¢), or of a 2D time series, c.q.,
digital pictures and movies, like the JPEG and MPEG criteria (Donoho, 1993a,b;
Strichartz, 1993; Daubechies, 1996).8 Let’s have a look at some of the specific
MRA design properties, such as the order of the vanishing moments, support,
regularity and symmetry of the wavelet and scaling functions.’

7.3.4.1 Vanishing moments

Criterion 301 A wavelet 1 (t) has p vanishing moments

+00
/ *y@)dr =0 forO<k<p (7.81)
—00

if and only if its scaling function can generate polynomials of degree smaller than
or equal to p.

When the wavelet’s p moments are equal to zero, all the polynomial time series

x0y= Y at (7.82)

0<k<p

have zero wavelet resonance coefficients and their details are also zero. This
property ensures the suppression of time series that are polynomials, since the
systematic polynomials are exactly captured by the scaling functions, just like
cosine and sine waves are exactly captured by Fourier series.

Remark 302 While this property of vanishing moments is described by the
approximating power of scaling functions, for wavelets it has also the possibility
to characterize the order of isolated singularities. The order of vanishing moments
of a wavelet is entirely determined by the coefficients h(n) of the filter h featured
in the scaling function.

If the FT of the wavelet is p times continuously differentiable, then the three
following conditions are exactly equivalent:

(1) The wavelet ¥ has p vanishing moments.

(2) The scaling function ¢ can generate polynomials if degree smaller than or
equal to p.

(3) The FT of the filter & and its first p — 1 first derivatives vanish at w = 7.

All these conditions can rather easily be checked.
Remark 303 Daubechies (1988) proved that, to generate an orthogonal wavelet

with p vanishing moments, a filter of minimum length 2p has to be used.
Daubechies filters, which generate Daubechies wavelets, have a length of 2 p.
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7.3.4.2  Compact support

The following property of compact support has to do with the speed of conver-
gence to zero at infinity of the scaling and wavelet functions, when either time or
frequency goes to infinity.

Criterion 304 Ifthe support of the scaling function is [N1, N3], then the wavelet
supportis [(N;1 — Np —1)/2, (N2 — N1+ 1)/2]. The scaling function is compactly
supported if and only if the filter h has finite support, and the support boundaries
of h are not the same N1 # N», i.e., the support is asymmetric.

Remark 305 Daubechies (1988, 1992) also showed that it is possible for the
scaling function and the wavelets to have both compact support (i.e., to be nonzero
only over a finite region) and to be orthonormal. This made possible the desired
exhaustive and complete time—scale analysis. Thus, all risk of a financial time
series can be completely presented by a dyadic tiling of its whole time—scale
domain.

7.3.4.3 Irregularity

We have discussed irregularity of time series somewhat in Chapter 4, and we will
discuss it in more detail in Chapter 8. Wavelet regularity is less important than their
vanishing moments. Wavelets can be very irregular. Consequently, the following
two wavelet properties are crucial:

Criterion 306 There is no compactly supported orthogonal wavelet which is
indefinitely differentiable.

Criterion 307 For Daubechies wavelets with a large number of vanishing
moments p, the scaling function and wavelet are a-Lipschitz, where « is of the
order of 0.2p. For large classes of orthogonal wavelets, more regularity implies
more vanishing moments. 1

To represent x(¢) with K derivatives, one can choose a wavelet ¥ (¢) that is
K (or more) times continuously differentiable. The penalty for imposing greater
smoothness in this sense is that the supports of the basis functions, the filter lengths
and, hence, the computational complexity all increase. The most remarkable prop-
erty is that smooth bases are also the “best” bases for representing time series with
arbitrarily many singularities. This is a property that may become essential for the
ongoing research of singularity spectra, as discussed in Chapter 8 (Donoho, 1993a).

7.3.4.4  Symmetry

Symmetric scaling functions and wavelets are important, because they are used
to build bases of regular wavelets over any interval, rather than over only the
real axis. Daubechies (1988, 1993) proved that, for a wavelet to be symmetric
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or anti-symmetric, its filter must have a linear complex phase and the following
property.

Criterion 308 There is no symmetric compactly supported orthogonal wavelet
other than the Haar wavelet, which corresponds to a discontinuous wavelet with
one vanishing moment. Thus, all compactly supported orthogonal wavelets other
than the Haar wavelet are asymmetric.

7.3.5 Usefulness of wavelets

Burrus et al. (1998, p. 216) summarize why wavelets are so useful for (financial)
time series analysis:

(1) Wavelets, even very irregular ones, can represent smooth time series, in partic-
ular, those series which exhibit some form of scaling behavior, since wavelets
themselves are self-similar.

(2) Wavelets can also represent series of singularities of various kinds.

(3) Wavelets are local. This makes most coefficient-based algorithms naturally
adaptive to the heterogeneities in the time series.

(4) Wavelets have the unconditional basis property for a great variety of time
series, implying that if one knows very little about a time series, as is often the
case in the financial markets, the wavelet basis is usually a reasonable choice
for measurement and analysis.

7.4 Wavelet Parseval Risk Decomposition Theorem

If the scaling functions and wavelets form an orthonormal basis (= a tight frame),
there is a Parseval’s (tiling) Theorem that relates the risk of the financial time series
x () exactly to the risk in each of the components and their wavelet resonance
coefficients (Herley et al., 1993).

Theorem 309 (Parseval’s tiling) For the general wavelet expansion the risk or
variance of the financial time series can be expanded (or analyzed) as

400 +oo +00 +o0
/ @Pdt = Y leal?+ Y. D Idjal? (7.83)
-0 n=—00 j=0n=—00

with the risk in the expansion completely partitioned in time by n and in scale by j.

Parseval’s Theorem for wavelets allows us to completely and uniquely decom-
pose the overall risk of a financial market time series into subcomponent, i.e., into
financial risk at any scale (frequency) and at any moment in time. Thus, we have
achieved one of the major objectives of this book: to find a rigorous method to
decompose the risk of a financial rate of return series into any time-localized scale
or frequency of our choice.
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Using Parseval’s tiling one can check if volatility scales in foreign exchange mar-
kets, as Batten and Ellis (1999) claim, or if the volatility of credit spreads scales, as
Batten et al. (1999) claim. In Chapter 8, we’ll discuss how to use the wavelet MRA
to identify the homogeneous Hurst exponent of the parametric scaling of the FBM.

7.5 Software

The computations of the following Exercises can be executed by using the
MATLAB® Wavelet Toolbox, available from The MathWorks, Inc., 24 Prime Park
Way Natick, MA 01760-1500, USA. Tel.: (508) 647-7000; Fax: (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

A complete wavelet analysis toolkit called Wavelab 802 can be obtained at no
cost from Stanford University: http://playfair.stanford. EDU:80/"wavelab/.

This Wavelab is a very complete set of MATLAB® scripts that implement both
the basic wavelet and related transforms and more advanced techniques. There is
full documentation, a set of tutorials, and section of “Toons,” short for cartoons.
These Toon scripts reproduce from scratch the figures in many papers of Stanford’s
wavelet research group consisting of Dave Donoho, Ian Johnstone et al., describing
the theoretical research underlying the algorithms in Wavelab. By studying these
scripts and by experimenting with the data, the reader can learn all the details of
the process that led to each figure. This forms part of the new discipline of Repro-
ducible Research, i.e., the idea to provide the reader full access to all details (data,
equations, code, etc.) needed to completely reproduce all the results normally
presented only in summary form in scientific publications. For example, there are
MATLAB® scripts to generate and exactly reproduce all the figures in the book
by Mallat (1998). The pioneer of such Reproducible Research is Jon Claerbout
of Stanford University’s Geophysics Department (Claerbout, 1994; Buckheit and
Donoho, 1995).

In addition, one can use Benoit 1.3: Fractal System Analysis (for Windows
95/98 or Windows NT), Trusoft International Inc., 204 37th Ave. N #133,
St Petersburg, FL 33704. Tel.: (813) 925-8131; Fax: (813) 925-8141;
sales@trusoft-international.com. See http://www.trusoft-international.com for
details. This Benoit software enables you to measure the fractal dimension and/or
Holder-Hurst exponent of your data sets using your choice of method(s) for anal-
ysis of self-affine traces of speculative prices. However, astonishingly, the wavelet
routine in Benoit 1.3 is incorrect, although the other routines to compute the Hurst
exponent are correct.

7.6 Exercises

Exercise 310 Study and execute MATLAB® Exercises — Chapter 1, Wavelet
Display, in Strang and Nguyen (1997), p. 454. This assignment is designed to
familiarize the reader with the MATLAB® Wavelet Toolbox and its GUI (= Graphi-
cal User Interface). The assignment includes Wavelet Display, Continuous Wavelet
Transform, 1D and 2D DWT. It is assumed that the Wavelet Toolbox is installed.
At the MATLAB® prompt, type wavemenu. A window should pop up with choices



Wavelet time—scale analysis of risk 225

ranging from Wavelet 1D ro Wavelet Packet 2D to Continuous Wavelet 1D.
Closely follow Strang and Nguyen’s instructions.

Exercise 311 Study and execute MATLAB® Exercises — Chapter 1, CWT
in Strang and Nguyen (1997), pp. 454-455. Under File menu option,
select Load Signal. Choose the MATLAB® file MATLAB® on in /toolbox/
wavelet/wavedemo/freqbrk.mat.

Exercise 312 and follow Strang and Nguyen’s instructions. Notice the scalo-
gram. What does the scalogram show us (in detail)? Use the File menu
option to load another signal file of MATLAB® on ‘Nbsl’ (F:)/toolbox/wavelet/
wavedemo/qdchirp.mat, and again follow Strang and Nguyen’s instructions.

Exercise 313  Study and execute MATLAB® Exercises — Chapter 1, 1D DWT,
Strang and Nguyen (1997), p. 455. Under File menu option, select Load Signal.
Choose the MATLAB® file in /toolbox/wavelet/wavedemo/noisdopp.mat.

Exercise 314 and follow Strang and Nguyen’s instructions. Study the various
Decomposition and Statistics, Histogram, Compress and Denoise capabilities
(Note: the MATLAB® GUI follows Daubechies’ convention of giving the scal-
ing function and the lowest frequency wavelet the highest scaling number. Strang
and Nguyen gives them the lowest scaling number, i.e., the zero). Study in particu-
lar the automatic denoising and compression. Notice how few wavelet resonance
coefficients are required for an acceptable synthesis and reconstruction of the
original data series (= “signal”).

Exercise 315  Study and execute MATLAB® Exercises — Chapter 6, Multiresolu-
tion Analysis in 1D, Strang and Nguyen (1997), p. 466.

Exercise 316 Study and execute MATLAB® Exercises — Chapter 6, Wavelet
Packet in 1D, Strang and Nguyen (1997), p. 466.

Notes

1 In Chapter 8, we’ll provide an empirical analysis of Latin American financial markets
using Morlet (6) wavelets.

2 An electroencephalogram (EEG) is a recording of the electrical activity of the brain,
and an electroencephalograph is the instrument used for making the recording. The
technique, called electroencephalography, was first reported in 1929 by Hans Berger,
a German psychiatrist. The complexity of the brain and the inability of the electrical
recording apparatus to distinguish the direction of nerve impulses within the brain,
because it identifies correlations and not causalities, make it very difficult to interpret
the EEG. The frequency of these impulses also varies in different parts of the brain.
But certain distinctive, abnormal patterns are clearly associated with such situations as
epilepsy, stroke and brain tumors. Thus, the study of a patient’s EEG can aid in medical
diagnosis.
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3

10

11

Indeed, Brian Yuhnke Jr, one of the new media software programmers with whom I
work at Kent State University, interprets my current research as trying to find a real-time
“doppler radar for financial markets.” No doubt, his comment is inspired by the doppler
radar used for the weather report of Channel 3, the t.v. station in Cleveland, Ohio, close
to our university, and also used for tornado warnings.

Thus, a scalogram shows the localized conventional “R-squareds” between the time
series and each of the wavelets in the tiling diagram.

The scalegram corresponds with the average ““R-squareds.”

Alfréd Haar (1885-1933) was born in Budapest, Hungary. In 1904, Haar travelled to
Germany to study at Gottingen under Hilbert’s supervision, obtaining his doctorate
in 1909 with a dissertation entitled Zur Theorie der Orthogonalen Funktionensysteme
(“The Theory of Systems of Orthogonal Functions”). Haar then taught at Gottingen until
1912, when he returned to Hungary and held chairs at the university in Kolozsvér (which
is now Cluj in Romania), Budapest University and Szeged University. Haar, together
with Riesz, rapidly made the new Szeged University a major mathematical center. Later
he went on to study partial differential equations. In 1932, he introduced a measure on
groups, now called the Haar measure, which allows an analogue of Lebesgue integrals
to be defined on locally compact topological groups. Thus, he generalized classical
measure theory! The Haar measure was used by both von Neumann and Pontryagin
in 1934 and by Weil in 1940 to set up an abstract theory of commutative harmonic
analysis. Only now, after Mallat created its tree-algorithm in 1988 and combined it
with the current advanced state of computing power, find these powerful abstract ideas
feasible applications in advanced time series analysis and in the analysis of financial
market risk.

Dyadic = based on a geometric sequence of ratio 2.

There exist now already better standards for the design of the multiresolution of signals
than MPEG, e.g., the design criteria for the archives of the digitized FBI fingerprints
and the design criteria for recent compact digital cameras, of which the filter allows
hundreds of pictures to be compressed and stored in a relatively small physical memory.
This section is for specialists and can be skipped in a first reading. It was Daubechies who
mathematically developed and researched these four important design criteria for WTs.
For example, the Gaussian distribution kernel, which can be presented as a wavelet, has
vanishing moments at p = 3 and for all p > 4.

Since the Gaussian has vanishing moments at p = 3 and for all p > 4, the Gabor
wavelet, which has a Gaussian atom, is very regular. We’ll discuss the concept of
a-Lipschitz irregularity in Chapter 8.
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8 Multiresolution analysis
of local risk

“Natura Saltus Facit”

(= “Nature Jumps” )l

8.1 Introduction

For the first time in history, huge quantities of high-frequency financial data are
currently being recorded and stored. Both financial price and volume data have
been recorded (Gopikrishnan et al., 1998):

e on a daily basis since the nineteenth century;
e with a sampling rate of one minute or less since 1984; and
e on a transaction-by-transaction (tick-by-tick) basis since 1993.

The first to collect and archive high-frequency, intraday foreign exchange (FX)
data from Reuters composite FXFX page were the researchers of the institute of
Olsen and Associates in Ziirich, Switzerland (Miiller et al., 1990; Dacorogna et al.,
2001). This was quickly followed by the massive data archiving project under the
directorship of Dr Wiirtz at the Eidgenossische Technische Hochschule (ETH:
Federal Technical University) in Ziirich, who collected high-frequency data from
Reuters data selection feeds, mainly from RIC data records. His research group
collected the series of quoted prices of 355 major financial instruments, including
FX spot rates, forward rates, deposit rates, currency and deposit fixings, treasury
market yields and FX cross rates at a rate of 60 megabytes per month. Financial
futures, options and financial news subsequently followed.

Most of the series collected by both the Olsen and Associates and the ETH
groups contain unequally spaced prices in the time domain. Such unequal spacing,
or time warping of prices, produces a new research challenge in finance. Wavelet
multiresolution analysis (MRA) can very effectively deal with such time warping.
This ability of the wavelet MRA is one of the many reasons why this book advocates
its use as a major research tool in finance.
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The currencies involved in the instruments of the ETH project include those
of the G10 countries, Switzerland, the European Community, Hong Kong and
Australia. In Asia’s financial annus horibilis 1997, when the Asian Financial Cri-
sis erupted, I serendipitously collected, archived and analyzed a complete year of
seven minute-by-minute Asian FX data series from Reuters FXFX pages with the
assistance of three undergraduate students at the Nanyang Technological Univer-
sity in Singapore. Our Asian high-frequency FX series had the advantage of being
equally spaced in time, like conventional time series. But we’ve already noticed the
advantage of wavelet MRA in dealing with equally and unequally spaced, smooth
and irregular data, in particular, with both discontinuous and turbulent pricing
series.”

High-frequency records of financial prices, or of rates of return, in competitive
markets exhibit three striking characteristics:

(1) They are conspicuously discontinuous, i.e., they are singular at almost every
point, because the financial supply and demand curves move in unequal dis-
crete steps, in instantaneous response to discrete news events. For example,
Figure 8.1 shows on a time scale of 20 minutes the US Dollar/Deutsche Mark
(USD/DEM) exchange rates as mid-prices and as associated logarithmic dif-
ferences or rates of return (Schnidrig and Wiirtz, 1995, p. 2, figures 1 and 2).
In the right panel the quiet sections represent the two days of the weekends,
while there are daily fluctuations in the volatility of the log returns for the
five-day trading week.

(2) They are strictly non-stationary. However, they adhere to stable scaling or
power laws and they are stationary at particular scales. For example, Figure 8.2
shows the scaling law behavior for the USD/DEM exchange rate in a double-
logarithmic plot. This scaling law is independent from the source of data (in
the period 1993—-1994) and holds over several orders of magnitude. The scal-
ing exponent H = (.58 is significantly different from the Gaussian process
H = 0.5 (Schnidrig and Wiirtz, 1995, p. 4, figure 3).

(3) They show aperiodic cyclicity, i.e., they show intermittent periods of conden-
sation, succeeded by periods of rarefaction. Figures 8.3 and 8.4 demonstrate
the impact of the intraday cycles of average trading activity on the inten-
sity of the price changes in the global FX market (Dacorogna et al., 1993).
Although the FX market is active 24 hours per day, the social organization
of business, combined with the circadian cycle, forces the market activity
to experience temporal constraints in each financial region of the world. This
impacts the price formation. Similar day and weekend effects can be observed
in the stock market returns (French, 1980). Figure 8.3 (left and right panel)
shows the average hourly trading transaction density in the global FX market
as measured by the number of transactions per hour (Schnidrig and Wiirtz,
1995, p. 5, figure 6). Figure 8.4 (left and right panel) shows the mean absolute
hourly log-price change E{|A In P;|} for the USD/DEM rate as a measure for
weekly averaged price risk or volatility per hour (Schnidrig and Wiirtz, 1995,
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Figure 8.1 USD/DEM exchange rate, computed as a mid-price (upper) and as the
associated logarithmic difference (lower), on a time scale of Ar = 20
minutes, October 5—November 2, 1992.

Source: USD/DEM from Reuters FXFX pages 5.10.1992-2.11.1992.

p. 6, figure 8). The time on the abscissa of the weekly figures in Figure 8.3
(lower) and 8.4 (lower) is measured in 7 x 24 = 168 hours per week.
Time is measured in Greenwich Mean Time (GMT) and starts on Monday
0:00 GMT.
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Notice that the three peaks in both Figures 8.3 (right) and 8.4 (right) relate
to the maximum market activity in America (main peak), Asia (smallest peak),
and Europe (small peak), respectively. There is very little trading during the
weekends. The peaks in the trading activity in Figure 8.3 correspond with the
peaks in price volatility or risk in Figure 8.4.

It is also observed that stock prices or foreign exchange rates are singular at
almost every point, since their transaction records are essentially represented by
step functions over time. The prices “jump” in small steps, because of small shifts
in their respective supply and demand curves. The typical mechanism in price for-
mation involves both knowledge of the present and expectations about the future.
Even when the exogenous physical determinants of prices vary continuously,
expectations can change drastically and instantaneously.

Such discontinuous price data are similar to particular physiological measure-
ment data, such as heart records, electromagnetic fluctuations in galactic radiation
noise, textures in images of natural terrain, variations of electric grid or traffic flows,
etc. However, not all singularities are alike! Knowing the degree of irregularity
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of such discontinuities, or singularities, is important in analyzing their properties.
In finance, knowing the distributions of the degrees of irregularity of financial
time series is necessary for a correct analysis and valuation of the non-stationary,
aperiodic, but cyclic financial risk.
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Source: USD/DEM from Reuters FXFX page 5.10.1992-26.9.1993

For this purpose, we return in this chapter to our original informal definition of
irregularity or “randomness” of Chapter 1. This time we provide a proper formal
definition of measurable irregularity, as measured by the Lipschitz (ir-) regularity
exponent oy .
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Pointwise measurements of Lipschitz regularity exponents, which measure the
degree of irregularity of singularities, are not possible, because of finite numerical
resolution of the empirical data. After discretization, each data set corresponds
to a time interval where the time series has a very large (but finite) number of
singularities. These singularities may show similarities, but they may also all
be different. Such singularity distributions, or singularity spectra must therefore
be computed from global measurements, which take advantage of multifractal
self-similarities inherent in the financial data.

In the preceding chapters, we found that the Fractional Brownian Motion (FBM)
provides a convenient uni-parametric model for such self-similar time series (cf.
Chapter 4). FBMs are statistically self-similar i.i.d. processes, which exhibit
long-term dependencies. Despite their non-stationarity, one can define a power
spectrum, based on their stationary increments, that exhibits power decay. Thus,
FBMs exhibit 1/w-type spectral behavior over wide ranges of radian frequencies
o (cf. Chapter 4). Realizations of FBMs are almost everywhere singular, with the
same homogeneous o -Lipschitz regularity at all points.

On the other hand, unlike FBMs, there exist fractal random processes that are
not homogeneous o -Lipschitz irregular, although their power spectrum shows
power decay. Empirical realizations of these processes may include increments
of various types other than the familiar i.i.d. innovation processes of the classical
Geometric Brownian Motion (GBM). Therefore, the computation of a complete
singularity spectrum with a fractal dimension dependent on the Lipschitz regularity
exponent ¢ is important for such non-FBM cases, as we’ll discuss at the end of
this chapter.

To give a preview of the following topics: after discussing how to measure
the irregularity or multifractal spectrum of time series x(¢), by implementing
the wavelet MRA of Chapter 7, we’ll discuss in the next chapter the phe-
nomena of deterministic financial chaos. In Chapters 9 and 11 we’ll present
the current efforts to provide mathematical theories for financial turbulence. In
Chapter 10 we’ll give a simple example of a nonlinear dynamic interest rate term
structure that demonstrates how financial intermittence and complete chaos can
occur.

Financial turbulence theories are in debt to the original theory of physical tur-
bulence of Kolmogorov of 1941, to his later amendment in 1962, and to the
corrections by Mandelbrot in the 1970s and 1980s. Such theories are currently
progressing far beyond Kolmogorov’s fundamental insights, thanks to the ana-
Iytic measurements provided by the wavelet MRA. One of the new insights
by Frisch, Parisi and Farge is that turbulence is a heterogeneous multifractal
phenomenon of which we can determine a multifractal spectrum of singular-
ities from wavelet MRA. In addition, by using Galerkin’s method of finite
elements, wavelet MRA helps to numerically solve the dynamic Navier—Stokes
nonlinear diffusion equations, which represent still the best dynamic model to
explain turbulence, since it is based on fundamental mathematical and physical
system laws.
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8.2 Measurement of local financial market risk

8.2.1 Time-scale analysis of FBM

Due to the self-similarity, or scaling property of the FBM, Flandrin (1989, 1992)
and Mallat (1989a) examined the FBM’s behavior relative to different obser-
vational time scales, using self-similar wavelet MRA. A second-order moment
analysis of the wavelet resonance coefficients of the FBM reveals a stationary struc-
ture at each scale and a power-law behavior of the wavelet coefficient’s variance,
from which the average Lipschitz exponent a7, of the FBM can be computed.

Reviewing the various aspects of the FBM that we discussed in Chapters 4
and 5, we first established that the autocovariance function of the FBM x(¢) is
represented by:

y (1) = E{x*(1)}
— 02,[2(1—1

= o212 8.1)

which shows it to be non-stationary, and self-similar, since the second moment
is a scaling law of the time lag 7. Next, we established that the average power
spectral density of the FBM is:

P(w) = ofw_z(dH)

= olw GHTD (8.2)

which is also a scaling law, this time of the frequency w, or scale ¢ ~ 1/w.
Furthermore, the FBM is statistically self-similar in the sense that for any constant
¢ > 0, and with the convention that x (0) = 0, we find the distributional scaling

x(cT) 4 @103y (1)

=cfx(v) (8.3)

d e . . . .
where = means equality in distribution, as discussed in Chapter 3. This means in
frequency terms that the power spectrum of the FBM is represented by

Flyenl =57 (%)

082 (a))72(d+1)
ef?
2H—1062w—(2H+1) (8.4)

c
=cC

Thus, any portion of a given FBM can be viewed as a scaled version of a larger
part of the same process, both in the time domain and in the frequency domain.
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Consequently, an individual realization of the FBM is a fractal time series and
has a unique fractal dimension D, which is related to the Hurst H-exponent, as
follows

D=2—H (8.5)

In summary, the FBM has two important features:

(1) non-stationarity, which requires time-dependency analysis; and, more
specifically,
(2) self-similarity, which requires time-scale power law analysis.

Since Mallat’s wavelet MRA provides such a localized time-scale analysis, it is
the natural tool to examine empirical FBMs.

8.2.2 Lipschitz analysis of local financial risk

The Fourier Transform analyzes the global regularity of a financial time series
x(t). The Wavelet Transform analyzes the pointwise irregularity of a financial
time series x(¢). FBM traces are locally very irregular: they are continuous time
series, but their first derivatives exist almost nowhere, i.e., their increments consist
of singularities almost everywhere.

Definition 317 A time series is called regular if it can be locally approximated by
a polynomial, i.e., a particular mathematical system. If not, it is called completely
irregular.

Therefore, we must now introduce the formal definition of irregularity or
“randomness.”* It appears that there are degrees of local irregularity, from highly
regular to highly irregular (Pincus and Singer, 1996). These degrees of irreg-
ularity are measured by the Lipschitz regularity exponent 7. If x(f) has a
singularity at time 7, which means that it is not differentiable at t, the Lipschitz
regularity exponent oy characterizes this singular behavior at time 7. When we
measure the Lipschitz oy, of a singularity, we assess how irregular or random such
a singularity is. Consequently, we no longer have to assume the degree of random-
ness of a time series. We can measure the degree of its randomness by determining
its Lipschitz oz ! In this section, we’ll develop an apparatus to measure Lipschitz
ar, using Mallat’s MRA from the preceding chapter.

The Lipschitz regularity exponent o7 is based on the approximation error of
the Taylor expansion formula, which relates the differentiability of the continuous
time series x(¢) to a local polynomial approximation.

Definition 318 Suppose that x(t) is d times differentiable in the bounded interval
[t — €, 1 + €] for a small €. Then we can expand x(t) in a Taylor expansion
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as follows
(@)
20 = x(@) +xV@ @ — 1) + xz—fr)(z —T)2

x(d V(r) -

+ T 1= e
—1 K

= [Z @ >k}+ef(t>

« k!

=X (1) + € (1) (8.6)

where x® (1) is the k'" derivative of x(t). The x.(t) = [---] part is the exact
polynomial Taylor expansion of x(t) at time t, or systematic component, and the
€:(t) = x(t) — X;(t) is the approximation error, or unsystematic component, of
this Taylor expansion.

Remark 319 Statisticians often call the approximation error €, (t): the residual.
Itis clear that the character of this residual depends on the number of differentiation
terms included in the linear Taylor expansion. Therefore, one cannot ascribe
inherent characteristics like “Gaussian distribution” to this residual, since such
characteristics are not sui generis. Still, this is what statisticians conventionally
(conveniently, but unfortunately) do!

The Taylor expansion proves that the approximation error

€(t) = x(t) — (1) (8.7)
satisfies

forallt e [t — e, T + €],

u—rtl?

ez ()| < sup
ue[t—e, 7+e]

(8.8)

The dth-order differentiability of x(¢) in the neighborhood of t yields an upper
bound on the approximation error €,(¢) when ¢ tends to 7, i.e., when the time
interval becomes smaller. The following Lipschitz regularity refines this upper
bound with the fractional Holder exponent d, introduced in Chapter 4.

Definition 320 (Lipschitz) A time series x(t) is pointwise « -Lipschitz regular,
with regularity exponent oy, > 0 at point T, if there exists a K > 0, and a
polynomial X of degree |ay | such that for all real time t € R, the absolute value
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of the error is bounded by:
lex (D] = |x(1) — X (1)]
<Klt—1|
= K|t — | (8.9)
or, equivalently:
lee @1V = x(1) — 2 ()] < K'|r — 7] (8.10)
where K' = K1/e¢,

Definition 321

o A time series x(t) is uniformly o -Lipschitz regular over the interval [a, b]
if it is pointwise Lipschitz oy, for all T € [a, b], with a constant K that is
independent of t.

o  The Lipschitz regularity exponent of x(t) at point T or over the interval [a, b]
is the supremum of «y, such that x(t) is o -Lipschitz regular (pointwise or
uniformly).

This is a (very) technical definition of irregularity and a new definition of local
(financial) risk, which requires some additional explication. At each time point 7,
the polynomial X, (¢) is uniquely defined. If x (¢) is d = |y | times continuously
differentiable in the neighborhood of 7, then X, (¢) equals the linear Taylor expan-
sion of x(¢) at t. Thus, when ¢, is an integer, the regularity at point 7 is defined
as usual, with o7 indicating the order of differentiability of x ().

When «; is not an integer, but a fraction, let d be an integer such that d <
ar < d+ 1, then x(¢) has an o - Lipschitz regularity at 7, if its derivative x (1)@
of order d resembles |t — 7|% ¢ locally around point 7. Furthermore, the degree
of regularity of x(¢) in a time domain is that of its least regular point. The greater
o, the more regular is the time series x (¢). The smaller «; , the more irregular, or
“risky,” is the time series x ().

Remark 322  There exist multifractal time series x (t) with non-isolated singular-
ities, where x(t) has a different Lipschitz oy, at each point t. In contrast, uniform
Lipschitz oy, exponents provide a more global measurement of regularity, which
applies to a whole interval. If a time series x(t) is uniformly Lipschitz a; > d,
or monofractal, where d is an integer, then one can verify that x(t) is d times
continuously differentiable in that neighborhood.

What values of the Lipschitz «; exponent should one expect for the various
kinds of singularities? If 0 < ay < 1, then X;(t) = x(r) and the Lipschitz
condition becomes:

forallt € R, |x(t) — x(1)| < K|t — 7|*% 8.11)

A time series x (¢) that is bounded, but discontinuous at time 7 is Lipschitz oy = 0
at the time of the discontinuity 7. If the Lipschitz regularity is 0 < oy < 1 at
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T, then x(¢) is continuous, but not differentiable at T and the «; characterizes
the degree, or type, of irregularity. If «; = —1, the discontinuity “flip-flops” (cf.
Figure 8.7).

What is the Lipschitz regularity condition for the Fourier Transform and for the
Wavelet Transform, respectively?

8.2.2.1 Fourier regularity condition

The precise definition of the Lipschitz-«; regularity in the frequency domain, in
addition to the one we already have in the time domain, is provided by the following
theorem.®

Theorem 323 A function x(t) with Fourier Transform F(w) is bounded and
uniformly Lipschitz-a; over the domain of real numbers R, if

+00
/ |F(0)|(1 4+ |o]*)dw < 400 (8.12)

Remark 324  This uniform regularity condition is obviously a global regularity
condition, since it holds true over the whole (—o0, +00) frequency domain.

Next, we will discuss the required regularity condition of wavelets.

8.2.2.2 Wavelet regularity condition

The basic wavelet regularity condition is that it is a fast decaying wavelet with p
vanishing moments.” In fact, if a function is continuous, has vanishing moments,
decays quickly towards O when t — o0, or equals 0 outside a particular interval,
it is already a likely candidate for a wavelet!

Theorem 325 A wavelet  (t) with a fast decay has p vanishing moments, if and
only if there exists a function 6 (t) with a fast decay such that

V() = (=P (1)
dPo(r)
drp

=(—D? (8.13)

As a consequence, the CWT or resonance coefficient is equivalent to the
following multiscale differential operator

W(r,a) = /Oo xX(OYE ,(Ddt

p 4’
=a m{[X(t)*Oa(t)](f)} (3.14)

with the scaled wavelet

0,(t) = %9 (é) (8.15)
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Table 8.1 Degree of Lipschitz irregularity of Daubechies wavelets

4 DBI1(= Haar) DB2 DB3 DB4  DBS DB7 DB10

a, O 0.5 091 127 169 215 290

where the % sign indicates again the convolution operator (cf. Chapter 5). This
provides a test whether the wavelet iy has more than p vanishing moments.
Compute

+00
f Py (1) dt = ()PP (0) = (—i)P plé(0) (8.16)

—00

Clearly, the wavelet ¥ (¢) has no more than p vanishing moments if and only if:

+00
é(0)=f 0(t)dt # 0 (8.17)

—00

Remark 326 Anexample of such a fast decaying wavelet is the Gabor’s Gaussian
wavelet, or chirp, discussed in Chapter 6.

The degree of irregularity of certain wavelets is known. Table 8.1 gives
some indications of the Lipschitz-«; irregularity of Daubechies wavelets indexed
by DBN.

Selecting an irregularity and a wavelet to measure this irregularity is useful for
estimations of the local properties, like the intrinsic or local risk, of a financial
time series. From a practical point of view, these questions arise in finance in
dealing with financial markets for fine microstructure studies of high-frequency
(= very fast) trading transactions. Let’s now see, how we can approach the mea-
surement of the irregularity or intrinsic risk of such high-frequency financial
transactions.

If x(¢) is a financial time series which is a little bit more than p times differ-
entiable at point t, then it can be approximated by a polynomial of degree p, as
we’ve already seen in Chapter 4. For example, it can be approximated by a Markov
process of order p, which can represent trends and regular periodic oscillations.
As we noticed earlier, the Wavelet Transforms of such exact polynomials are zero.
But around point t, its order is that of the error between the polynomial and the
time series |x(¢) — X (¢)|. If this error can be uniformly estimated on an interval
[a, b], this insight yields a tool for irregularity or local risk analysis on that interval
and we can estimate the fractal order d of the financial time series x ().
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8.2.3 Asymptotically decaying wavelet amplitudes

The decay of the Wavelet Transform amplitude across all scales is related to the uni-
form and pointwise Lipschitz regularity of the financial time series x (t). Measuring
this asymptotic decay is equivalent to zooming into the time series structure with
a scale that goes to zero. The following theorems relate the uniform and pointwise
Lipschitz regularity of x(¢) on an interval to the amplitude of its Wavelet Trans-
form at the very fine scales. If we then measure the amplitude of the measured
decaying wavelet resonance coefficients, we can find out what the Lipschitz «f,
regularity of x(¢) is and thus its fractal difference order d.

Theorem 327 (Mallat) If x(¢) € L2(R), an element of the Hilbert space, and is
uniformly Lipschitz o < p over the interval [a, b] then there exists a constant A
such that

forall (t,a) € |a, bIxRT,
\W(t,a)| < Aa®T07

= Aq?t07 (8.18)

Conversely, if |W(t, a)| satisfies this last inequality and if oy is not an integer,
but a fraction ap, < p, then the time series x(t) is uniformly oy -Lipschitz on the
interval [a + €, b — €], for any € > 0.

Remark 328 The inequality is really a condition on the asymptotic decay of the
absolute value of the wavelet resonance coefficient |W (t, a)|, when its scale a goes
to zero. At larger scales it does not introduce any constraints since the Cauchy—
Schwarz inequality guarantees that the Wavelet Transform is always bounded:

IW(T, a)l = | {x(1), ¥r.a ()]
= IOzl (8.19)

where the norms (= risk contents) ||x(¢)|| < oo and || 4(t)|| < oo.

Jaffard (1991) generalized Mallat’s Theorem to pointwise Lipschitz regularity,
while Mallat’s Theorem can be viewed as a corollary of Jaffard’s Theorem (Jaffard,
1989; Farge, et al., 1993). Jaffard’s Theorem provides a necessary and a sufficient
condition on the modulus of the Wavelet Transform for computing the Lipschitz
regularity of x(¢) at point 7.
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Theorem 329 (Jaffard) If x(r) € L*(R) is Lipschitz a; < p at point v in time,
then there exists a constant A such that

forall (t,a) e R x RT,

T—Vv

|W(z,a)| < Aa®+03 (1 +

) (8.20)

Conversely, if o, < p is not an integer and there exist A and ozi < «ay, such that

a

forall (t,a) € R x RT,

T—Vv

|W(z,a)| < Aa®T03 (1 +
a

L> (8.21)

then x(t) is Lipschitz oy, at v.

To interpret more easily the necessary and sufficient conditions of Jaffard’s The-
orem, suppose that the wavelet v, ,(¢) has a compact support equal to [-C, C].
Then we can formulate the following definition of the cone of influence of a
particular point v on the time line.

Definition 330 The cone of influence of v in the scale-time plane is the set of
points (t, a) such that v is included in the support of the CWT wavelet

= — (“’) (8.22)
W‘E,a - ﬁw a .

Since the support of this wavelet is equal to [t — Ca, T + Ca], the cone of
influence of v is defined by

[t —v| <Ca (8.23)
or, equivalently,

Tmvl ¢ (8.24)

a

For example, Figure 8.5 shows the cone of influence for a time abscissaat? = v
in a scalogram.

Example 331 Figure 8.6 shows the regions of influence in scalograms (a and
c¢) for the CWT and spectrograms (b and d) for Gabor’s Short-Term or Windowed
Fourier Transform (STFT) for the singularity of a Dirac pulse §(w) at time t =
to, as well as three sinusoids of frequencies wg = wy, w1 = 2wy, w3 = 4wy,
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lu—vl>Ca lu—vl>Ca

Figure 8.5 The cone of influence of an abscissa singularity v consists of the time-scale
points (u, a) for which the support of the wavelet v, , intersects the time

point ¢t = v.
(a) CWT (b) STFT
fo )
>t & : >t
At
| 7
Scale a
(c) CWT - (d) STFT
) A l 1) A l t
4 % 4ag A Aw A
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g 7 @o A
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Scale a = wy/w

Figure 8.6 Singularity cones of influence of a Dirac pulse at t = 1 for (a) the CWT
and for (b) the STFT; versus monochromatic bands of influence of three
sinusoids for (c) the CWT and for (d) the STFT.

respectively (cf. Chapter 6). The scale is a = wgy/w. Notice that for the CWT in (a)
the width of the cone of influence of the Dirac pulse is scale-frequency dependent,
while for the STFT in (b) it remains constant and is scale-frequency independent.
Furthermore, for the CWT in (c) the monochromatic resonance bands differ in
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width according to the scale-frequency, while for the STFT in (d) the width of the
monochromatic resonance bands are scale-frequency independent.

Using a reformulation of the cone of influence, Jaffard’s necessary and sufficient
conditions can be considerably simplified, as follows:

ozL)
SAaaL+O.5(1+C0[L)

= Alq 105 (8.25)

T—v

|W(z,a)| < Aa®+0? <1 +

a

which is identical to the uniform Lipschitz condition of Mallat’s Theorem!

Jaffard’s Theorem relates the pointwise irregularity, e.g., the singularities,
of a time series to the decay of the modulus maximum of its Wavelet Trans-
form |W(z, a)|. This will assist us with the measurement of the degree of local
financial risk.

8.2.4 Measuring various price singularities

We will now discuss the innovative concepts of modulus maxima and the max-
ima line to detect and measure the various kinds of singularities (Hwang and
Mallat, 1994).

Definition 332 The modulus maximum of a Wavelet Transform is any point
(10, ao) such that \W(z, a)| is locally maximum at T = to. This implies

d|W (7o,
|W (70, ao) —0 (8.26)
at
Definition 333 The maxima line is any connected curve a(t) along the scale
ordinate in the time-scale plane (t, a) along which all points are modulus maxima.

Singularities can thus be detected by finding the abscissa where the wavelet
modulus maxima converge at the very fine scales of, say, high-frequency financial
data. The following Theorem by Hwang and Mallat proves that if the Wavelet
Transform W (t, a) has no modulus maxima at fine scales, then the time series
x (1) is locally regular. Otherwise stated, there cannot be a singularity without a
local maximum of the Wavelet Transform at the very fine scales.

Theorem 334 (Hwang, Mallat) Suppose that the wavelet ¥ (t) is CP
(= continuous of order p) with a fast decay, has p vanishing moments with



Multiresolution analysis of local risk 247

compact, finite support, and
¥(0) = (=D (1) (8.27)

with the Gaussian wavelet 6 (t) such that

“+oo
/ 0@)dt #0 (8.28)

—00

Let x(t) € L'[c,d). If there exists ag > 0 such that |W(z, a)| has no local
maximum for T € [c,d] and a < ag, then x(t) is uniformly Lipschitz p on
[c +€,d — €] forany e > 0.

This important and insightful theorem implies that x(¢) can be singular (= not
Lipschitz-1) at a point v only if there is a sequence of wavelet maxima points that
converges towards the time point v at very fine scales:

lim 1, =v and lim a,=0 (8.29)
n—-+00 n—-+00

This sequence of wavelet maxima indicates the presence of a maximum modulus
of the Wavelet Transform at the very fine scales where a singularity occurs.

In the general case, a sequence of modulus maxima, or maxima line, may be
detected, which converges to the particular singularity. When the wavelet is the
pth derivative of a Gaussian wavelet 6 (¢) (= Gédbor wavelet), these maxima lines
are connected and go through all of the finer scales. The decay rate of the maxima
along the maxima ridges indicates the order of the isolated singularities. This can
be easily shown, since from the Jaffard Theorem for t = v, we have for the
log—log inequality:

log, |W(t,a)| < (ar +0.5)log, a + log, A’ (8.30)

Thus, one should display the modulus maxima of the Wavelet Transform as a
function of scale a in a log—log plot, and its computed slope will be b = oz 4 0.5,
from which we then can immediately identify the Lipschitz «f . For example, when
this slope is b = o + 0.5 = 0.5, the time series is Lipschitz o;, = 0 and, thus,
exhibits a discontinuity. But when the slope b = o + 0.5 = 1, the time series is
Lipschitz «; = 0.5. In other words, the degree of irregularity (= “randomness”)
of each singularity can be separately assessed. No longer have we to assume that
some price singularity is random. We can now precisely locally measure its degree
of irregularity, randomness or riskiness, as the following examples demonstrate!

Example 335 Figure 8.7 provides the first example of this kind of financial risk
analysis. In the top panel (a) we see a time series or signal S1 = x(t), which
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Figure 8.7 Wavelet decomposition of a time series with singularities. In the top panel
(a) we see a time series or signal S| = x(¢), which contains four singu-
larities, characterized, respectively by the Lipschitz «; and the smoothing

scale s: (ap = 0,5 = 0), (¢, = 0,5 = 3),(ax = —1,s = 0) and
(¢p = —1,5 = 4). In the lower panel (b) we see four scales of wavelet
decomposition.

contains four singularities, characterized, respectively by the Lipschitz a; and
the smoothing scale s: (ap = 0,s = 0), (ap = 0,5 = 3), (0 = —1,5 = 0),
and (ap = —1,s = 4). In the lower panel (b) we see four scales of wavelet
decomposition (Mallat and Zhong, 1992, p. 86). It is clear that the behavior of
the local maxima across the wavelet scales depend on the Lipschitz oy and the
smoothing scale s. Notice that the “sharpest” singularity, (ap = 0, s = 3), and
(xp, = —1,s = 0) are best detected at scale level a = 1, while the “softest”
singularity, («p = 0,s = 0) and (a¢p = —1,s = 4) are best detected at scale
level a = 4. But each scale level provides its own piece of information about each
of the different singularities.

Example 336 Figure 8.8 provides a more complex financial risk analysis. At
the top we have 256 observations of the irregular time series x(t), which shows
different kinds of singularities: from step functions at the left, to a sharp peak
in the middle, followed by a discontinuity and a very “random” looking series.
The question is how we can characterize these singularities of x(t) using the
scalogram based on the CWT W (t, a). Panel (a) shows the scalogram Py (T, a) .
The horizontal and vertical axes measure t and log, a, where a is the dyadic scale.
Panel (b) shows the modulus maxima of the W (t, a). Notice that the “random”
looking series part is represented by a series of modulus maxima. The continuous
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Figure 8.8 How to measure the degree of irregularity of local risk of a series of price
singularities x (¢) : (a) the scalogram Py (7, a), (b) the modulus maximae of
the W(z, a), (c) continuous line: the decay of log, |W (7, a)| as a function
of log, a along the most left maxima line that converges on the abscissa
point t = 14. Dashed line: the decay of log, |W(t, a)| along the maxima
line that converges to time point t = 108.
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line in panel (c) gives the decay of log, |W (t, a)| as a function of log, a along the
most left maxima line that converges to the abscissa t = 14. The dashed line in
panel (c) gives the decay of log, |W(z, a)| along the maxima line that converges
tot = 108 (Mallat, 1998, p. 180).

8.3 Homogeneous Hurst exponents of monofractal
price series

Now, let’s discuss how this mathematical apparatus of wavelet regularity conditions
can be used: first, to compute the uniform Lipschitz regularity exponent oy, or,
equivalently, the homogeneous Hurst H-exponent for our main model for financial
risk, the FBM. This is followed by computation of the pointwise Lipschitz o
to characterize the singularity or local risk spectrum of multifractal non-FBM
processes. We begin with simple computations of homogeneous H -exponents for
the FBM, using the wavelet detail coefficients d; , from Mallat’s MRA. Next, we
will compute a multifractal spectrum of heterogeneous H-exponents or «’s for
non-FBM processes.

The heterogeneous or multifractal local risk spectrum characterizes the scaling
and singularity structures of time series and has already proved to be a useful tool
for numerous applications, from (electric) network traffic analysis to the analysis
of turbulence in high-frequency financial time series. The computation of the
complete local multifractal risk spectrum from a finite data record has long escaped
the capability of the turbulence researcher, but the preceding general irregularity
analysis shows that this kind of local risk analysis is now completely possible.

8.3.1 Logarithmic scalegram based on discrete wavelet MRA

Let’s begin with the computation of the homogeneous Hurst exponent of global
financial risk. When we discussed the MRA in Chapter 7, we stated that the
Discrete wavelet Transform (DWT) coefficient of the FBM x (¢) is computed as the
inner product of x(¢) and the basic discrete, dyadic, orthonormal wavelet ¥, e.g.,
the Haar wavelet, by the usual approach, as follows

djin= 2—-//2/ x(OYQt —n)dt, withj,neZ (8.31)

e e]

The tiling of the time-scale space by the resulting wavelet Heisenberg boxes
is shown in Figure 8.9. For example, the dp ¢ coefficient represents the mean of
x(t). These wavelet resonance coefficients d , of an FBM have the following four
properties, as proved by Flandrin (1992) and by Flandrin and Gongalves (1996):

(1) The wavelet resonance coefficients are stationary in distribution, i.e., they are
stably distributed:

dinLdjy foralln (8.32)
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Figure 8.9 Complete wavelet tiling: the relation of the DWT coefficients d;, to the
time-scale tiles. This demonstrates the completeness of a financial risk analysis
by wavelet MRA.

(2) The wavelet resonance coefficients are Gaussian distributed:

djn ~ N(0, Var(dj,)) (8.33)

Remark 337 Consequently, the squared resonance coefficients, or local wavelet
risk, are Chi-squared distributed:

|dj > ~ x* (8.34)

This statistical property allows for significance testing of the wavelet coefficients.
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Remark 338 If one wants to verify that the statistical distribution for the local
wavelet risk is, indeed, Chi-squared distributed, one can apply the following Monte
Carlo method: (1) create a large number, say 100,000 random time series, each
with as many points as the financial time series x(t),t = 1,..., T to be ana-
lyzed; (2) then take the Wavelet Transform for each of the random time series and
compute all the local wavelet risks |d j,,,|2; next, (3) take a time slice from the
middle (timen = T /2), (4) at each scale j, sort all selected 100,000 local wavelet
risks into increasing order; (5) then make a plot of the local wavelet risk versus
the sorted index number; (6) look at what the local wavelet risk is for number
95,000 out of 100,000, then 95 percent of the local wavelet risk is below that
value, and only 5 percent is above; (7) this 95 percent level is the staistician’s con-
ventional 95 percent confidence level (or 5 percent significance level). This Monte
Carlo method can be generalized to any process where the statistical distribu-
tion is unknown, yet one wants to determine statistical confidence, or significance
levels.

Flandrin (1989, 1992) and Kaplan and Kuo (1993) also proved that the variance
of these wavelet resonance coefficients d; , of the FBM is represented by the
following scaling law, which is the integration of the Chi-squared distribution of
the squared resonance coefficients:

Var{d; ,} = E{ld; .}

2
= %Vw(H)(zf)*@H“) (8.35)

where the constant Vy, (H) depends on both the ACF yy, (1) of the chosen wavelet
¥ (t) and the H-exponent, as follows:

+00
V,,,(H):—/ yo (Ot*de (8.36)
with
+o00
w@= | YOYt-od (8.37)

Thus, by taking the dyadic logarithm of Var{d ,}, we find the linear relationship
from which we can compute H

2
log,[Var{d; »}] = —(2H + 1) + log, [% V,,,(H)] (8.38)
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Since the second (intercept) term is a constant, we plot log,[Var{d; ,}] against
the scale coefficient j to find the slope value (2H + 1) and thus H (Wornell and
Oppenheim, 1992; Wornell, 1993). This average or global wavelet (log) scalegram
delivers the same analytic irregularity measurement result of the homogeneous
Hurst exponent H as the (log) Fourier power spectrum.

The other two properties of importance for this MRA analysis:

(3) The wavelet resonance coefficients are almost uncorrelated:

E{dindjm) = 1270 — 27/ mPH =R and (8.39)
(4) The wavelet resonance coefficients scale:

djn L2/"4dy, (8.40)

Remark 339 Because of property (2) and (3) it is often asserted that the FBM
wavelet resonance coefficients are exactly uncorrelated and hence independent
(Gongalves et al., 1998). But this is, strictly speaking, not true since they scale.
They are stably distributed (cf. Chapter 4).

8.3.2  Scalegrams of heart arrhythmias and stock prices

We will now discuss two applications of the preceding analysis to compute homo-
geneous Hurst exponents from the dyadic logarithmic plot of wavelet resonance
coefficients: a wavelet MRA of the heartbeat of a healthy human and of the Dow
Jones Industrial Average Index (DJIA). The heartbeat inter-arrival times resemble
those of foreign exchange quotations. Both these exemplary analyses are from
Flandrin (1992). The persistence of the DJIA has also been studied by Lo and
Mackinlay (1999) by non-wavelet, econometric time series methods. They pro-
duced similar results. In addition, we include some interesting scalograms and
scalegrams based on wavelet MRA of Latin American financial markets around
the times of major trading regime changes.

8.3.2.1 Scalegram of heart beats

Figure 8.10 shows the computation of the global or homogeneous Hurst exponent
for heartbeat inter-arrival times X (¢) in seconds for a healthy human patient, of
which 65,536 heartbeats are shown in the top panel. It is clear that this heart is
not strictly periodic and that it shows arrhythmias: it is aperiodic cyclical. Fractal
analysis is thus warranted. The time series is again analyzed using a Daubechies(5)
wavelet basis and MRA tiling. In panel (a) the log,[Var{d; ,}] is plotted versus
the scale j = m. The scale in this panel (a) is such that a low scale j means low
frequency while a high scale means low frequency. The approximate slope of the
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Figure 8.10 Wavelet-based persistence analysis of heartbeat interarrival times for a
healthy patient with a Daubechies(5) wavelet. Top panel: data; (a) scale-
to-scale wavelet coefficient variance progression; (b) average magnitude
of normalized along-scale correlation between wavelet coefficients.

line that is not completely straight is:

b=Q2H+1)
_2—(-10)
- 15-4
=1.0909 (8.41)
from which we derive the Hurst exponent H = 0.0454 5. This implies that the

heartbeat inter-arrival times are almost blue noise, i.e., highly antipersistent. Differ-
ently stated, the human heart self-reverses or corrects itself (almost) immediately.
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It is an extremely efficient pump. Notice, however, that the slope of the dyadic
plot line is not strictly straight and thus the Hurst exponent is not strictly homoge-
neous, in particular around scales a = 26 = 64 seconds, or close to one minute,
and a = 27 = 128 seconds, or close to two minutes. Panel (b) shows again the
average magnitude of the normalized along-scale empirical correlation

Pt s = Edindjm} (8.42)

=0.125 forl =1
=1=0.04 forl=2 and (8.43)
<0.01 forl>2

This shows that there is virtually no serial correlation between the wavelet
resonance coefficients although they clearly scale.

8.3.2.2  Scalegram of Dow Jones Industrial Average

Figure 8.11 shows the computation of the homogeneous Hurst exponent for 4,096
weekly DJIA data as follows. The time series X () in the top panel is analyzed using
a Daubechies(5) wavelet basis and MRA tiling. In panel (a) the log,[Var{d; ,}] is
plotted versus the scale j = m. Consequently, the value of the slope of this (almost
straight) line is:

b=QH+1)

24 - 10

T 114
=2 (8.44)

from which we derive the Hurst exponent H = 0.5. This implies that the difference
operator exponent d = H — 0.5 = 0 for the price increments AX (1) = &(t)
(cf. Chapter 4). Thus, the weekly DJIA series X (¢) follows a pure Random Walk
(cf. Chapter 2). Panel (b) shows the average magnitude of the normalized along-
scale empirical correlation between the wavelet resonance coefficients:

P:,rf’,,"il =+ E{di,ndj,m} (8.45)

=0.08 forli=1
= 1=0.03 for/=2 and (8.46)
<0.03 forl > 2

This shows again that there is virtually no serial correlation between the wavelet
resonance coefficients.
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Figure 8.11 Wavelet-based persistence analysis of weekly Dow Jones Industrial
Index data with Daubechies(5) wavelet. Top panel: data; (a) scale-to-
scale wavelet coefficient variance progression; (b) average magnitude of
normalized along-scale correlation between wavelet coefficients.

8.3.3 Persistence analysis of Latin American financial markets

The following persistence analysis of Latin American financial stock and foreign
exchange markets, using wavelet scalograms and scalegrams, was performed by
Kyaw et al. (2002), and uses daily data.®
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8.3.3.1 Mexico’s Peso/Dollar rate

In panel (a) of Figure 8.12, we look at the time series of 3,253 daily observations on
Mexico’s Peso/Dollar exchange rate for the period January 4, 1993 — November 30,
2001. At the top right-hand side is portrayed the analyzing Morlet (6) wavelet. A
mother Morlet wavelet w(})w (¢) is a sine wave 77 ~1/2¢/“! multiplied by a Gaussian

“envelope” x 121/ 2 as follows:
Yo(t) = /D et (—1/2) (8.47)

where wé"l (1) is the wavelet value at non-dimensional time ¢ and wy is the wave
number. The scaled Morlet wavelet is:

0.5 ’
(n' —n)dt 8t (n' —n)dt
W|:— =\—- Yo | ———— (8.48)
a a a
a
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Figure 8.12 Wavelet MRA by Morlet(6) wavelet of the various exchange rate regimes of
the Mexican Peso/USD in the 1990s and the various Brazilian financial market
crises. Notice the impact of the Mexican float in December 1994, the Brazilian
stock market crisis in September 1998 and the Brazilian float in January 1999.
Globally, the Mexican Peso is antipersistent with a homogeneous H = 0.41.
(a) Foreign exchange rate — Mexican Peso/USD; (b) wavelet power spectrum;
(c) global wavelet.
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where a is the dilation parameter used to change the scale and n is the translation
parameter used to slide in time. The factor of ¢~ is a normalization to keep
the total risk of the scaled wavelet constant and &t is the marginal time step. The
Morlet wavelet is very popular, because (1) it’s simple and (2) it looks like a wave.
But there are a very large number of other mother wavelets that could be chosen.
‘We choose the wave number of this Morlet wavelet to be wg = 6, so that the errors
due to the non-zero mean are smaller than the typical computer round-off errors
and the precision of the local risk measurement is enhanced.’

The CWT or wavelet resonance coefficient, W (n', a) = dj n, is just the inner
product (or convolution) of the wavelet function with our original time series x(¢):

i n' — n)8ti|
oo (8.49)
a

W' a)="Y x@sy* [(

n'=0

where the asterisk () denotes the complex conjugate. The above “integration” can
be evaluated for various values of the scale a (usually taken to be multiples of the
lowest possible frequency), as well as all values of n between the start and end
dates. Panel (b) shows the localizing wavelet scalogram, MRA, or local risk or
power spectrum:

Py(n',a) = W', a)l?
= |d;j nl? (8.50)

It presents the relative risk at a certain scale and a certain time. The abscissa
measures the wavelet location in time. The ordinate measures the wavelet period
in days. In panel (b) the localized power |d; , |2 is colorized into five levels, from
white = no power to dark grey = highest power.

Panel (c) shows the global wavelet scalegram, or global (risk) power spectrum:

Py (a) = E{IW(z,a)|*)
= E{|d;.|*}
= Var{d, ,} (8.51)

The dark grey monochromatic resonance band at the largest scale is again a sam-
pling effect. On the vertical axes of both panel (b) and (c) the frequency is indicated
by the number of days included in the time horizon T = n’8¢. At the top of both
panels are the high frequencies and at the bottom the low frequencies measured
in days. The horizontal axis of panel (c) indicates the global risk or power of
the wavelet resonance coefficients, Var{d; ,}, on a decimal logarithmic (decibel)
scale.
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The slope of the scalegram in panel (c) shows that the negative slope, computed
from logarithmic base 2, is:

b=Q2H+1)
_ log, 10* —log, 1072

log, 212 — log, 2
— 1.8120 (8.52)

Thus the global, or homogeneous Hurst exponent for the whole period that has
been portrayed is H = 0.41. Overall, the Mexican Peso is now an antipersistent
currency.

But it is clear that there are at least five discernible subperiods, each having its
own “local” Hurst exponent, as indicated in Table 8.2.

In other words, there is marked evidence for the existence of heterogeneous
Hurst exponents, each applicable for the frequency scaling in a subperiod, i.e.,
there is evidence for so-called multifractality.

Of course, there exists no computable Hurst exponent for a fixed exchange rate
regime, since there is no power or variation in the observed time series of the
fixed exchange rate. Notice that when the Mexican Peso/Dollar rate was pegged in
the period February 24, 1994 to December 19, 1994, the exchange rate showed a
Hurst exponent of H = 0.57 and was persistent (pink). It showed Hurst exponents
below 0.5 and was thus antipersistent in all other periods. Notice also that after
the Brazilian crises, the Mexican Peso became slightly more antipersistent than in
the period after the second float announcement.

More remarkable even is to observe that in the violent vortex of the first float
in the period December 20, 1994 to May 3, 1994, the computed Hurst exponent
dipped to H = 0.20, the light blue noise or highly antipersistent area of turbulence.
The adjustment vortex, immediately after the announcement of the first float on
December 20, 1994, shows a dark cone of influence with power at all analyzing
frequencies between two days and about one year, as is shown in the companion
Figure 8.13, where the first (log) differences of the daily rates are analyzed in the
same fashion as in Figure 8.12. Recall that for this Morlet (6) Wavelet Transform

Table 8.2 Heterogeneous Hurst exponents of subsequent exchange rate
regimes in Mexico in the 1990s

Subperiods Mexico’s FX regime Hurst exponents
01/04/93-02/23/94 Loose peg 0.33
02/24/94-12/19/94 Pegged 0.57
12/20/94-05/03/95 First float 0.20
05/04/95-10/15/95 Fixed N/A
10/16/95-09/09/98 Second float 0.37

09/10/98-11/30/01 Float after Brazilian crisis 0.29
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Figure 8.13 Wavelet MRA of the various exchange rate regimes of the first (log) differences
of the Mexican Peso/USD in the 1990s, based on daily data. Taking first
differences sharpens the MRA analysis. Notice (a) the two powerful adjustment
vortices occurring after the two float announcements, in particular, the one
immediately after the Mexican float announcement in December 1994. The
remaining innovations show clearly identifiable periodicities in the scalegram
in the lower right. (a) Foreign exchange returns—Mexican Peso/US Dollar;
(b) wavelet power spectrum; (c) global wavelet.

CWT the width of the cone of influence is scale-frequency dependent. The second
float, announced on October 16, 1995 caused a much smaller adjustment vortex,
with power at frequencies between two days and about two weeks.

Again, the monochromatic resonance band at the largest scale is a sampling
effect. Recall that for the CWT such monochromatic resonance bands differ in
width according to the scale-frequency.

The scalegram or global risk or power spectrum in panel (c) of Figure 8.13
shows that the differencing does not result in white noise, i.e., in a flat spectrum.
First, the slope of that risk spectrum is 2H — 1 = 0.8120 — 1 = —0.188 so that
H = 0.41, consistent with Figure 8.12. Second, the spectrum shows clearly iden-
tifiable reporting periodicities with spectral peaks at the 5- trading day or “weekly”
frequency, and, in particular, the 63- trading day or “quarterly” frequency and the
252- trading day or “annual” frequency. In the scalogram, the increased power of
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the high-frequency trading after the Brazilian crises is also clearly observable. The
Brazilian crises are indicated by some red color in the original colorized scalo-
grams, but it is clear that these external events emerging from outside Mexico had
much less impact on the Mexican Peso, than the two domestic float announcements.

8.3.3.2  Comparison of degrees of persistence of Latin American stock
and FX markets

Figure 8.14 shows an MRA of the volatile Chilean stock index return rates.
Notice the severe turbulence vortices caused by the Brazilian stock market crisis
of September 1998 and the Brazilian float of January 15, 1999. Another sharp
singularity occurred, when a tender offer of Enerquinta shares failed, because
accounting information became available that had been secret before: the Chilean
stock market collapsed by ca. 30 percent! The global risk again shows reporting
periodicities at the weekly, bi-weekly and quarterly frequencies, but also at the

s
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Figure 8.14 Wavelet MRA, based on daily data, of Chilean stock index rate of returns in
the 1990s. Notice the two powerful adjustment vortices occurring immediately
after the Brazilian stock market crisis of September 1998 and the Brazilian
float of January 15, 1999. A sharp singularity occurred when the tender of
Enerquinta shares in January 2002 failed and the Chilean stock market was
drawn down by more than 30%. The scalegram shows that the residual noise
is not white, but shows periodicities. (a) Chilean Stock returns; (b) wavelet
power spectrum; (c) global wavelet.
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biennial frequency. The dotted line is the spectrum for white noise. It is clear that
stock rates of return are not white noise: the global risk spectrum is too much
differentiated and shows periodicity peaks. The colorized scalogram makes that
also abundantly clear on a localized basis.'?

It is important to note that we not only observe adjustment vortices immedi-
ately after domestic trading regime changes in the foreign exchange markets, like
the changes from a pegged to a floating exchange rate regime in Mexico. But
we observe also adjustment vortices occurring in well-working financial markets
caused by disturbances in neighboring interconnected markets, like the impact of
the stock market crisis in Brazil on the stock market pricing process in Chile. This
particular interconnection between various financial markets in different countries
is of current concern because of the threat of contagion (Forbes and Rigobon,
2002) and we will research it in greater detail at Kent State University, because of
its importance for financial market regulatory advice for, i.a., the IMF.

In Table 8.3 all measured homogeneous Hurst exponents are collected for both
the stock and foreign exchange markets of several Latin American counters.'!
This shows that most of these markets have homogeneous Hurst exponents above
0.5, i.e., they are globally persistent, with the exception of the Colombian stock
market and the Mexican Peso market, which have measured Hurst exponents of
below 0.5. These two markets are globally antipersistent. While the Brazilian and
Mexican stock market indices follow a GBM and are brown noise, the Argentinean,
Chilean and Venezuelan stock indices are persistent, pink noise and show major
stretches of continuity interspersed by sharp discontinuities. The Argentinian Peso
was dollarized, i.e., kept at a fixed exchange rate by its Currency Board. Since the
Argentinian Peso has thus no volatility, it exhibited no FX risk. The Brazilian
Real and Chilean, Colombian and Venezuelan Pesos were all persistent. That is
an indication of administered or controlled foreign exchange rate trading and not
of completely floating exchange rate regimes!

Strictly speaking, the Brazilian Real was first pegged until January 15, 1999,
when it became floating. Since its exchange rate trading process clearly breaks
into two very different trading regimes, it is somewhat misleading to represent
the Brazilian exchange rate process by one homogeneous Hurst exponent. For
Brazil’s pegged exchange rate regime between October 22, 1995 and January 14,

Table 8.3 Measured homogeneous Hurst exponents of Latin
American stock and foreign exchange markets. Only
the Columbian stock market and the Mexican Peso/USD
market are antipersistent

Stock indices Foreign exchange rates
Argentina 0.79 N/A
Brazil 0.50 0.66
Chile 0.79 0.66
Colombia 0.42 0.61
Mexico 0.50 0.41

Venezuela 0.79 0.66
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1999, the Hurst exponent was H = 0.67, indicating considerable persistence. For
Brazil’s floating exchange rate regime between January 15, 1999 and December 18,
2001, the Hurst exponent was H = 0.46, indicating mild, but hardly significant,
anti-persistence.

As we have already noted, the Mexican Pesos is antipersistent with a global Hurst
exponent of H = 0.41, just like the Japanese Yen and the German Deutschmark
(and now the Euro), as we will see in the next section.

8.3.4 Persistence analysis of Asia’s foreign exchange markets

The persistence of FX rates had earlier attracted the attention of financial analysts,
but their conventional correlation methodology did not allow them to reach precise
or correct conclusions (Huizinga, 1987; De Long et al., 1990; Dacorogna et al.,
1993). After all, an uncorrelated series can still be dependent, scaling and show
long-term memory. For a technically correct analysis of the volatility scaling of
FX rates, cf. Gengay et al., 2001a,b). In Chapter 7 we presented the 3D scalogram
for the July 1997 minute-by-minute data of the Thai baht (THB), which clearly
shows the sharp discontinuity in that FX market on July 2nd, 1997, when the Asian
Financial Crisis erupted, not surprisingly, only one day after the handover of Hong
Kong by the former British colonial empire to Communist mainland China.

The first four moments of the distributions of the minute-by-minute FX rates for
nine currencies (eight Asian currencies, plus the DEM and the Yen) for the four
months in 1997 are collected in Figure 8.15.

Next, let’s look at a uniform or homogeneous persistence analysis by Karuppiah
and Los (2000) of foreign exchange rates in Asia, around the time of the onset of
the Asian Financial Crisis in the summer of 1997.

Using the dyadic logarithmic scalegram, we compute the homogeneous H-
components, fractal dimensions D = 2 — H, and Zolotarev stability exponent
az = 1/H, for ten currencies (eight Asian currencies, plus the DEM and the Yen)
for the four months in 1997 surrounding the onset of the Asian Financial Crisis on
July 2nd, 1997. The results of this analysis are collected in Table 8.4.!2

Notice the uniform antipersistence of these currency rates, but, since we compute
the H -exponents for each month, notice also that the H - exponents are not entirely
homogeneous. Still, the DEM and the Japanese Yen (JPY) are clearly antipersistent
with 0.24 < H < 0.36 for all four months. This implies that the FX markets
for these two currencies were very liquid and self-correcting or mean-reverting
(Poterba and Summers, 1988). They are trading so fast, that they possibly exhibit
financial turbulence, an efficiency-enhancing phenomenon, as we will discuss in
Chapters 10 and 11.

In contrast, the Hong Kong Dollar (HKD), the Malaysian Ringgit (MYR), and
the Singapore Dollar (SGD) were only mildly antipersistent with 0.42 < H <
0.48. They exhibited price formations close to the GBM. The Philippine Pesos
(PHP) showed about GBM with 0.43 < H < 0.52. The Taiwanese Dollar (TWD)
was mostly persistent with 0.49 < H < 0.67. The Thai Baht (THB) was more
strongly antipersistent in May and June, i.e., in the pre-currency break period, with
0.36 < H < 0.39, than in July and August, i.e., in the post-currency break period,
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Distributional statistics for the countries from May 97-August 97

DEM May June July  August PHP May June July August
Mean  1.7031 1.7262 1.7909 1.8405 Mean 26.3718 26.3764 28.2078  29.5979
Std 0.0140 0.0077 0.0345 0.0258 Std 0.0044  0.0065 1.4209 0.6881
Kurtosis —0.5491 0.4164 —1.4497 —0.9763 Kurtosis —0.3712 0.5364 -1.1713  —1.2000
Skew  0.5804 —0.3969 0.1340 -0.1470 Skew -0.6215  0.0941 -0.0549 —0.6468
No. of 1,18,398 1,20,770 1,24,037 1,14,134 No. of 115 106 131 97
trans trans
JPY May June July  August SGD May June July August
Mean  118.99 11425 115.19 117.90 Mean 1.4359 1.4279 1.4508 1.4967
Std 4.4264 1.3381 1.7569 1.1365 Std 0.0064  0.0030 0.0151 0.0182
Kurtosis —1.0165 —0.3634 —0.8565 0.0376 Kurtosis —1.0674  0.9688 -1.5323  -1.1382
Skew  0.7130 —0.1944 0.2107 —0.7009 Skew 0.7064 -0.9178  0.0792 —0.3221
No.of 83,557 1,02,676 85,524 62,774 No. of 5,009 4,086 7,375 6,204
trans trans
HKD May June July  August THB May June July August
Mean  7.7422 7.7439 7.7450 7.7437 Mean 25.8336 24.5466 30.0950  32.2345
Std 0.0038 0.0024 0.0029 0.0025 Std 0.2761 0.6592 1.4849 1.0602
Kurtosis —1.3658 —0.6572 —1.1694 0.0765 Kurtosis  0.9915  0.3408 3.2011 —1.0948
Skew  0.0107 0.4250 -0.0161 0.7313 Skew -1.1526 -0.2749 -1.2732 0.4413
No. of 1,534 1,347 1,862 1,979 No. of 1,828 1,433 1,807 1,884
trans trans
IDR May June July  August TWD May June July August
Mean 2436.08 2429.54 2516.46 2750.28 Mean 27.7755 27.8808 28.0055 28.7137
Std 6.421 1.543 77.958 136.647 Std 0.0685  0.0336 0.2038 0.0645
Kurtosis —1.3170 —1.0468 —1.7310 —1.0332 Kurtosis —0.8579 -0.4860 3.2741 3.4474
Skew —0.3258 —0.0011 0.1473 0.5100 Skew 0.1035 -0.5162 2.1013 1.2671
No. of 1,842 1,827 3,417 3,643 No. of 1,627 1,293 1,629 1,036
trans trans
MYR May June July  August
Mean 2.5071 25162 2.5710 2.7523
Std 0.0079 0.0042 0.0553 0.0826
Kurtosis 0.9704 -0.2647 —1.6296 —-0.3709
Skew —0.6024 0.1373 0.0548 —0.0271
No. of 1,637 1,346 1,568 1,525
trans

Figure 8.15 The first four monthly moments of the distributions of the minute-by-minute
quotations of nine currency rates in May—August 1997 (USD is the numéraire).

with 0.43 < H < 0.47. Finally, the Indonesian rupiah consisted only of a few
singularities with H = 0.06 in May, but showed almost GBM in the following
three months with 0.46 < H < 0.48.

This suggests that, although the FBM model is an improvement over the GBM
model, even the FBM may not be the best model for FX pricing, since the FBM
is a model with a homogeneous H-exponent (or uniform Lipschitz-ag), while
the empirical results in Table 8.1 suggest that the H-exponent changes, almost
imperceptibly, over time. The increases in kurtosis (= condensation periods), as
measured by the monthly 1/Hj; kurtosis exponent, are followed by decreases in
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Table 8.4 Values of homogeneous Hurst and Zolotarev exponents for nine currencies (eight
Asian currencies and one European) in May—August 1997

Month: May Jun Jul Aug

FX/USD: H D az H D az H D azy H D az

DEM 028 172 3.52 027 173 372 027 173 3.71 036 1.64 2.78

JPY 034 166 296 025 1.75 4.03 024 1.76 423 030 1.70 3.37
HKD 045 155 221 046 154 219 047 153 211 046 154 2.16
IDR 0.06 194 16.25 048 1.52 210 046 154 2.17 047 153 215
MYR 045 155 220 042 158 238 046 154 219 048 1.52 2.07
PHP 052 148 193 043 1.57 232 051 149 197 049 1.51 2.03
SGD 044 156 230 046 154 217 045 155 221 042 1.58 237
THB 036 1.64 277 039 1.61 256 047 153 2.13 043 1.57 234

TWD 055 145 181 055 145 1.82 0.67 133 149 049 151 2.06

kurtosis (= rarefaction periods). It appears that most of the condensation occurred
in the months of June and July 1997, i.e., in the pre-currency break period. But
the Indonesian rupiah experienced very high kurtosis in May, followed by a sharp
drop in the subsequent months.

In conclusion, FX rates are almost homogeneous, multifractal random pro-
cesses, of which the density distributions change kurtosis usually almost imper-
ceptibly over time, but, occasionally, rather drastically. Therefore, a complete,
non-uniform, time-dependent, local financial risk or singularity spectra should be
computed.

8.4 Multiresolution analysis of multifractal price series

8.4.1 Local risk analysis of financial pricing processes

As we discussed earlier, singularities of any kind can be detected by following the
decay of the maximum local Wavelet Transform amplitudes in a scalogram across
all scales.!? The data-microscopic zooming capability of the Wavelet Transform
not only locates isolated events, but also characterizes more complex multifractal
time series, having non-isolated singularities (Mallat and Hwang, 1992; Gonnet
and Torrésani, 1994). Therefore, it is ideal, not only for the detection of unique
discontinuities, but also for the analysis of the very antipersistent behavior of step
functions, such as the speculative market prices driven by tick-by-tick innovations
of FX markets, scaling of individual or bank loan credit risk, and other financial
market scaling phenomena. In recent years, Mandelbrot has been leading a broad
search for multifractals, showing that they occur in almost every corner of nature
and science, e.g., in signal processing, hydrology, climatology and high-frequency
financial pricing processes (Mandelbrot, 1997, 1999, 2002).

In Chapter 4, we discussed the natural occurrence of the scaling phenomena of
fractionally differenced time series of investment rates of return. Scaling one part
of a multifractal process produces a series that is statistically similar to the whole.



266 Financial risk measurement

This self-similarity appears already in the Wavelet Transform, which modifies the
analyzing scale a. Thus we can use the Wavelet Transform to take advantage of the
multifractal self-similarities to compute the distribution of the very large number
of singularities. This singularity spectrum of the high-frequency financial time
series is then used to analyze the local risk properties of these multifractal pricing
processes. One does no longer have to assume a homogeneous, monofractal FBM
model for speculative market prices. From the global Wavelet Transform decay
visualized in the scalogram, one can now measure the singularity spectrum of
multifractal financial rates of return series.!*

8.4.2 Fractal (capacity) dimensions

We will now introduce the concept of fractal dimension, which is a simplifica-
tion of the well-known Hausdorff dimension, so that it is easier to compute, as
follows. !

Definition 340 Let S be a bounded set of points in n-dimensional real space R".
We count the minimum number N (a) of balls of radius a to cover the set S. If S is
a set of dimensions D with a finite length (D = 1), surface (D = 2), or volume
(D = 3), then it is easy to see that

N(a) >
a) ~ —
aD
~a P (8.53)
so that
log N(a) ~ —Dloga (8.54)

Then the Hausdorff dimension is

1
D= fim 2&8N@
a—0 loga

log N
— lim (08N @ (8.55)
a—0 loga~!

Remark 341 When D = integer, this Hausdorff dimension is the classical
Euclidean dimension. But D may be a fraction.

The Hausdorff dimension D is the exponent that keeps the product N (a)a” finite
and nonzero as the radius or scale a — 0. If D is altered even by an infinitesimal
amount, this product will diverge either to 0 or to co. For a continuous curve
D = 1 and the number N of covering line segments is proportional to a~!. For a
continuous surface D = 2 and the number N of covering disks is proportional to
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a~2. For a continuous volume D = 3 and the number N of balls is proportional

to a 3.

Definition 342  The fractal (or capacity) Hausdorff dimension D of S generalizes
this definition and is defined by

log N,
D(ay) = — lim inf 2&New(@
a—0 loga
log N,
— 1im inf 108 N @ (8.56)
a—0 loga~!
Or, equivalently, by
Ny, (a) ~ a~ P (8.57)

Example 343 For the nth generation in the construction of the famous fractal
Koch snowflake, produced by Helge von Koch in 1904, choosing the measurement
length a = ao/3", the number of pieces N ~ 4" (Figure 8.16). Thus the fractal
Hausdorff dimension of the Koch snowflake is D = log4/log3 = 1.2619. This is
between D = 1 and D = 2, because an infinitely long curve is, in some metric
sense, more than just a 1-dimensional object, but less than a 2-dimensional area,
and the curve does not cover a region in a plane.

The concept of one fractal can now be expanded to a set of fractals, of which
we can measure the fractal dimension.

(@) (b)

(c) (d)

Figure 8.16 Development of Koch’s snowflake with Hausdorff dimension D =
1.2619.
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Definition 344 Let Sy, be the set of all (time) points t € R where the pointwise
Lipschitz regularity of the time series x(t) is equal to ap. The multifractal (or
singularity) spectrum D(c,) of x(t) is the fractal dimension of this set Sy,. The
support of D(ay) is the set of oy, such that S, is not empty.

Remark 345 The multifractal spectrum was originally introduced by Parisi and
Frisch (1985) to analyze the homogeneity of multifractal measures that model the
energy dissipation of turbulent fluids (cf. Chapters 9, 10 and 11). It was then
extended by Arnéodo et al. (1989) to multifractal time series, in particular to a set
of FBMs. They were also the first to call Mallat’s (1989) MRA a “mathematical
microscope” in Bacry et al. (1993).

The fractal dimension is therefore now no longer one number, but consists of a
whole spectrum of dimensions of all the fractals in the set. In fact, this multifractal
spectrum provides the frequency distribution of oy -Lipschitz singularities that
appear at any scale a. We will use the multifractal spectrum to measure all the
dimensions of the set of cash flows in a financial market in Chapter 9. All cash
flows in a financial market have different cyclicities: they originate at different
moments and are discontinued at different maturities or investment horizons 7.

The multifractal or risk spectrum provides us with a tool to analyze the set of
fractal rates of return in a financial market, each separately modeled by FBMs,
and to determine the resulting degree of persistence of such a market! This will
enable us to achieve our goals set out in Chapters 1 and 2: how to measure time and
frequency localized financial market risk. We now have to define homogeneous,
or monofractal, time series and heterogeneous, or multifractal, time series.

Definition 346 The fractal time series x(t) is said to be homogeneous, or
monofractal, if all its singularities have the same Lipschitz exponent aro. This
means that the support of the singularity spectrum D (o) is restricted to one point
{aep0}, which is measured by the homogeneous Hurst exponent: H = o .

Definition 347 The fractal time series x(t) is said to be heterogeneous, or multi-
fractal if not all its singularities have the same Lipschitz exponent ay. This means
that the support of the singularity spectrum D (o) consists of more than one point,
which is identified by more than one Lipschitz o exponent.

FBMs are examples of homogeneous multifractal processes. We demonstrated
that the fractal FX series are probably heterogeneous fractals, ergo they must be
multifractals and that therefore the FBM is not likely to be the empirically correct
model, even though it is a considerably more general model than the classical
GBM. For example, a term structure of interest rates consists of a system of related
FBMs. One cannot compute the pointwise Lipschitz regularity of a multifractal,
because its singularities are not isolated: the finite numerical resolution is not
sufficient to discriminate between them (Hwang and Mallat, 1994). Only very
recently the differentiation between homogeneous and heterogeneous scaling risk
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has become a topic of research in hydrology (Whitcher ef al., 2002). One can,
however, measure the singularity spectrum of multifractals from the local maxima
of Wavelet Transforms, using a global wavelet partition function of Bacry et al.
(1993), as shown in the next section.

8.4.3 Measuring the local financial risk spectrum

The procedure of Mallat (1998, pp. 199-216) and Gongalves et al. (1998) is to com-
pute the complete singularity spectrum of multifractals or local risk spectrum from
the local modulus maxima of the Wavelet Transform discussed earlier, implement-
ing the prescriptions of the theorems in the preceding section, in the following five
cookbook style steps. This research cookbook recipe will be empirically supported
by the case of the 3D turbulent flow in Chapter 11.

Step (1) compute the Wavelet Transform W (7, a) for all translations t and all
dilations a. In other words, compute the scalogram Py (7, a).

Remark 348 In the MRA it is necessary to use a wavelet with enough vanishing
moments to measure all Lipschitz exponents up to o], max.

Step (2) Find the modulus maxima of W (z, a) for each time scale a:

sup |W(z, a)| ~ a0 (8.58)
a
and chain the wavelet maxima across scales into maxima lines.

Remark 349 The largest dyadic scale a = 2/ depends on the number of
available sample points and the distances between the singularities.

As we will see, the FBM generates a very large number of close range singu-
larities and maxima lines. A parabolic interpolation is usually performed between
three successive scales to better localize the maxima lines. Let {7, (a)},ez be the
position of all local maxima of |W (z, a)| at a fixed scale a.

Step (3) Following the example of Frisch and Parisi (1985), compute Gibbs’
(thermodynamic) partition function in wavelet terms, as proposed by Bacry et al.
(1993).16

Definition 350 The partition function is the sum of the modulus maximae raised
to the power of g € R:

Z(q,a) =) sup|W(z,a)|

~ gl t05)g (8.59)



270 Financial risk measurement

The partition function Z(q, a) measures the sum at the power g of all these
wavelet modulus maxima. It measures the scaling of the higher-order moments and
higher-order dependencies of the wavelet resonance coefficients and the singularity
structure of the time series, all in one. This partition function is as always concave,
since moment generating functions are log-convex (cf. Chapter 1).

Definition 351 For each real power exponent q € R, the scaling exponent t(q)
measures the asymptotic decay of the partition function Z(q, a) at fine scales a,
using dyadic logarithms, as follows:

log, Z(q,
£(q) = lim inf 1282249 (8.60)
a—0 10g2 a
This typically means that the partition function is scale-dependent:
Z(q,a) ~a*? (8.61)

Step (4) Compute the decay scaling exponent t(g) as the slope in the following
double-logarithmic plot:

log, Z(q, a) ~ t(q) log, a + C(q) (8.62)

The following important theorem proves that the scaling exponent 7(g) is the
so-called Legendre Transform of the multifractal spectrum D (¢ ) for self-similar
time series and relates the fractal dimension D(«y ) to the order g of the partition
function Z(q, a).

Theorem 352 (Arnéodo, Bacry, Jaffard, Muzy) Let A = [® min, ®L max] De the
support of the multifractal spectrum D(ar). Let  be a wavelet with p vanishing
moments, p > Opmax. If x(t) is a self-similar time series, then we have the
Legendre Transform:

T(g) = ainefA[(aL +0.5)g — D(ap)] (8.63)

Suppose such an oy, exists, then for a given fractal dimension D (o)

at(q)
dq

(ar +0.5) = (8.64)

which is the slope of the plot of the scaling exponent t(q) versus the order g.
Now we need to invert this Legendre Transform to recover the singularity spec-
trum D(cep) for self-similar time series x(¢) by the tenets of following important
proposition.
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Proposition 353

The scaling exponent T(q) is a convex and increasing function of q.
The Legendre Transform is invertible if and only if the multifractal singularity
spectrum D(ay) is convex, in which case

D(xy) = mi

n[(az +0.5)g — t(q)] (8.65)
geR

o  The spectrum D(ay) of a self-similar time series x(t) is convex.

Step (5) Compute this (Legendre) multifractal spectrum D(«y) by plotting all
D(ar) > 0 versus oy, forall 0 < oy < 1 and for all g.

The Legendre Transform transforms the relationship between the order ¢ and
the decay scaling exponent 7 (g) into the relationship between the Lipschitz oy, and
the multifractal spectrum D(c). It proves that the maximum of the multifractal
spectrum is reached at order ¢ = 0:

D(arp) = max D(ayp) = —1(0) (8.66)
apEN

D(apmin) =0 forg — 400 and (8.67)

D(apmax) =0 forg - —oo (8.68)

This becomes clear in Figure 8.17: the mode of the multifractal spectrum D (c¢10)
is the fractal dimension of the Lipschitz exponent 1o most frequently encountered
in the financial time series x (¢). It is the same as the homogeneous Hurst exponent.

Since all other Lipschitz «;, singularities appear over sets of lower dimension, if
0 < aro < 1,then D(wry) is also the fractal dimension of the singularity support of

D(ay)

q>0 ; g<0

q:+oo

q:—oo -

>
%[ min %0 % max oL

Figure 8.17 Schematic convex multifractal singularity spectrum D («,), with various
Gibbs exponent regimes.
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x(t). Forap, < arg the spectrum D(cy) depends on the scaling exponent t(gq) for
q > 0.Foray > aygitdependson t(q) forg < 0. The value oy min represents the
least frequently occurring part of the multifractal and oy, max the most frequently
occurring.

Remark 354 When q = 2, to compute the second-order moments of the wavelet
resonance coefficients of the homogenous FBMs — as in the MRA based on the
DWT of FBMs by Flandrin (1989, 1992) and Kaplan and Kuo (1993) discussed
earlier — the partition function is, indeed, proportional to the variance of the
wavelet resonance coefficients:

Z@2.a) =) _sup|W(r,a)]* ~ E{d} } (8.69)

for the dyadic scale a = 27 and
log, Z(2,a) ~ t(2)log, a + C(2) (8.70)

Several types of dimensions have been defined in the physics literature using
Gibbs’ thermodynamic partition function, like the information dimension and the
correlation dimension, depending on the moment order g.

Definition 355 The information (or first moment) dimension

.. . logy, Z(1,a)
Dinformation = 1im inf & L 4)
a—0 ]0g2 a

(8.71)

The information dimension plays an important role in the analysis of nonlinear
dynamic systems, like the parabolic logistic equation, to be discussed in Chapter 9,
which can produce intermittency and chaotic behavior. This dimension is partic-
ularly used for measuring the loss of information as a chaotic system evolves
over time.

Definition 356 The correlation (or second moment) dimension

. log, Z(2,a)
Dcorrelation = lim inf =2
a—0 ]0g2 a

(8.72)

The correlation dimension indicates how likely it is to find, within the distance
a of a given member of the particular fractal set Sy,, another member (Theiler,
1987). Thus, measuring this likelihood comes down to a simple counting process.
This overcomes some of the problems of computing this correlation dimension
from chaotic time series (Ding et al., 1993; Fraedrich and Wang, 1993). Osborne
and Provenzale (1989) present the correlation dimension of the kind of random
dynamic systems with a power-law spectra we discussed in Chapter 6. We propose
now a further extension of the series of definitions of moment dimensions.
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Definition 357 The skewness (or third moment) dimension

.. log, Z(3,a)
Dgkewness = lim inf 08 £05.4)
a—0 ]0g2 a

(8.73)

The skewness dimension indicates the distortion, bias or skewness of a particular
fractal set Sy, . In all fairness, the multifractal spectra measured thus far appear to
all be symmetric, but precise measurements of this skewness dimension have not
yet been executed. It is easily imaginable that turbulence is an asymmetric fractal
process.

Definition 358 The kurtosis (or fourth moment) dimension

1 Z(4,
Drureosis = lim inf ng—(a) (8.74)
a—0 log, a

The kurtosis dimension indicates the curvature of a particular fractal set S,
and thus the relative concentration or density of particular singularities. Infinitely
many more moment dimensions immediately follow (cf. Chapter 1).

8.4.4 Computing local risk spectra: a few examples

We’ll now provide three examples of the computations of singularity or local risk
spectra for homogeneous or monofractal, and for heterogeneous or multifractal
singular time series. The first theoretical example computes a singularity spec-
trum for the abstract Devil’s staircase. This is followed by the computation of
the spectrum of a simulated FBM. We conclude with an even more complicated
example with a time-warped GBM, using the increments of one realization of a
binomial cascade with a time warp. A time-warped GBM is a potential model for
high frequency tick-by-tick financial data, which have notoriously heterogeneous
time differences (Dacorogna et al., 2001).

Example 359 Figure 8.18 shows in panel (a) a Devil’s staircase with p; = 0.4
and p» = 1 — p1 = 0.6, which provides us with 4,000 data points x (t). The devil’s
staircase is an example of an intermittent function: long periods of no change
are interrupted by short periods of steep ascent. Panel (b) shows the partition
function log, Z(q, a) for several values of order q, from which we derive the
scaling exponent t(q) = lim,—,0(log, Z(q, a)/ log, a) plotted against q in panel
(c) by measuring the slope of a line of log, Z(q, a) versus log, a for each order
q. For example, for ¢ = 10.00 we find t(q) = [—20 — (—60)]/(10 — 2) = 5.0.
In panel (d) the theoretical singularity spectrum D(ay) is shown with a solid line.
The + signs are the spectrum values computed numerically with the Legendre
Transform of T(q). The singularity spectrum reaches its maximum max D(«y) =
0.62 atayp = 0.65 for g = 0. The spectrum measures the dimensions of the fractal
sets of various Lipschitz oy, that measure the degree of irregularity, randomness,



274  Financial risk measurement

(a)

1,000 2,000 3,000 4,000

© 5 : : : ()
+++++++
++++++
++++++
4
o +"‘++++ T
+++++
+*++
o
o
+“‘++
—5F o 4
o
o
+
e+
—-10 L L L
-10 -5 0 5 10

Thermodynamic partition function

g=-10.00

0.6
0.5+
0.4+
0.3}
0.2t
0.1t

0

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8.18 Computation of singularity spectrum of (a) the devil’s staircase with p; = 0.4
and p, = 0.6; (b) partition function Z (g, a) for various values of g; (c) scaling
exponent t(q); (d) theoretical spectrum D (o) represented by a solid line.
The + signs form the empirical spectrum values computed with the Legendre

transform of 7(g).

or local risk of the set of many fractals constituting the Devil’s staircase (Source:
Mallat, 1998, p. 210).

Example 360 Figure 8.19 displays in panel (a) one realization of 8,100 data
points of a FBM x(t) with a homogeneous Hurst exponent H = 0.7. Panel (b)
provides the scalogram W (t, a) based on the CWT with Gdbor’s Gaussian wavelet
Y basis. Panel (c) shows the corresponding local modulus maxima |W (t, a)| from
which the partition function Z(q,a) ~ a9 is computed. Panel (d) gives the
scaling exponent t(q). The maximum of the multifractal spectrum is reached at

q =0, when
D(aro) = max D(ayr)
= —7(0)
=1

(8.75)
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Figure 8.19 Wavelet MRA of Fractional Brownian Motion: (a) One realization of a theo-
retical FBM with a Hurst exponent H = 0.7. (b) Scalogram with CWT; (c)
Modulus Maxima of the CWT. (d) Scaling exponent t(g) versus order ¢; (e)
Resulting singularity spectrum D(cey ) over its support [&¢f min, &L max]-

Recall that FBM are fractals (= self-similar time series) with uniform Lipschitz
or Hurst exponents apg = H. The theoretical singularity spectrum D(oy) has
thus a support consisting of one point aro = dt(q)/dq = {0.7} with D(0.7) = 1.
Using the Theorem of Arnéodo, Bacry, Jaffard and Muzy, the empirical singularity
spectrum in panel (e) is computed with the Legendre Transform of the t(q) in panel
(d). We find that its empirical support is A = [0.65, 0.72]. i.e., it is not a single
point, as we theoretically expect from the FBM model, but it is a very narrow
finite range. According to Mallat (1998, p. 213) the probable cause of this finite
estimation error is that the computations are performed on a time series x(t) of
finite length. Thus, we find a frequency distribution of Lipschitz o, because of the
finiteness of the data set (“sampling” ), and not because of a non-unique theoretical
reality. A lengthening of the data set would narrow the frequency distribution of
the ap. This statistical conclusion was also reached by Kalman (1994) using
non-technical mathematical arguments.
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Figure 8.20 Time-warped Geometric Brownian Motion: (a) increments of one real-
ization of a binomial cascade Az(27/¢,2/(t + 1)),t =0,...,277 — 1;
realization of a binomial cascade z(2/¢); one realization of GBM warped
with the realization of (b), x(2/k) = x12(z 271)).

Example 361 Figure 8.20 shows in panel (a) the increments of one realization
of the binomial cascade

z(a(t + 1)) — z(at) = z(2/ (¢t + 1)) — z(2/1)

= Az([27t,27(t + D)) (8.76)

witht =0,...,277 — 1. Panel (b) shows the realization of the binomial cascade
z(at) = z(21) (8.77)
witht = 0,...,27J — 1. This binomial cascade produces the warped time, i.e.,

the irregularly spaced time intervals for the GBM. Panel (c) shows one realization
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of a GBM time-warped with the realization of (b),

x(at) = x(271)

= x12(z(2/1)) (8.78)

witht =0,...,277 — 1 (Argoul et al., 1989; Gongalves et al., 1998).

Example 362 Figure 8.21 provides the multifractal analysis of the time-warped
GBM displayed in Figure 8.20. The dot — dashed line is the theoretical multifractal
spectrum of the warp time z displayed in Figure 8.20(b). The dashed line is the
theoretical multifractal process of the time-warped GBM itself, which is displayed
in Figure 8.20(c). The solid line is the wavelet-based computation of the multi-
fractal spectrum of the simulated time-warped GBM x(t). The singularity spectra
of warp time z and the warped process x are related by

ar

Dy(ar) = D: (5 ) (8.79)

where H is the Hurst exponent. Notice that the mode o1 of this singularity spec-
trum of time-warped GBM, oo > 0.5, i.e., above the Lipschitz measure for a
pure GBM. Thus, a time-warped GBM is a potential candidate for empirical stock
market returns which exhibit a homogeneous Lipschitz aro =~ 0.62, although
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Figure 8.21 Multifractal spectrum analysis of time-warped GBM: ---: theoretical
multifractal spectrum of warp time z; - - -: theoretical multifractal spec-
trum of GBM; —: wavelet-based estimate of multifractal spectrum of a

time-warped GBM.
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most measured homogeneous Hurst exponents of stock markets are slightly larger,
H =~ 0.67. Again, this is a current field of research, where the differences between
the empirical measurement results are not yet settled.

As this example demonstrates, time-warping is an important modeling concept
for financial time series, since most financial time series are tick-by-tick data with
random arrival times (= random time intervals), similar to the random arrival
times of the heartbeat of a healthy human patient analyzed earlier in Section 3.1.
In other words, one should be able to analyze the arrhythmias of the financial
markets for diagnostic purposes to determine how efficiently a market actually
operates! Finally, we can identify the degree of persistence and thus the degree of
efficiency of a financial market by objective measurement and analysis. Financial
market efficiency is no longer a matter of black noise (no efficiency) or white noise
(efficiency). There are different colors of market noise, or degrees of efficiency.

8.4.5 Multifractals in financial turbulence modeling

Multifractals, or non-homogeneous series of singularities, are currently used in
describing a wide range of natural phenomena, from the distributions of people or
minerals on earth to energy dissipation in fluid turbulence, or to fractal computer
networks (Schroeder, 1991, pp. 187-210). If we divide the world into regions,
each characterized by a different level of oil resources, it happens that each of
these regions is nearly a fractal set. So the pattern of global oil distribution is not
itself a fractal set, but a novel combination of a multitude of fractal sets. It’s called
a multifractal distribution, or multifractal measure. Figure 8.22 provides a typical
multifractal time series, similar to what we observed in Figure 8.20(a). This trace
is modeling the turbulence in a laboratory experiment using a multifractal model.
It shows the variability of risk (energy) dissipation in a turbulent fluid. But it brings
to mind the graphs representing the variability of the variance of price increments,

Figure 8.22 Mandelbrot’s early multifractal turbulence trace modeling in a laboratory
experiment.
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Figure 8.23 Multifractal spectrum of physical (windtunnel generated) turbulence, i.e.,
energy dissipation in the time domain measured at the atmospheric surface
layer at high Reynolds number.

thus revealing a deep link between the uses of the fractal modeling in the study
of physical turbulence and of pricing in the financial markets (Mandelbrot, 1972,
1997). This link we’ll discuss in greater detail in Part III of this book.

Figure 8.23 shows the empirically measured multifractal spectrum for the
energy dissipation in fully developed physical turbulence along a 1-dimensional
straight-line path (= Gagne signal) through such turbulent flow (Meneveau and
Sreenivasan, 1987a,b, 1991). The turbulent regions form the support

A = [ap min, &L max]
=[0.51, 1.74] (8.80)

of the multifractal, which has perfectly deterministic fractal subsets. The exper-
imental points 0, 0 and + of the spectrum D(«y) are from different physical
realizations of turbulence (such as atmospheric turbulence, boundary-layer tur-
bulence, and turbulence in the wake behind a circular cylinder or wire grid). Note
that these empirical measurements are well matched by a single D («y ) curve. The
fact that the spectrum D («y ) achieves a maximum around unity, near ¢« , is indica-
tive that there is a nonsingular («;, = 1) background of space-filling (D () = 1)
dissipation, which confirms Kolmogorov’s 1941 turbulence theory, to be discussed
in Chapter 11. It appears that financial turbulence may be well modeled by such
multifractal processes.

Many strange attractors of nonlinear dynamic systems are also clearly multi-
fractals, as we will see in Chapter 9. As we will argue in Chapter 11, the term
structure of rates of return on investment cash flows of various maturities has
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a similar multifractal distribution as the global geographic distribution of oil, or
as physical turbulence in nonlaminar fluids. Recall from our earlier study of the
antipersistence of foreign exchange rates in Section 3.2, that some currency mar-
kets, e.g., of the DEM/USD rate and the Yen/US dollar rate, measure levels of
antipersistence that physicists have shown to harbor potential turbulence.

For a comparison with the stock markets and futures markets, review the
following example.

Example 363 It appears that the correlation between the S&P500 spot and
futures markets in Figure 8.24 shows intermittency which is similar to that of tur-
bulence in Figure 8.22 and of the increments of one realization of the binomial
cascade in Figure 8.20(a). The thin line in Figure 8.24 shows the empirical cor-
relation between the S&P500 spot market in New York and the S&P500 futures
market in Chicago. The bold line shows the moving average correlation. Although
most of the time the bivariate correlation psy between these two markets has
values 0.9 < pgr < 1.0, it clearly is not perfect correlation. In fact, quite
frequently during these nine years the correlation has had much lower values
0.8 < psr < 0.7. Figure 8.24 shows that in the period 1982—1991 there were
at least eleven instances when psy < 0.7, when the coefficient of determina-
tion pszf < 0.5. The almost complete breakdown of the trading link between the
spot and futures markets on Black Monday, October 19, 1987 — an instance of
financial crisis — when the correlation was psy < 0.3, is easily detected (Los,
2001, p. 225).
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Figure 8.24 Turbulent correlation between the S&P500 spot and futures market, 1982—
1991. The correlation between these two financial markets often breaks down,
despite the fact that they are interlinked by arbitrage. Notice the complete lack
of correlation on Black Monday, November 19, 1987.
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8.5 Software

The computations of the following Exercises can be executed by using the
MATLAB® Wavelet Toolbox, available from The MathWorks, Inc., 24 Prime Park
Way Natick, MA 01760-1500, USA. Tel (508) 647-7000; Fax (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

A complete wavelet analysis toolkit called Wavelab can be obtained at no cost
from: http://playfair.stanford. EDU:80/"wavelab/.

This Wavelab is a very complete set of MATLAB® scripts that implement both
the basic wavelet and related transforms and more advanced techniques. There is
full documentation, a set of tutorials, and a section of “Toons,” short for cartoons.
These Toon scripts reproduce from scratch the figures in many papers of Stanford’s
wavelet research group consisting of Dave Donoho, Ian Johnstone et al., describing
the theoretical research underlying the algorithms in Wavelab. By studying these
scripts and by experimenting with the data, the reader can learn all the details of the
process that led to each figure in these papers. This forms part of the new discipline
of Reproducible Research, i.e., the idea to provide the reader full access to all
details (data, equations, code, etc.) needed to completely reproduce all the results
normally presented only in advertising summary form in scientific publications.
The pioneer of Reproducible Research is Jon Claerbout of Stanford University’s
Geophysics Department (Claerbout, 1994; Buckheit and Donoho, 1995).

In addition, one can use Benoit 1.3: Fractal System Analysis (for Win-
dows 95/98 or Windows NT), Trusoft International Inc., 204 37th Ave.
N #133, St Petersburg, FL 33704. Tel.: (813) 925-8131; Fax: (813) 925-
8141; sales @trusoft-international.com. See http://www.trusoft-international.com
for details. This Benoit software enables you to measure the fractal dimension
and/or Holder—Hurst exponent of your data sets using your choice of method(s)
for analysis of self-affine traces of speculative prices. However, astonishingly, the
wavelet routine in Benoit 1.3 is incorrect, although the other routines to compute
the Hurst exponent are correct.

8.6 Exercises

Exercise 364 Compute the Hurst exponent and the fractal dimension of the
S&P500 data of Appendix B introduced in the Exercises of Chapter 1, using the
Power Spectrum analysis of Chapter 6.

Exercise 365 Repeat the Exercise of question 1, using the Wavelet MRA analysis
with Haar wavelets of Chapter 7 or with Morlet wavelets of Chapter 8. Follow the
Flandrin (1992) and Kaplan and Kuo (1993) procedure. Notice that the Benoit
software uses the detail wavelet resonance coefficients d; , differently than the
Flandrin (1992) and Kaplan and Kuo (1993) approach presented in this chapter.
The Benoit software takes an average over the n translations of the successive ratios
of the standard deviations of the wavelet detail coefficients d; ,, as the description
of Benoit’s wavelet method indicates. This Benoit approach is incorrect, in com-
parison to the one explained in this chapter for computing homogeneous Hurst
exponents, for which we used the MATLAB® Wavelet Toolboxes! You may want to
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use the quick and easy internet based interactive computation facility provided by
Torrence and Compo (1998): http://ion.researchsystems.com/IONScript/wavelet/

Exercise 366  Study and execute MATLAB® Exercises — Chapter 11, Denoising
in 1D, Strang and Nguyen (1997), p. 474.

Exercise 367 Study and execute MATLAB® Exercises — Chapter 11, Disconti-
nuity Detection, Strang and Nguyen (1997), p. 474.

Exercise 368 [In this chapter we’ve also discussed the third, and even more
accurate, approach of Mallat and Jaffard, which uses the continuous Gdbor chirp
wavelets of Chapter 7, and which is based on tracing the slopes of the maxima
lines of the d; , coefficients in continuous scalograms (Mallat, 1998, pp. 199-216).
Mallat and Jaffard exploit the local self-affinity of these d; , coefficients. This
new approach can compute non-homogeneous, multifractal Hurst exponents, as
explained at the end of this chapter. If you want to apply this approach to, say,
the detection and, perhaps, even prediction of sharp financial markets drawdowns
or catastrophes, using a set of high-frequency stock market, foreign exchange
or derivatives data, read the article by Zbigniew Struzik (2001) for some excel-
lent suggestions. Struzik computes the instantaneous Holder—Hurst exponent or
Lipschitz-ay, for all times, in a similar fashion as we have done that for various
values of the chaos controlling parameter k of the parabolic logistic equation in
Chapter 9. He also computes a complete multifractal spectrum for a stock mar-
ket. For this procedure you may want to use Scilab 6.0 for Windows, produced by
LN.R.LA in France (Email: scilab@inria.fr).

Notes

1 I propose this Latin phrase as a contemporary alternative — natural market pricing pro-
cesses are essentially discontinuous — for the phrase written by the Victorian — Edwardian
British economist Alfred Marshall (1842-1924) in his book Principles of Economics
(1890), which integrated the modern and classical economic theory of his time: “Natura
Saltus Non Facit” (= “Nature Does Not Jump”). By this phrase, Marshall erroneously
asserted that market pricing processes are continuously differentiable, although they
empirically consist of many singularities and are not continuously differentiable.

2 Financial turbulence must be sharply distinguished from financial catastrophes or dis-
continuities. Financial turbulence occurs in antipersistent financial markets, when the
Hurst exponent H = 0.3. In contrast, financial catastrophes occur mostly in persistent
financial markets, when 0.6 < H < 1.0.

3 We’ve already met the stability or characteristic exponent oz in Chapters 3 and 4, based
on the Zolotarev parametrization of stable distributions S(«z, B, v, 8; k). However,
the Lipschitz regularity exponent oy of the current chapter is exactly the inverse of
Zolotarev’s stability oz of Chapters 3 and 4: o), = 1/oz. We have distinguished both
by a proper subscript, in contrast to the literature, where such identifying subscripts are
lacking, thereby causing confusion between oz and oy .

4 The mathematical definition of irregularity corresponds with the informal definition of
irregularity or “randomness” discussed in Chapter 1, since the irregularity is the dif-
ference between the empirical data and the regular approximating polynomial. Cf. also
Chapter 7, where we looked at low- and high-pass filters.

5 Rudolf Lipschitz (1832-1903) studied at the universities of Konigsberg and Berlin,
where he received his doctorate in 1853. In 1862 he became an extraordinary professor
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at Breslau, and in 1864 Lipschitz was nominated for an ordinary professorship at the
University of Bonn in 1864, where he spent the rest of his very fruitful career. He
investigated the number theory, Bessel functions, Fourier series, ordinary and partial
differential equations, analytical mechanics, potential theory and quadratic differential
forms (which can lead to chaos). Lipschitz’s work on the Hamilton — Jacobi method
for integrating the equations of motion of a general dynamic system led to impor-
tant applications in celestial mechanics. He is most remembered for the “Lipschitz
condition,” an inequality that guarantees a unique solution to the differential equation
ay/dt = f(x,y).

Mallat (1998) provides the proofs for this theorem and for the following theorems.

In Chapter 4, we encountered slowly decaying functions, i.e., the opposite of fast
decaying functions. In Chapter 7 we discussed the vanishing moments condition of
properly behaving wavelets.

Wavelet software for these computations was provided by Christopher Torrence and
Gilbert P. Compo of the Program in Atmospheric and Oceanic Sciences, University
of Colorado, Boulder, Colorado (Torrence and Compo, 1998) and is available on the
internet at the URL: http://ion.researchsystems.com/IONScript/wavelet/

Due to the extended tails of the Gaussian envelop, it is not possible to construct a
truly orthogonal set or MRA for the Morlet wavelet. There remains some redundancy
or inefficiency in the analysis. However, for other wavelets, such as the Daubechies
wavelets, it is possible to construct an exactly orthogonal set and thus en efficient, i.e.,
non-redundant or efficient MRA.

The monochromatic light green strip at the 512-day scale is the same artificial sampling
effect as before.

For all foreign exchange rates the US dollar is the numéraire.

The US dollar is again the numéraire. The fractal dimension D = 2 — H; Zolotarev’s
stability exponent oz = 1/, the inverse of the Lipschitz irregularity exponent ¢z, as
measured by the homogeneous Hurst exponent.

Financial discontinuities, or catastrophes, are a particular kind of singularities and
they can be properly identified by measuring their unique pointwise Lipschitz-oy
(Struzik, 2001).

Why would such multifractality exist? We speculate at this moment that it is because
the yield curves in the various countries are segmented: each maturity spectrum has its
own characteristic trading process that differs from the trading processes in neighboring
maturity segments.

Felix Hausdorff (1868—1942) graduated from Leipzig in 1891 where he taught until
1910 when he went to Bonn. There he worked until 1935 when, because he was a Jew,
he was forced to retire by the Nazi regime. In 1942, when he was at the point of being
sent to a concentration camp, together with his wife and his wife’s sister, he committed
suicide. Hausdorff introduced the concept of a partially ordered set. He proved results
on the cardinality of Borel sets in 1916. Building on work by Fréchet and others, he
created a theory of topological and metric spaces (a term he invented) with Grundziige
der Mengenlehre (Foundations of Set Theory), 1914. In 1919 he introduced the notion
of the Hausdorff dimension, which is a real number lying between the topological
dimensions of Euclidean objects. He also introduced the Hausdorff measure.

The original partition function was an analytical tool invented by the theoretical physi-
cist and engineer J. Willard Gibbs (1839-1903), who was an American mathematician
best-known for the distorting Gibbs effect seen in the Fourier Analysis of a discontin-
uous function (cf. Chapter 5, Figure 5.1). In 1854, he entered Yale College, winning
prizes for excellence in Latin and Mathematics. At Yale, Gibbs did geometrical research
in engineering, for which in 1863 he was awarded the first doctorate of engineering to be
conferred in the United States. After a three-year-study sojourn in Europe, in 1871, he
was appointed professor of mathematical physics at Yale, surprisingly, without any pub-
lications, based only on his lectures. It was not until 1873 that he published his first works
Graphical Methods in the Thermodynamics of Fluids and A Method of Geometrical
Representation of the Thermodynamic Properties of Substances by Means of Surfaces.
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In 1876 Gibbs published his most famous work On the Equilibrium of Heterogeneous
Substances. Using the vector methods of Grassmann, Gibbs produced an analytical
system much more easily applied to physics than the non-vector system of Hamilton.
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Term structure dynamics






9 Chaos — nonunique equilibria
processes

9.1 Introduction

Chaos theory, a modern theory development in mathematics and science, provides
a framework for understanding irregular, intermittent and turbulent fluctuations
(Gleick, 1987; Lorenz, 2001). Chaotic systems are found in many fields of science
and engineering (Hall, 1991; Prigogine, 1997). The study of their dynamics is
an essential part of the burgeoning science of complexity (Nicolis and Prigogine,
1998). Complexity science researches the behavior of nonlinear dynamic pro-
cesses and has now reached advanced financial time series analysis, but mostly in
academic circles (Parker and Chua, 1987; Savit, 1988; Abarnel, 1994; Patterson
and Ashley, 2000); and, in particular after the stock market crash of October 19,
1987, in the form of a search for chaos in the financial markets (Hsieh, 1991, 1993;
Urbach, 2000). However, the initial assessment by these analysts was clearly mis-
directed, since the stock market crash of October 19, 1987 was a discontinuity
occurring in a persistent financial market, i.e., a clear example of market failure
or inefficiency. In contrast, turbulence is a phenomenon that can only occur in
antipersistent financial markets, i.e., in hyper-efficient markets like the foreign
exchange (FX) markets we discussed in Chapter 8, and which we will continue to
discuss in Chapter 11, when we examine the quantitative modeling and simulation
of turbulence in FX markets.

Historically, financial economics has been cast in terms of linearized Newtonian
physics, i.e., in the form of simple linear price or volatility diffusion equations.
However, many phenomena in financial economics are complex, nonlinear, self-
organizing, adaptive, feedback processes. An example is financial turbulence,
which we currently conjecture to be a process to minimize friction between cash
flows with different degrees of liquidity, with different investment horizons, or
with different trading speeds, resulting in different degrees of persistence (Peters,
1994, pp. 39-64). Moreover, if an investment portfolio contains options as well as
stocks, not only is the sum of lognormally distributed stock prices not lognormal,
but the option price distribution is also complicated and the portfolio’s rates of
return form a nonlinear process. Understanding these nonlinear pricing processes
is of importance to portfolio management, dynamic asset valuation, derivative
pricing, hedging and trading strategies, asset allocation, risk management and the
development of market neutral strategies (cf. MacDonald, 2002, pp. 763-770).
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Nonlinear dynamic processes are not new to financial economists. Mandelbrot
(1963) found that speculative market prices followed a fractional differentiation
process and introduced the Fractional Brownian Motion (FBM) to describe these
processes, as we discussed in Chapter 4 (Mandelbrot and Van Ness, 1968). More
than 35 years later and using an econometric misspecification approach, Lo and
MacKinlay (1999) came to the same conclusion. Moreover, nonlinear market
dynamics had already been detected in high frequency, intraday trading data
by Miiller et al. (1990). Their conclusion was recently confirmed with differ-
ent data sets and the more sophisticated signal processing technique of wavelet
Multiresolution Analysis (MRA) by Karuppiah and Los (2000), as we discussed
in Chapter 8.

Why should the study of nonlinear dynamic systems be of interest to financial
economics? The simple answer is that it offers a differentiated perspective on
the predictability in the financial markets (Franses and van Dijk, 2000). This is
clearly recognized, for example, by Richard Urbach (2000), who, with a PhD in
Mathematical Statistics from Columbia University, co-manages a $110 million
investment fund at Panther Capital Management. Urbach has been impressed by
the work of physicists on turbulence, in particular by Pawelzik and Shuster (1991).
Financial processes can be differentiated according to their degree of predictabil-
ity, as discussed by Edgar Peters, the Chief Investment Officer and Co-Chair of
the Investment Committee of PanAgora Asset management in Boston, which man-
ages $13+ billion in assets for pension plans, endowments, foundations, unions
and financial service providers around the world. Peters discerns four cases of
predictability (Peters, 1999, p. 164), as in Table 9.1.

The current financial-economic models of speculative market pricing processes
are often linear or linearized, but most such models cannot differentiate between
the various degrees of short- and long-term predictability. Linear models have high
predictability in the long term. In order to identify financial-economic models that
differentiate between the short- and long-term predictability of pricing processes,
one needs to introduce nonlinearity or complexity.

Deterministic linear dynamic systems show high predictability, in the long term,
deterministic nonlinear dynamic systems show high predictability in the short term,
but low predictability in the long term. Random nonlinear systems, in general,
show low predictability, both in the short and the long term. In contrast, complex
systems show low short-term, but high long-term predictability, which is attractive
to long-term institutional investors. '

Table 9.1 Levels of short- and long-term predictability

Short term  Long term

Low High

High Nonlinear dynamic Linear dynamic
Low Nonlinear random dynamic ~ Complex dynamic




Chaos — nonunique equilibria processes 291

One particular research question motivating this book is the following. Since
we find that financial market pricing processes contain feedback and are nonlinear,
do they have high short-term and low long-term predictability, or are they com-
plex, with low short-term, but high long-term predictability? For example, stock
market pricing processes appear to have some kind of short-term predictability,
or persistence, which is exploited by technical traders, but they are often unpre-
dictable in the longer term, to the dismay of fundamental traders and investors
(Savit, 1988). In addition, stock market return series show severe discontinuities,
like the US stock market crises in 1929, 1987 and, possibly, in 2002, attesting to
their persistence. The same is true for bond market returns, which show sometimes
abrupt discontinuities, like the defaulting Russian bond market did in 1998, when
it triggered, the debacle of the Long-Term Capital Management (LTCM) company,
by severely distressing the German bond market. LTCM was heavily invested in
German bonds, issued by German banks, which were heavily invested in Russian
bonds.

On the other hand, FX pricing processes are unpredictable, or antipersistent, in
the short term, but they tend to show some kind of global predictability in the longer
term. For example, they appear to be rather resilient to exogenous shocks, like the
European Monetary System (EMS) break in 1993, or the Thai baht break on July 2,
1997, or to any other drastic revaluation of a pegged or currency-board-controlled
currency like the Argentinian Peso in the spring of 2002. FX processes do not often
show sharp discontinuities. In fact, the Thai baht break in 1997 was exceptional.
It was probably induced by malfunctioning fundamental asset markets, e.g., of
commercial bank loans, in the Southeast Asian region, following the confidence
reducing handover of Hong Kong on July 1, 1997 by a colonial capitalist United
Kingdom to a communist mainland China. Perhaps, the best characterization of
FX processes is that the innovations in FX rates show intermittency: periods of
stability and persistence are interrupted by periods of instability and chaos.

Remark 369 As the evidence in Chapter 1 shows, the rates of investment return:
(1) are highly complex with structures at all frequency and time scales; (2) are
mostly unpredictable in their detailed behavior; (3) have some properties, like their
statistical distributions, that are quite reproducible and which can be captured in
histograms and which can often be often summarized in a few moment statistics.

In this chapter, we’ll simulate and analyze the properties of a particular com-
plex, nonlinear (parabolic) feedback process in an effort to understand these various
predictability regimes. Parabolic (= quadratic) deterministic processes exhibit a
whole range of behaviors, determined by the values of their main scaling param-
eter(s). We run simulation experiments with the so-called logistic parabola, since
that is a simple discrete version of the celebrated Navier—Stokes partial differ-
entiation equation, which can describe (physical) turbulence. In particular, we’ll
observe four types of behavioral regimes generated by this model, depending
on the value of its scaling parameter: (1) regimes of unique dynamic equilibria;
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(2) regimes of complex multiple dynamic equilibria; (3) regimes of intermittency,
i.e., a mixture of multiple dynamic equilibria and chaos and (4) complete chaos.

Visualization of the distributions of intermittency and of complete chaos, i.e.,
of deterministically random behavior, and particularly the visualization of the
chaotic attractor, produces several jarring surprises for conventional-probability
and linearity-based statistics (Parker and Chua, 1987). Such experiments with the
simple logistic parabola convincingly demonstrate that complex behavior does
not necessitate the formulation of complex laws. Very simple nonlinear laws, like
the Black—Scholes diffusion equation of a derivatives price, can produce very
complex and unpredictable behavior based on a simple iterative feedback process.

One of the goals of empirical financial market research has been to identify
the strange attractors present in chaotic time series and to measure their dimen-
sions, which has not been an easy task. The most reliable identification of the
chaotic dimension D had been when the inequality D > 6. For chaotic systems
with 3 < D <6, it has been rather difficult to distinguish between chaotic time
evolution and a purely random process, especially if the underlying determinis-
tic dynamics are unknown. That is why even Mantegna and Stanley (2000, p. 5)
despairingly state: “Hence, from an empirical point of view, it is quite unlikely
that it will be possible to discriminate between chaotic and random hypotheses.”
That’s also why in this chapter we mostly focus on simulation and not on the still
not completely solved identification of the underlying real complex system, like
we did in the preceding chapters. In this fashion we gain an intuitive understanding
of the phenomena of turbulence and chaos.

However, we should not completely give up on the identification of complex
systems, as Nicolis and Prigogine (1998) do and as we demonstrate through a
very simple visualization technique of Mindlin and Gilmore (1992), also reported
in Urbach (2000). This technique exploits the occasional aperiodic cyclicity of
intermittency and turbulence to detect its attracting points and aperiodic orbits. The
technique can be further improved by using wavelet MRA, as will be discussed in
Chapter 10, so that it allows a sharp discrimination between a chaotic and random
process, refuting Mantegna and Stanley’s pessimism regarding the possibility of
identifying the correct processes.

9.2 Logistic parabola regimes

Let’s start with the simple definition of a logistic dynamic process, where x (f) may
be the relative increments of a market price of a security (a stock or a bond) or of an
FX rate. The logistic parabola has been used to model nonlinearly restrained growth
processes and has been applied in many fields, in particular in ecology and in socio-
economics. In this chapter, we’ll simulate, visualize and analyze its most salient
features, in particular the self-similarities generated by its nonlinear iteration. We’ll
also compute Hurst exponents of its various stability regimes using wavelet MRA.
This will demonstrate why it is difficult, if not impossible, to characterize the
various stability regimes of the logistic process by the Hurst exponent, since it has
a too limited range, and why we need to compute the multifractal spectrum of the
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heterogeneous Lipschitz-a; .> We’ll look at the stable and unstable regimes of the
logistic parabolic process, the deterministic chaos it can produce, its bifurcation
and phase shifting phenomena, its intermittency and the surprising shape of the
frequency distribution of complete chaos.

Let’s first formally define the logistic parabolic dynamic process.

Definition 370 The logistic parabola is the following parabolic difference
equation

x(t) = f(x)
=kx(t =Dl —x@— 1]

=kx(t — 1) —k[x(r — D]
with) <x(t) <1 and 0<k <4 ©.1)

where k is a real number, for physical reasons. This equation can also be written as:
Ax(t) = —k[x(t — D>+ (k — Dx(t — 1) 9.2)

Remark 371 This logistic parabola, or quadratic map, was introduced in 1845
by the Belgian sociologist and mathematician Pierre-Francois Verhulst (1804—
1849) to model the growth of populations limited by finite resources (Verhulst,
1845). The designation logistic, however, did not come into general use until 1875.
It is derived from the French logistique, referring to the lodgment of troops, given
finite resources. Interesting details of this logistic process, particularly about its
strange attractor set, can be found in Schroeder (1991). Notice that there is no
harm in assuming that the variable x is suitably scaled so as to lie between zero
and one.

Remark 372 The range of x(t) represents a percentage between zero and one.
When multiplied by a constant, it can represent the diffusion of a dynamic volatility
of a financial market, or the price diffusion of a derivative.

The logistic parabola is an extremely simple nonlinear difference equation,
which consists of a linear element, (k — 1)x(z — 1), representing the one-period
(feedback) delay or “viscosity,” and a nonlinear, quadratic or parabolic element,
—«k[x(t — 1), representing the quadratic or parabolic resource constraint. It
exhibits stable, bifurcating, intermittent and completely chaotic process regimes
for certain values of the scaling parameter «, caused by its implied iterative, bino-
mial “folding” process. The process can swing from stable behavior to intermittent
behavior, and then back to chaotic behavior, by relatively small changes in the value
of its single scaling or stability parameter k (Feigenbaum, 1981).3 This scaling
parameter x governs the transitions between the various stability regimes of this
nonlinear dynamic feedback process.
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Example 373 Let’s look at the standard theoretical Black—Scholes continuous
time framework for derivatives pricing and see how it relates to the logistic equa-
tion. Suppose that the price of the underlying asset X(t) is governed by the
Geometric Brownian Motion (GBM), which is called in finance a one-factor affine
model, because it is driven by one stochastic process z7(t):

dX (1) = pX )dt + o X (t)dz(t) 9.3)

where 7(t) is a normalized Wiener process, z(t) ~ N(0, t). Assume that there
is a constant risk-free rate r. Finally, suppose that the price of the derivative of
the underlying asset is some unknown time-dependent function f[X (t), t]. Then
it can be shown, by implementing It0’s Lemma, that the price of the derivative
follows the following forced parabolic diffusion process:

XDy (MXO ] 1 092 1X@). 1]

ot X (1) 2 X (1)?
+rfIX(@),1] (9.4)

which is the Black—Scholes equation (Luenberger, 1998, p. 439). Interestingly,
this Black—Scholes derivatives pricing equation has three interpretations: (1) the
no-arbitrage interpretation that a combination of two risky assets can repro-
duce a risk-free asset and its rate of return must be identical to the risk-free
rate r; (2) the interpretation that this is a backward solution process of the
risk-neutral pricing formula; and (3) the interpretation that this equation is a
special case of the log-optimal pricing formula. The parabolic viscosity term
—%azX(t)z(azf[X (1), 1)/ (X (1)?) governs the global behavior of this Black—
Scholes equation, while the convection term —rX (t)0f[X(¢),t]/0X (¢) is the
feedback delay term. In particular, the viscosity term —1/20%9% f[ X (1), t]/0 X (1)*
corresponds with the scaling parameter k in the logistic equation. The value of this
term determines if and when the behavior of the diffusion is stable, intermittent
or chaotic. Examples of such single factor price diffusion processes used for bond
option pricing are the Vasicek (1977) and extended Vasicek mean-reversion models
(Jamshidian, 1989). We’ll encounter such one-factor models again in Chapter 10.

Example 374 Other authors have explicitly constructed mathematical financial
models with the built-in capacity to produce chaotic behavior. For example, Tice
and Webber (1997) devised a three-factor model to explain the term structure of
interest rates, with two linear factors and one quadratic, which is a stochastic
version of the original Lorenz system of differential equations (Lorenz, 2001).
The three factors in their financial model are the short-term interest rate r(t), the
short rate reversion level x(t) and a feedback parameter p(t), with the following
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stochastic processes:*
dr(t) = alx(t) — r(t)]ldt + o,dz,(t) 9.5)
dx(t) = B{p)r@) +[1 — p(H)In — x(H)}dt + oxdzx(r) (9.6)
dp(t) = y{8 — ¢lx(@) — pllr () — u]l — p(H)}dt + 0,dz,(t) (CN))

If = 0, so that p(t) has no cross-products in its drift, then this model reduces
to a simple three-factor affine interest rate model. The quadratic cross-product
term [x(t) — w]lr(t) — u] is sufficient to cause this dynamic system to become
chaotic. The first two equations are a generalized Vasicek mean-reversion model
where r(t) reverts to x(t) and x(t) reverts to the weighted sum of r(t) and a
constant (. This nonlinear model generalizes the drift functions of Hull and
White (1993), and Bakshi and Chen (1997), whose models have p(t) = 0. It
also generalizes a drift function used by Babbs and Webber (1994). Models of this
sort have been extensively studied by Beaglehole and Tenney (1991). James and
Webber (2001, pp. 284-290) provide an economic justification for this “IS—-LM
based” model and simulate it with what they call “reasonable” parameter values
(o, B, v, 68, u, ) = (5,0.5, % 23, 0.1, 22,000), although they don’t provide any
Jjustification why these calibration values are “reasonable.” Their simulation pro-
duces an interesting cyclical and apparently intermittent time series behavior for
the short-term rate r(t).

Remark 375 As we will see in Chapter 11, the dynamic Navier—Stokes equation
describes the energy diffusion process of the physical flow of an incompressible
fluid and it provides a theoretical model for laminar flow, intermittency and tur-
bulence (Navier, 1823). It is the proto model for the Black—Scholes equation.
The logistic parabola simulated and analyzed in this chapter has been called the
“poor man’s Navier—Stokes equation” (Frisch, 1995, p. 31). It can be rewritten in
away paralleling the continuous time (unforced) Navier—Stokes equation, because
it has a nonlinear, parabolic term, representing the imposed nonlinear resource
constraint, and a linear delay, or viscosity, term.

9.2.1 Stability and dynamic persistence regimes

The various process regimes of the logistic parabola are summarized by the fol-
lowing Feigenbaum diagram, or “fig tree” plot in Figure 9.1, which shows the
steady-state equilibrium values of x(¢) in the observation range t = 101, ..., 200
for various values of the scaling parameter «, which is the sole control parameter
of the logistic process.

Notice in Figure 9.1 at the far left the unique stationary, timeless, homogeneous
states of equilibrium for k < 3, and the apparent multiplicity of equilibrium states
after the critical value of k = 3.0. The first bifurcation occurs at k = 3.0. Then
there is a cascade of supercritical, period-doubling pitchfork bifurcations (to be
explained in later sections of this chapter) and 180° phase shifting crossovers for
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Bifurcation diagram of logistic parabola
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Figure 9.1 Nonunique dynamic equilibria of the logistic parabola. At the far left,the stable,
so-called thermodynamic path splits into two paths when x = 3.00. There is a
clear 180° phase shift at k = 3.34. The next bifurcations occur at k = 3.45,
with 180° phase shifts at close to x = 3.50.

3 < k < 3.6, followed by moderate chaos. The shading in Figure 9.1 clearly shows
that there are 180° phase shifts in the process paths, signifying the occurrence of
bi-stability along particular paths. The first crossover 180° phase shift occurs at
k = 3.34. This is followed by a set of bifurcations at k = 3.45, followed by
another phase shift at k = 3.50, etc.

In the post k = 3.0 regime in Figure 9.1, the steady-state equilibrium value of
x(t) is strictly unpredictable, because it depends on the initial state value and the
precision of the computations or computation noise. However, it can be charac-
terized by one or the other path. This simultaneous dependence of the system
on different steady-state equilibrium paths according to past history is called
hysteresis.’

Figure 9.2 provides the corresponding Hurst exponents, computed from only
three resolution levels of wavelet resonance coefficients, indicating the relative
persistence of the logistic process for various values of k.® For H = 0.5 the process
is white noise or non-persistent; for 0 < H < 0.5 the process is antipersistent; for
0.5 < H < 1 the process is persistent.

Notice in Figure 9.2, that sharp changes in the Hurst exponent do indicate the
bifurcations. At x = 3.0 the simple symmetry of the steady-state equilibrium is
broken. Between x = 3.0 and « = 3.45 the Hurst exponent is homogeneous
H =0.924, indicating substantial persistence, because of the resulting bi-stability.
At ¥ =3.45 many more bifurcations appear and the Hurst exponent drops in
value to the antipersistent level of H = 1/3. At x = 3.6 chaos appears, in
the sense that the Hurst exponent has no homogeneous value. The Hurst exponent
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Hurst exponents of logistic process x,(t)
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Figure 9.2 The Hurst exponent may not be the best measure of the global dependence
of intermittent and chaotic processes, although a sharp change in the Hurst
exponent tends to indicate a bifurcation. Unique or bi-modal equilibria result
in homogeneous Hurst exponents indicating high persistence, while multi-
equilibria result in Hurst exponents indicating antipersistence. Most surprising
is that intermittency and complete chaos tends to result in homogeneous Hurst
exponents indicating persistence of the degree observed in empirical stock
markets.

drops sharply to below H = 0.2 and even reaches a few times its extreme value of
H =0 in both cases. Obviously, the Hurst exponent, which measures the relative
persistence of a process, does not detect the phase shifts in the process at « =3.34
and « =3.50.

Chaos, which is unpredictable, nonunique deterministic evolutionary behavior,
appears in the range 3.6 < « < 4. Here the sharp classical distinction between
chance and necessity, between random and deterministic behavior is blurred and
we witness the emergence of complexity. It appears that, in this particular range of
Kk, there exist deterministic dynamic irregularity. In this range the Hurst exponent
is heterogeneous, indicating the emerging multi-fractality of the logistic process.
Between k = 3.6 and k = 3.74,0 < H < 0.3 and the process becomes antiper-
sistent. Then, at x = 3.74 the process becomes suddenly very persistent, but
immediately thereafter, between x = 3.74 and x = 3.83,0.3 < H < 0.6, the pro-
cess is only moderately antipersistent. This situation of moderate antipersistence,
with occasional moderate persistence is similar to the situation observed in the FX
markets.

In particular, this moderate chaos regime is interleaved at certain values of x with
periodic “windows” of relative calm and persistence. The most prominent being
the three-period window starting at ¥ = 1 4 2+/2 = 3.83. Once the period length
three has been observed, all possible periods and frequencies appear and complete
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deterministic chaos results (Li and Yorke, 1975). Interestingly, after k = 3.83,
0.6 < H < 0.9: chaos has become, counter-intuitively, persistent, because of the
emergence of “complex structure,” and “self-organization” of the simplest inter-
folding dynamic feedback processes. However, on very close detailed observation,
within the three-period window period-doubling reappear, leading to stable orbits
of period length3 x 2 = 6, 3 x 22 = 12,3 x 23 = 24, etc., and renewed chaos, in
which another three-period window is embedded, and so on, ad infinitum into
other self-similar cascades of orbits of period length 3 x 2". There we enter the
final process regime of turbulence. We’ll see that the cascades of dynamic orbits
start to form 1-dimensional (1D) “vortices.””

Now, we’ll first discuss each of the four regimes of evolutionary behavior of
the logistic parabolic process in a cursory fashion at low values of ¢ to see how
quickly the dynamic process stabilizes. Notice the changes in the behavior of x (¢),
by looking at its first 20 iterations, r = 1, ..., 20, for various values of the scaling
parameter «, starting at x(0) = 0.1 in Figure 9.3.3

When « = 1.5, x(¢) reaches its steady state of x* = % at about + = 8. When
k = 2.0, x(t) reaches its steady state of x* = % at about r = 4. In these regimes
of unique uniform steady states (which are also asymptotically stable), the system
ignores time. Once it has reached a steady state, it does not matter where we are in
time: the value of the system remains one and the same for each ¢. These dynamic
regimes are thus uniquely Newtonian and stationary.

But for k = 3.2, the system produces oscillations between two steady states.
First, it appears to settle in a periodic rhythm by about t = 16. Now the system is
clearly time-dependent: it differs in value depending on the phase of the periodicity.

Convergence and period-doubling

—-x=1.5, H=0.6870
—-k=2.0, H=0.7610

k=3.2, H=0.7530
—x=3.5, H=0.6640
—k=4.0, H=0.0708

x(t)

-0.2
Iteration #

Figure 9.3 The various stability regimes of the logistic process are determined by the
value of the scaling parameter «: from stationarity (¢ = 1.5 and 2.0), via
oscillation (¢ = 3.2), to overlapping oscillations (« = 3.5), to aperiodic
cyclicity (k =4.0).
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For about « = 3.5, there appear to be two different periodicities superimposed on
each other and thus oscillations between four different steady states. For k = 4,
any specific periodicity has completely vanished, although there are still aperiodic
cyclical oscillations.

The Hurst exponent, which ranges between 0 and 1, computed for these first 20
observations, is H > 0.664 > 0.5 for « = 1.5, 2.0, 3.2 and 3.5, indicates that
these particular logistic processes are persistent or pink, i.e., between white and
red noise. But H = 0.07 < 0.5 for ¥ = 4.0, indicating that this chaotic process is
initially antipersistent or light blue.

The completely chaotic process at k = 4.0 is very unstable: the logistic process
is extremely sensitive to the initial condition, i.e., to the starting point of the
process x (0). Small changes in the initial condition lead to large amplifications of
the effects of these changes. In Figure 9.4, we show two paths for x(¢) for when
x(0) = 0.100000 and when x(0) = 0.100001, with a small change in the sixth
position after the decimal point.

Notice that until the two process traces split, they are exactly the same: their
maxima and minima follow in exactly the same order at the same time. But at
iteration 15, the temporal symmetry of the steady-state solutions is broken: the
equilibrium has become time-dependent. Meteorological processes are often con-
sidered to exhibit regime changes, from stable to chaotic regimes. An even simpler
example of such a regime change is visible in the smoke rising from a burn-
ing cigarette. When it arises from a cigarette, the smoke is first a smooth stable
laminar flow, until it rather suddenly becomes a chaotic “whirl.”

Sensitivity to x(0)

— k=4.0, x(0)=0.100000
x=4.0, x(0)=0.100001

o
(

lteration #

Figure 9.4 When a dynamic process is chaotic, its later values are directly dependent on
the precision of its initial condition. Here a small change in the sixth digit after
the decimal point of the initial condition only causes a change in the equilibrium
part after 15 iterations.
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We will now discuss the four major stability regimes of the logistic process in
greater detail, visualize them, and then algebraically analyze when and why these
various dynamic regimes occur.

9.2.2 Steady-state solutions

Since we observed that the logistic process stabilizes rather quickly to its steady
states, in the following only its equilibria are analyzed. These equilibria are strictly
dependent on the scaling parameter «. For values of 0 < x« < 3.0, the logistic
process settles to a unique static equilibrium, as follows.

Definition 376 The static equilibrium or steady-state solution is reached when
x(t) =x(t —1) =x*, aconstant (9.8)
For the 1-orbit, from solving the not iterated logistic equation,

Kx*(] _x*) — K_x* _K(x*)2

=x* (9.9)
for a nontrivial steady-state solution

_1
X=X (9.10)
K

The slope of the logistic parabola is

3x(t)

which equals « for x(t — 1) = 0 and 2 — « for the unique steady-state solution
x* =@k —1)/k’°

This dynamic equilibrium is stable as long as the absolute value of the slope of
the logistic parabola is smaller than unity:

0x() | _ el —2x(r — D[ < 1 9.12
m—“‘ —2x( - DIl < (9.12)

Since this is a quadratic equation there must, in principle, be two steady-state
solutions. The first trivial steady-state solution x(r — 1) = x* = 0 is stable for
0 < k < 1, and marginally stable for x = 1, but it is unstable for 1 < «.

The second nontrivial steady-state solution x* = (k — 1)/« is stable for 1 <
k < 3, because then

0x(1)
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For example when « = 1.5, x* = % and [dx(z)/dx(t — 1)|] = 0.5. When
k = 2.0, x* = 1, and |dx(t)/dx(t — 1)| = 0. The steady state x* = % is
always superstable (with period length 1), and convergence to this particular state
is always very rapid.

However, something happens when ¥ = 3. Atk = 3 the steady state is x* = %,
but the slope of the logistic parabola is |0x(¢)/dx(t — 1)| = 1 and the process no
longer converges (= stably attracted) to the point x*! This particular steady state
is marginally stable: nearby values of x (¢) are no longer attracted to, nor repelled
from the point x* = % The dynamic process has become indecisive or uncertain.

9.2.3 Mathematical self-organization: period-doubling

What happens is that at k. = 3 actually two possible steady-state solutions x*
appear, where one was a fixed attraction point. Initially these two steady-state
solutions were very close together, but clearly separated, between which the pro-
cess x(¢) alternates, as indicated by points xo and x; of the logistic parabola for
k = 3.24 in Figure 9.5. The result is a cobweb process that does not converge to
one fixed point, but remains orbiting between the two attracting points. This cob-
web pattern is essentially a vortex. The process remains very predictable, since the
oscillation between the two stable states is periodic, as can be observed in the time
series plot of x(¢) in Figure 9.6.10 When x(¢) is shocked at the scaling parameter
value immediately above k = 3, it still quickly returns to this periodic oscillation

A 4

—
< 3 ,
= S0 |
. |
, | |
// | |
— | |
7 | |
e | |
| |
+ 7 I I
s | |
4 | |
/ | |
4 | |
% | |
0
0 Xo Xq 1
X

Figure 9.5 After afixed attraction point turns unstable, an orbit of period length p = 2
emerges. The orbit of the logistic process is here depicted for scaling
parameter k = 3.24.
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Two stable equilibria (x=3)
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Figure 9.6 Period-doubling appears first at a scaling parameter value just above k = 3
in the form of a tiny oscillation in the value of x(¢) over time, between two
steady-state equilibrium states.

sequence, which therefore represents a dynamic steady-state equilibrium. This
event, which emerges at scaling parameter value, k = 3 is called a (Myrberg)
bifurcation or period-doubling of the steady-state equilibrium (Auerbach et al.,
1987).

Let’s first analyze this regime with two steady-state equilibria. A cyclical tra-
jectory, or orbit, having a period length of p = 2, is called a 2-orbit. It is the
steady-state solution x*, which satisfies the 1x iterated logistic equation:

FUE™) = cfex* (1 —xM[1 —ex* A — x5)]} = x* (9.14)

The relationship between the parabolic map for an orbit of period length p = 2
and the 1x iterated logistic equation f(f(x*)) = f® (x*) = x* is presented in
Figure 9.7.

The value of « for the superstable steady-state solutions x* = 0.5 is obtained
from solving this once iterated logistic equation

1{0.5 (1 — 0.5)[1 — 0.5c(1 — 0.5)]} = 0.5 9.15)
or
K3 — k> +8=0 9.16)

which has three solutions for the scaling parameter: k = 2. These solutions cor-
respond, first, tox* = 0.5,k = 1 + /5 = 3.2361, second, to x* = 0.8090, and,
third, to the inadmissible solution x = 1 — V5 =-1.2361 < 0.
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Figure 9.7 The relationship between the parabolic map f(x) for an orbit of period
length p = 2 and the 1x iterated map f® (x) with the two stable steady-
state equilibria points x( and x| and the former stable fixed point x,., which
has become unstable because of the curving of the 1x iterated map, when
the scaling parameter « increases in value above x = 3.

Remark 377 Solve the once iterated equation (1 + \/3){(1 + VS)x*(1 = x*)
[1 — (14 /5)x*(1 — x*)]} = x* for x*. The growth parameter k = 1 + /5 =
3.2361 =2/y, where y = 0.618, ..., i.e., the golden mean.

Thus, fork =2 andk =1+ \/5, respectively, there are two admissible stable
steady states or frequencies, i.e., two alternating, stable orbits of period length
p = 2. Accordingly, x () consecutively takes on the values x(0) = 0.5 — x(1) =
0.8090 — x(2) = x(0) = 0.5 - x(3) = x(1) = 0.8090, etc. as is clearly
observed in the time series plot of x(¢) in Figure 9.8.

When « is increased further, then these two steady-state equilibria points of the
once iterated logistic parabola will further separate from each other and in turn
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Two stable equilibria (x=3.24)
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Figure 9.8 Oscillation of the logistic process between two steady-state equilibriaat x* = 0.5
and x* = 0.809 for scaling parameter k = 1 + /3 = 3.24.

become unstable at precisely one and the same value of the scaling parameter
«, as shown by the 1x iterated parabolic map f® (x) in Figure 9.9. It is not a
coincidence that this happens at exactly the same value of «, since, according to
the chain rule of differentiation:

d
a[f(f(x)]x:x(O) = [ (f N e=x©) - [f' () ]e=x(0)
= f'(x(1) - f(x(0)) 9.17)

When x(0) becomes unstable, because

9
E[f (fO)]x=x@| > 1 (9.18)

so does x (1) at the same value of k. Thus, both these steady-state solutions of
the once iterated logistic equation f ( f(x)) will bifurcate at the same value of the
scaling parameter «, leading to an orbit of period length p = 2" = 2> = 4. In
other words, the 3 x iterated logistic equation

FUSSE)) =" 9.19)

will have n = 4 consecutive steady-state equilibrium orbits or frequencies.
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@)(x)

0 >
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Figure 9.9 The 1x iterated map f® (x) for period length p = 4, with 2 x 2 stable
steady-state equilibria and one unstable equilibrium. Notice the similarity
between the contents of the (180° phase shifted) small dashed square and
Figure 9.5. This self-similarity is characteristic for period-doubling and
facilitates its analysis.

Again, the value of x = 3.4985 for the superstable steady-state solutions x*
with a 4-orbit is obtained from solving the 3 x iterated logistic equation

FUf(f0.5)) =05 (9.20)

Accordingly, x (¢) produces the superstable resonating orbit of period length p = 4
of f(x): x(0) =05 — x(1) = 0.875 — x(2) = 0.383 — x(3) = 0.827 —
x(4) = x(0) = 0.5, etc. as observed in in the time series plot of x (¢) in Figure 9.10.

Again, because of the chain rule of differentiation, the four derivatives are the
same at all four points of the orbit. Thus if, for a given value of «, the magnitude of
one of the derivatives exceeds 1, then the magnitude of each of the four derivatives
will. Hence, all four iterated x () will bifurcate at the same value of «, leading to
a cyclical trajectory, or orbit, of period length p = 2" = 23 = 8, etc., as shown
in Figure 9.11 for the 2 x iterated parabolic map ) (x) for the scaling parameter
k=14 +/23 +¢=3.8284 + ¢, with very small & = 1073,

In summary, the general method for finding the value of the scaling parameter
for which a superstable orbit with period length p exists, is to solve the superstable
solution equation

(0.5 =05 9.21)



Four stable equilibria (x=3.50)
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Figure 9.10 Oscillation of the logistic process between four steady-state equilibria at
x* = 0.5, 0.875, 0.383 and 0.827, respectively, for scaling parameter
Kk = 3.4985.

0 I
0 0.5 1
X

Figure 9.11 The 2x iterated parabolic map for the scaling parameter x = 1 + +/8 +
1073, This iterated map has acquired six additional steady-state equilibria
by “tangent bifurcation.” Three of these equilibria are stable, i.e., with
an absolute slope smaller than 1, and are members of the stable period-3
orbit visible in Figures 9.9 and 9.10.
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exactly for scaling parameter k', where p is the period length of the orbit and f(?)
is the (p — 1)th iteration of the steady-state logistic parabola

FO&*) = kx*(1 —x%) (9.22)
The other solutions then follow from all lower order orbits.

9.2.3.1 Self-similarity and scaling of the logistic parabolic process

The period-doubling transformation of the logistic parabola is asymptotically self-
similar and therefore lends itself to both fractal and spectral analysis. Feigenbaum
(1979) proved that this period-doubling process obeys a scaling law with the
following scaling factor:

X — x(0)
Xpn o~ x(0)

where x(”)2 is the value of the iterate x at the half period p/2 for a superstable

orbit of period length p = 2", with n = log,(p), starting with x(0) = 0.5. This
scaling factor is related to Feigenbaum’s universal constant §, which appears in
the following geometric law of the scaling parameter «:!!

M (=D

Feigenbaum also discusses a simplified theory, which yields the following
approximating relationship between the scaling factor o of the scaling parameter
scaling law and the universal constant §:

S~ ol +a+1~4.76 (9.25)

9.2.3.2 Spectral analysis of periodic orbits

Since here we discuss periodic dynamic phenomena, with well-defined periodic
orbits, Fourier series analysis can be applied to the resulting periodic time series.
Let c,in) be the Fourier coefficient of the x"(¢) for a period length p = 2". In
going from an orbit of period length p = 2" by a period-doubling bifurcation to
an orbit of period length p = 2"*!, the new Fourier resonance coefficients with
an even index cg‘cﬂ), which describe the harmonics or periodicities of the regular
orbits, are approximately equal to the old Fourier resonance coefficients:

AR (9.26)
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because periodicity causes the following equality to be approximately true:
The odd-indexed Fourier resonance coefficients cg',:[i), which describe the

subharmonics appearing in the spectrum as a result of period-doubling, are
determined by the difference

TP (1) — x ™M (1) (9.28)

Feigenbaum (1979) showed that the squared magnitudes, or power ratios, of

. . . 2
these odd-indexed Fourier resonance coefficients, cg;:i) , are roughly equal to

an adjacent component from the previous orbit, scaled down by a factor of

8a*  8(—2.5029)*
(1+a2) 1+ (=2.5029)2
=43.217 (9.29)

corresponding to

10log,,43.217 = 16.357 dB
~ 16dB (9.30)

where dB = decibels.!> When the scaling parameter « is increased, more and
more subharmonics appear until deterministic chaos or noise is reached, as we
will discuss in the subsequent sections.

9.2.4 Intermittency and turbulence

The bifurcation scenario repeats itself as « is increased, yielding orbits of period
length 25 = 32,20 = 64, etc., ad infinitum, until at about x = 3.6, this dynamic
process appears to become unstable. The process ends up in an undefined orbit of
infinite period length, of which the time series plot as in Figure 9.12 gives only a
sample “window” of 100 observations.

The cyclical trajectory or orbit is now aperiodic, comprising a strange point
set of infinitely many values of x(¢) that never precisely repeat, although there
is observable cyclicity. The approximate self-similarity of this point set shows
Feigenbaum’s self-similarity scaling factor of about « = —2.5029. The fractal
Hausdorff dimension D = 0.538... of this point set, which is a Cantor set,
was derived analytically and numerically by Grassberger (1981).13 A good
approximation is:

logy

log 2—15

D =

~ 0.525 9.31)

where the golden meany = (v/5—1)/2 = 0.61803 ... .. Thus this trajectory trace
has a dimension almost half way in between the Euclidean dimension of a line
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Unstable equilibria (x=3.60)
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Figure 9.12 A sample window of 100 observations of an undefined orbit, or frequency,
of infinite period length with scaling parameter k = 3.6.

(D = 1) and the Euclidean dimension of a set of points (D = 0), with a slight
balance in favor of the dimension of a line.

9.2.4.1 Intermittency

However, within the chaotic region, when 3.6 < « < 4.0, some “windows
of stability” do occur in between periods of chaos. This alternation of stability
and chaos when « is increased is called intermittency (Frisch and Parisi, 1985).
For example, for k = 3.82 we have substantial intermittency or moderate chaos
in the time series plot of x(¢) in Figure 9.13.

But then, stability reappears at the scaling parameter value of k = 1+ /p =

1 + +/23 = 3.83. There occurs the so-called tangent bifurcation at the value of
k = 3.83. Figure 9.14 shows the time series plot of x(¢) for x = 3.83. It looks as if
for k = 3.83 there are only two stable equilibria x* = 0.154 and x* = 0.958, but
the process x(¢) passes straight through the nonattracting, now only marginally
stable equilibrium x* = 0.5.

Just above ¥ = 3.83, the now thrice iterated logistic parabola acquires six
additional steady-state points x*: three with an absolute slope |(df B (x (1)) /
(@x(t — 1))| > 1, which belong to the unstable orbit of period length 3, and three
with a slope [(3f @ (x(1)))/(dx(t — 1))| < 1, which are the three points belonging
to the stable orbit with period length 3 and the apparent periodicity starts to break
down again. Why this happens is clear from Figure 9.11, which shows the 3x
iterated logistic equation with the scaling parameter k = 1 + /8 + 1073, i.e.,
just above the value of k = 3.83. Figure 9.15 shows the time series plot of x(¢)
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Moderate chaos (x=3.82)
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Figure 9.13 Intermittency in time series is characterized by periods of stability
alternating with periods of chaos with scaling parameter « = 3.82.

Three stable equilibria (x=3.83)
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Figure 9.14 The reappearance of a period of apparent stability: periodicity with three

steady-state equilibria, two stable and one unstable for k = 1 4+ +/8 =
3.83.

of the three stable and the three unstable steady-state equilibria for k = 3.85,
which appears to be the same as in Figure 9.14. But then Figure 9.16 shows the
same process for k = 3.86. The renewed breakdown into intermittency, after the
apparent stability at k = 3.85, is now clearly visible.



Three stable + three unstable equilibria (x=3.85)
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Figure 9.15 Another period of apparent stability with periodicity with six steady-state equi-
libria: three stable and three unstable ones for x = 3.85. Notice that the
unstable steady-state equilibria are not visible, since the time series x (¢) of the
logistic process passes straight through these marginally stable points.
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Figure 9.16 Another instance of intermittency in the time series of the logistic process,
after the birth of period length 3, where the periods of apparent stability are
interrupted by short periods of chaos for scaling parameter k = 3.86.
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The birth of period length 3 is one of the most intriguing research topics in the
history of nonlinear dynamic theory, because it leads to the turbulence phenomena
of intermittency and complete chaos (Bechhoefer, 1996; Gordon, 1996; Burm and
Fishback, 2001).

Thus, we encounter the famous 3-orbit, an orbit with three distinct frequencies,
which guarantees that all other orbits, or frequencies exist, albeit as unstable orbits,
at the same parameter value.'* In other words, the 2x iterated process:

FUSED) =x" (9.32)

has a 3-orbit with three consecutive steady-state solutions x*, which satisfies the
twice iterated logistic parabola:

_ 1{0.5¢(1 — 0.5)[1 — 0.5 (1 — 0.5)]}
fFFO) = |:x(1 — k{0.5k(1 — 0.5)[1 — 0.5x(1 — 0.5)]})}
K3 (4 —k k2 (4 —k
ZT( 7 )(“T( 7 )):0.5 (9.33)
or
K34 — k) (16 —4k> +13) — 128 = 0 (9.34)

This polynomial in « has seven exact solutions, three of which are real and four
of which are conjugate complex. Numerically, these solutions are:

k = 2, which corresponds with the superstable equilibrium x* = 0.5.

k = 3.832, which corresponds with the equilibria x* = 0 (marginally stable),
x* = 0.154 (stable), x* = 0.165 (unstable), x* = 0.499 (stable), x* =0.529
(unstable), x* = 0.739 (stable), x* = 0.955 (unstable), x* = 0.958 (stable).

k = —1.832, which is inadmissible, because we must have « > 0.

Kk = 2.553 +0.959i and 2.553 — 0.959i, which are inadmissible, because
must be real.

Kk = —0.5534+0.959; and —0.553 — 0.959i, which are inadmissible, because
k& must be real.

The eight equilibria corresponding to k = 3.832 are found from the equation:

3.832(3.832x*(1 — x*)(1 — 3.832x*(1 — x™))) .
3.832 <x(1 — 3.832(3.832x* (1 — x*)(1 — 3.832x*(1 — x*))))> - =0
9.35)

After period length 3 has appeared at « = 3.83, orbits of any period length
are possible. As Li and Yorke (1975) state “period three implies chaos.” Finally,
at k = 4.0 we encounter complete chaos, shown by the time series plot of x (¢)
in Figure 9.17. Complete chaos is thus defined by the coexistence of an infinite
number of unstable deterministic orbits.
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Figure 9.17 Complete chaos is defined by the coexistence of an infinite number of deter-
ministic unstable equilibrium orbits, with the scaling parameter of the logistic
process having the extreme value x = 4.0.

9.2.4.2 Universal order of period lengths

The reason for the appearance of any period length, or frequency, after period
length 3 is that the different period lengths or frequencies p of stable periodic
orbits of unimodal maps, like the logistic parabola, do not appear randomly, as
is often believed. In fact, these natural frequencies appear in a so-called universal
order, as proved by Sharkovskii (1964).

Theorem 378  (Sharkovskii) Ifk, is the value of the scaling parameter k at which
a stable period of length p first appears, as k is increased, then k), > kg if p > q
(read: period length p precedes period length q) in the following Sharkovskii
order:
3>5>7>9>.-.
2:3>2-5>=2-7T> ...

9.36
2" .3 =25 2" T - ... ©-36)

N NI X S
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Example 379 The minimal « value for an orbit with period length or frequency
p = 10 = 2 -5 is larger than the minimal k value for p = 12 = 2% . 3 because
period length or frequency 10 > 12.

Remark 380 (1) Thus, the existence of period length or frequency p = 3 guar-
antees the existence of any other period length or frequency q for some k; < k.
(2) If only a finite number of period lengths or frequencies occur, their frequencies
must be powers of 2. (3) If a period length or frequency p exists that is not a power
of 2, then there exist infinitely many different frequencies.

Interestingly, the intervals of « for the stable orbits are dense but not continuous.
That implies that the values of the scaling parameter « for which no stable peri-
odic orbits exist form no closed intervals: they are fractal (Grebogi et al., 1988).
Nevertheless, they possess a positive Lebesgue measure. This means that a ran-
dom choice of the scaling parameter « has a nonvanishing probability of leading
to an aperiodic cycle, orbit or frequency. These aperiodic orbits, cycles or fre-
quencies are thus not “unlikely.” They have a particular probability of occurrence,
although that probability may be extremely small.

9.2.5 Complete chaos

With k = 4, the process has become completely chaotic. In Figure 9.18 we look at
the ultimate chaotic pattern of the logistic x (¢) forx = 4.0and¢ = 101, ..., 1,100.
The Hurst exponent H = 0.58, indicating that this logistic chaos surprisingly
exhibits some persistence and is not a white noise process. No pseudo-random
number generator is used! The deterministic logistic parabola generates these 1,000
values of x(¢), after the first 100 values were discarded, starting from x(0) = O.
The process x(¢) has a bounded range: 0 < x(¢) < 1, but its mean is undefined,
as is its variance, no matter how many observations generated. Ergo, the logistic
chaos process is completely nonstationary or unstable. When more observations
are generated, the mean and variance will continue to change.16 There is no con-
vergence to a unique steady-state equilibrium or to a few steady-state equilibria.
There are infinitely many steady-state orbital equilibria!

Figure 9.19 is the same as Figure 9.18, but this time the dots representing the
steady states are connected, to show the aperiodic oscillations with each oscillation
having its own amplitude. There are as many amplitudes as there are oscillations.
This chaotic noise appears to be a bit persistent, i.e., on average it moves a bit slower
than white noise, because its measured homogeneous Hurst exponent H = 0.58 >
0.5. The fractal dimension of this continuous fractal (non-differentiable) space-
filling line is: D = 2 — H = 1.42, which is almost halfway between the Euclidean
dimension of a line (D = 1) and the Euclidean dimension of a flat space (D = 2).

Figure 9.20 shows the global frequency distribution of chaos formed by comput-
ing ahistogram H (0.10) with 10 percent equally spaced bins. A similar distribution
of chaos was first presented by Taylor (1935, 1938; Ruelle, 1989). This frequency
distribution of the 1,000 values of the constrained x(¢), 0 < x(¢) < 1, is not flat,



Logistic chaos (x=4; H=0.58; 1,000 observations)
is not white noise

Figure 9.18 Complete logistic chaos consists of infinitely many coexisting steady-
state dynamic equilibria and is not white noise. Here are 1,000 steady-
state dynamic equilibrium points of the logistic process x(¢) for scaling
parameter k = 4.0, with a measured homogeneous Hurst exponent of
H =0.58.

Logistic chaos (x =4; H=0.58; 1,000 observations)
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Figure 9.19 Complete chaos exhibits infinitely many aperiodic oscillations with each
oscillation having its own amplitude. This graph connects the steady-
state equilibrium points of Figure 9.18 and thereby shows the time series
oscillations generated by the logistic process x (¢).
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Figure 9.20 Complete chaos exhibits infinitely many aperiodic oscillations with each
oscillation having its own amplitude. This graph connects the steady-
state equilibrium points of Figure 9.19 and thereby shows the time series
oscillations generated by the logistic process x ().

as would be the case with uniformly distributed white noise. It is highly platykur-
tic, with a kurtosis ¢4 = —1.48 (or a normalized kurtosis = 3 — 1.48 = 1.52),
compared with that of the Gaussian distribution’s kurtosis ¢4 = 0 (or a normalized
kurtosis = 3).

This surprising frequency distribution has an imploded mode and very fat tails
against the “wall” constraints x () = 0 and x(¢) = 1 that are considerably heavier
than the mode. It is an example of a stable distribution with a (Zolotarev) stability
exponent: ¢z = 1/H = ﬁ = 1.715 and with a divergent second moment
(Mandelbrot, 1974). This very heavy-tailed distribution jarringly contrasts with
the conventional bell-shaped, unimodal, thin-tailed Gaussian distribution, with
which most statisticians are familiar. Frequency distributions with imploded modes
are not considered “normal,” but may be more prevalent than is conventionally
assumed.

In Figure 9.21 we present, for the very first time, a scalogram of the completely
chaotic logistic parabola process with scaling parameter k = 4.0.!7 Notice that
most of the local risk appears to reside in the very small scales, although the
scalegram in the lower right panel shows a “flat” spectrum with H = 0.58. There is
a paucity of local risk at the a = 25 = 32 and a = 28 = 256 scales, respectively.
Also, the scalegram does not show a constant flat spectrum and does not represent
white noise: there is “periodicity” at various scale levels. The scalogram looks
“choppy” with most local risk below the ¢ = 2° = 32 scale. Our conjecture is
that this scalegram is not constant when different size data sets of the complete
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Figure 9.21 Wavelet scalogram and scalegram of the completely chaotic logistic parabola
process with scaling parameter k = 4.0. Most of the local risk appears to reside
at the very small scales, but the scalegram does not show white noise. There is
periodicity in chaotic noise. There is a paucity of local risk at the ¢ = 2 = 32
and a = 2% = 256 scale levels. But there appear to be some finite dominant
scale/frequency tracks at the ¢ = 26 = 64 and @ = 2° = 512 scale levels.
(a) Chaotic logistic parabola data; (b) wavelet power spectrum and (c) global
wavelet.

observations are analyzed, although it will remain “flat,” with a homogenous Hurst
exponent close to H = 0.5. But more study by wavelet MRA of the various
dynamic regimes of the logistic parabola is required. Notice also the occurrence
of finite dominant frequency tracks at the a = 2% = 64 and a = 2° = 512 scales,
respectively, like in the laughter data of Figure 6.10 in Chapter 6. Compare this
scalogram and scalegram also with the ones for the Mexican Pesos/USD exchange
rate increments and the Chilean stock market increments, which show, perhaps,
somewhat less local risk at the small-scale levels, except where financial adjustment
vortices 0ccur.

9.3 General nonlinear dynamic systems

Many of the properties of the logistic parabola are paradigmatic, not only for other
unimodal maps, but for different nonlinear maps as well, such as the Navier—Stokes
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partial differential equation, which is either a model for a Black—Scholes type price
diffusion equation for a derivative, or for a nonlinear volatility diffusion equation.
These simple maps model a broad range of contemporary problems in which
nonlinear constraints play an essential role (Lyubich, 2000).

Example 381 Before 1900, the mathematical foundation of physics was
anchored in simple linear, Newtonian, deterministic dynamic systems. We have
now seen that simple nonlinear deterministic dynamic systems can generate very
complex motion and even chaos. It may come as a surprise that the motion of a
billiard ball — the archetypical Newtonian system — can become complex when
subject to nonlinear environmental constraints. We can idealize the billiard ball
as a point reflected elastically, i.e., without any loss of energy, from the boundary
of the region in which it moves. Figure 9.22 shows what happens to the billiard
ball when its motion is constrained to regions with different shapes. If the enclo-
sure is a Euclidean rectangle or a circle, the ball bounces around in a regular
pattern. But if the boundary is a combination of linear and curved constraints, like
a “stadium” or like “Africa,” the ball bounces around chaotically, in an irregu-
lar pattern (Berry, 1991, pp. 185). Recall that both the logistic parabola and the

Rectangle Circle

Figure 9.22 The trajectory of a billiard ball depends on the shape of the elastic boundary
that constraints it. In the rectangular and circular areas, the orbits are regular,
but in the “stadium” and in “Africa,” they are chaotic (aperiodic cyclic).
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Navier-Stokes equation have each such a combination of a linear and a nonlinear
(quadratic) constraint built into their respective dynamic systems.

Therefore, we must first generalize our definition of a dynamic system to include
such nonlinear dynamic systems, to better understand the concept of chaotic
behavior of a financial dynamic system’s evolutionary process.

Definition 382 A dynamic system is described by its state at time t, which is a
vector point x(t) in a real Euclidean phase space R, with (integer) dimension
D, and its evolution between time t and time t + At is determined by certain
invariant rules. Each point in phase space can be taken as the initial state x(0),
and is followed by a trajectory x(t) for all t > 0.

Let’s now return to examine in detail the state space trajectory of the logistic
parabola in its chaotic regime. Figure 9.23 shows the remarkable state space tra-
jectory for the 2-state vector [x(¢), x(+ — 1)] of the chaotic logistic process, when
the scaling parameter « = 4.0.

None of these trajectory cycles, or aperiodic orbits, overlap (even under a micro-
scope). Notice that there are two definite areas: the lighter area contains single
orbits almost parallel to each other, and the darker areas with “crossed” orbits,
which traces out a second parabola with a “mode” close to x(t — 1) = 0.4. While
the outer parabola represents the parabolic constraint directly, the inner parabola
is a slightly shifted and deformed version of it. How was the graph of this deter-
ministic dynamic process trajectory of 1,000 iterations, generated? Let’s follow

State trajectory of chaotic logistic process (kx=4)

Figure 9.23 The state space trajectory of a chaotic system shows aperiodic cyclicity, so that
none of the orbits overlap each other. The frequencies of the trajectory’s orbits
are all slightly different from each other. There are two areas: a lighter area
with single orbits, and a dark area with “crossed” orbits, tracing out a second
parabola.
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Figure 9.24 First 10 observations of the state space trajectory of the chaotic logistic process
x(t) for k = 4.0.
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Figure 9.25 First 10 observations of the steady-state equilibrium points where the trajec-
tory “touches” the parabolic constraint of the chaotic logistic process x(¢) for
k =4.0.

the first 10 iterations in Figures 9.24 and 9.25. Figure 9.24 shows the actual state
space trajectory of the first 10 orbits of the chaotic logistic process x(¢), while
Figure 9.25 shows the steady-state equilibrium points where the trajectory “touch-
es” the parabolic constraint of this logistic process, i.e., the attractor set of the
trajectory’s steady-state equilibria.
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Figure 9.26 First 20 observations of the state space trajectory of the chaotic logistic process
x(t) for k = 4.0.
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Figure 9.27 First 20 steady-state equilibria points on the attractor set of the chaotic logistic
process x(t) for k = 4.0.

This is a clear example of Mandelbrot’s aperiodic cyclicity (=having orbits
of different length). Let’s continue the state space trajectory and the process of
passing through steady-state equilibrium points. Figures 9.26 and 9.27 show the
trajectories and the attractor set of steady-state equilibria of the first 20 iterations.
This is followed by the trajectories and attractor set of the steady-state equilibria
of the first 50 iterations in Figures 9.28 and 9.29.
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Figure 9.28 First 50 observations of the state space trajectory of the chaotic logistic process
x(t) for k = 4.0.
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Figure 9.29 First 50 steady-state equilibria points on the attractor set of the chaotic logistic
process x(t) for k = 4.0.

Figures 9.30 and 9.31 show the trajectories and attractor set of state equilibria of
the first 90 iterations. Notice how these points in state space lie precisely on a well-
defined object, the parabolic resource constraint, but the position of each of these
state points is completely irregular or unpredictable and no point is ever visited
twice. Their positions depend on the precision of numerical computation of the
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Figure 9.30 First 90 observations of the state space trajectory of the chaotic logistic process
x(t) for k = 4.0.
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Figure 9.31 First 90 steady-state equilibria points on the attractor set of the chaotic
logistic process x(t) for k = 4.0.

logistic evolutionary trajectory, which depends on the length of the digital registers
of the computer. A computer with a different computing precision, delivers a
different series of points, as can be easily demonstrated. This is an example of
dynamic deterministic, non-probabilistic irregularity.

9.3.1 Fractal attractors

What is the defining character of the chaotic logistic parabola as a dynamic
process? To discuss this properly we need a new concept that is particular to
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nonlinear dynamic systems and that we have already used earlier in this chapter:
the attractor set.

Definition 383 A dynamic process is said to have an attractor, if there exists a
proper subset A of the Euclidean phase space RP, such that for almost all starting
points x(0), and t large enough, X(t) is close to some point of A.

In other words, the attractor set .4 is the subset of the real Euclidean phase space
with infinitely many equilibrium states x(¢) of the system and their limiting points.
The multifractal attractor characterizes the long-term behavior of the process. In
fact, the shape and, in particular, the compactness of the multifractal attractor
determines the degree of predictability of a system. The well-defined parabolic
object in the state space {x(¢), x(r — 1)} in Figure 9.32, which defines the aperiodic
cycles, is the attractor of the logistic parabola.

Notice that a chaotic process, like the logistic process with a scaling parameter
k = 4.0, is not an anarchic process, since it clearly has a well-defined macroscopic
structure determined by its (parabolic) resource constraint. It is complex in the
sense that it combines the global stability of the logistic parabola with the local
uncertainty of where the process at any time is on the parabolic attractor. Thus, the
macroscopic or long-term trendwise predictability of a chaotic complex process
depends on the shape of its resource constraints. The physical or institutional
constraints of the chaotic process determine its long-term predictability. When the
shape of these physical or institutional constraints are changed, the long-term shape

| Fractal attractor of chaotic logistic process (x=4)
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Figure 9.32 The physical or institutional resource constraint of the chaotic process deter-
mines its global, long-term predictability, i.e., the shape of the attractor set.
But it remains completely uncertain when and where the chaotic process will
hit this constraint, even though its steady-state trajectory is deterministic and
well defined.
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of the trend of the chaotic process changes accordingly. But it remains always
uncertain when and where the chaotic process hits the physical or institutional
resource constraint(s) and the chaotic complex process remains locally or short-
term unpredictable.

This attractor set of steady-state equilibrium points is itself a Cantor-like set,
with its Hausdorff dimension a fraction between the Euclidean values of zero (a set
of points) and one (a line). The attractor is thus the set of all the deterministically
random steady-state equilibria of x(¢). The limited dimension D of an attractor
A is almost always fractional and one speaks of fractal attractors, also called
strange or chaotic attractors (Grassberger and Procaccia, 1983). As said, the
Hausdorff dimension of the attractor of the logistic parabola is D = 0.538....
Fractal attractors are aperiodic, but cyclic! Their state trajectories in phase space
never intersect, although these trajectories wander about the whole attractor set
in orbital fashion. Thus, fractal attractors are sets with infinitely many coexisting
dynamic steady-state equilibria.'

Fractal attractors are called strange, because they differ from familiar attractors.
Familiar attractors have one of three distinct forms, as we saw in Section 9.2. They
consist either of:

(1) single points (fixed or steady-state points);
(2) finitely many points (periodic orbits); or
(3) continuous manifolds (polynomials) that give rise to periodic orbits.

However, strange attractors, which are aperiodic cyclic, do have the structure
of the imposed nonlinear constraint and thus contain information, although this
information is clearly incomplete. The global information that we often can extract
from observing such chaotic process only pertains to the physical or institutional
constraints. By continuously monitoring a chaotic process we can identify the
complete abstract set of equilibrium points of its fractal attractor, i.e., the shape
and structure of its global constraint, as we have demonstrated in the case of
the parabolic constraint built into the logistic process. '’

We cannot extract local information from a chaotic time series, unless we moni-
tor all individual aperiodic cycles in real time. Then, we can only determine where
the process is in the time—frequency plane, but we cannot predict its next local
orbit. Often such processes are self-similar, or approximately so, and therefore
they have fractal Hausdorff dimensions (Ruelle, 1989).

Remark 384 Because of its property of self-similarity, the behavior of fractal
attractors can be approximately described by wavelet functions, i.e., by linear
expansions of wavelets over orthonormal wavelet bases, because they contain
aperiodic, but cyclic behavior. This is currently a hot area of research: the modeling
of (financial) turbulence by using wavelet multiresolution theory, in particular their
identification and simulation using scalograms, and we’ll return to that exciting
topic in the next two chapters.
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9.3.2 Chaotic processes

Returning to the initial figures of this chapter, we can now define the chaotic
behavior of a nonlinear dynamic process in terms of its globally defining fractal
attractor set.

Definition 385 A chaotic process is one of which the behavior shows sensitivity
to initial conditions x(0), so that no point of its attractor set A is visited twice in
finite time.

Thus, any uncertainty in the initial state of the given system, no matter how small,
will lead to rapidly growing errors in any effort to predict the future behavior of
x(t). Although the attractor has a well-defined abstract shape (like a parabola), it
is fractal: it consists of a set of singularities, which can only be characterized by a
multi-fractal spectrum (cf. Chapter 8).

It is actually typical for multidimensional dissipative dynamic systems to have
more than one attractor and each attractor has its own associated basin of attraction.
The statistical properties of the dynamic solution depend on to which basin the
initial conditions belong. Thus, not only may the detailed behavior of the orbits be
unpredictable (because of the sensitivity to the initial conditions), but even their
global, average statistical properties may be unidentifiable, insofar as it may be
impossible to determine to which basin of attraction the initial conditions belong.
Meteorologists face such problems with the prediction of the weather, which has
many different basins of attraction.? Not only the weather, but also the climate
may be unpredictable in the short run, but still be predictable in the long run,
due to its natural resource constraints. For example, the El Nifio effect is clearly
an aperiodic cyclic global weather phenomena generated by the natural physical
resource constraints of the Pacific Ocean. As we observed earlier, the plight of
financial economists studying the global financial markets, in particular the FX
markets, is very similar to that of global meteorologists (Los, 1991).

Indeed, the transition from stable, equilibrium, behavior to chaotic behavior
when the scaling parameter « is increased, as exhibited by the logistic parabola,
has been observed in many physical systems, in fields as diverse as meteorology,
seismology, ecology, epidemiology, medicine, economics and finance, to name
just a few.?! In particular, intermittency of turbulence, where some regions are
marked by very high dissipation or chaos, while other regions seem by contrast to
be stable and nearly free of dissipation, is symptomatic of the observed behavior
of financial markets, both spatially and in time.

Example 386 In the second half of 1997, the Southeast Asian financial markets
saw a rapid succession of such periods of turbulence and temporary stability.
At the same time, while the Southeast Asian FX markets exhibited this temporal
intermittency in the second half of 1997, the Japanese Yen and Deutsche mark
markets were completely unperturbed. This suggests that interacting financial
markets can simultaneously exhibit a wide variety of dynamic pricing processes,
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some of which may be stable, intermittent or even completely chaotic (Karuppiah
and Los, 2000).

9.4 Detecting attracting points and aperiodic orbits

How can one empirically detect the location of attracting points and aperiodic
cyclical orbits in an arbitrary financial time series, if there are any? Even without
an estimate of the system’s diffusion equation or phase space reconstruction, one
can acquire a pretty good idea by the following simple procedure (adapted from
Urbach, 2000, pp. 307-308).

If a system passes close to an aperiodic attracting equilibrium orbit of period 7,
then it is likely to circulate near this attracting point for a while, and measurements
x () will reflect that temporary periodicity or cyclicity by nearly repeating after
a horizon of t time units — for a while at least. Thus, for a small positive value
& > 0 and some contiguous sequence of values of time ¢, the following inequality
of absolute time differences will hold:

[x(t+1)—x()] <& (9.37)

To see the location and temporal periodicity of the attractor points is by plotting
the truth value sign{|x(# + t) — x(¢)| < €} as a function of both time ¢ and horizon
7. Such a plot is called a close return or recurrence plot. Figure 9.33 provides an
example for the Belousov—Zhabotinsky chemical reaction (Mindlin and Gilmore,
1992, p. 231; also in Nicolis and Prigogine, 1998, pp. 18-24).

Another visualization of such temporary periodicity is the recurrence or close
returns histogram, defined by:

H(t) = Z@[e —x(t+1) —x@®)] 9.38)
t
_
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Figure 9.33 A close return or recurrence plot of the Belousov—Zhabotinsky chemical reac-
tion. In this plot a pixel (i, p) is colored black if |x(r + 7) — x(¢)| < ¢, and
white if |x(# + ) —x(¢)| > €. The discriminating constant ¢ is about 2 percent
of the diameter of the attractor.
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Figure 9.34 Close return histograms (a) of a chaotic time series with aperiodic cyclicity,
and (b) of Geometric Brownian Motion increments.

where O[- - - ] is the Heaviside function:??
_J1 ifz>0
Olzl = {0 otherwise ©.39)

Figure 9.34 provides examples of such recurrence histograms, that also clearly
shows the distinction between an aperiodic cyclic chaotic time series and a truly
random time series (Mindlin and Gilmore, 1992, p. 232). Notice the aperiodic
cyclic singularities in the histogram of the chaotic time series and the very narrow
and almost time-invariant bandwidth in the histogram of the random time series
over all time horizons 7.

Since this simple nonstationary histogram method of Mindlin and Gilmore
exploits the aperiodic cyclicity observable in the time-varying histograms or fre-
quency distributions, it is a primitive form of windowed Fourier analysis. Thus,
it is easy to see how the wavelet MRA in the form of a scalogram discussed in
Chapter 7, can sharply improve the identification of simultaneous frequency and
time cyclicity in high frequency financial time series, since such scalograms are
superb instruments for simultaneous local and global system identification, as we
will see in Chapter 11 (Farge, 1992; Buchler and Kandrup, 1997).

9.5 Summary of aperiodic cyclical steady-state equilibria

In this chapter, we’ve studied the behavior of a simple nonlinear dynamic system
by simulation in preparation of a quantitative study of a wide variety of financial
market processes. The logistic parabola is capable of producing widely different
dynamic process regimes, depending on the value of its single scaling parameter
k. These regimes are summarized in Table 9.2.

For the lower values of k < 3, the logistic process is like a classical, stable,
linearized, Newtonian process with a single stable equilibrium. Thus, in this
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Table 9.2 Steady-state equilibrium regimes of the logistic process

Scaling Orbital steady-state equilibria Stability regime
0<k <1 x*=0 Stable
k=1 x*=0 Marginally stable
l<k<3 x* = el Superstable
ke (1-period)
k=3 x* = % — x* = % + & (e very small) — x*  First bifurcation
3 3 (2-period)
2
= g, etc.
3<k <358 x*(1) > x*Q2)—> - —>x*(n+1)=x"(1) Multiple stability
(n-period)
Kk =334 First 180°
phase shift
Kk =3.45 x*(1) - x*2) —» x*(3) Second bifurcation
— x*(4) — x*(1), etc. (4-period)
K =3.50 Second 180°
phase shift
Kk = 3.58 x*(1) »> x*(2) —» --- —> x* (large) Moderate chaos
358 <k <4 Complexity
Kk =3.82 x*(1) »> x*(2) - --- —> x™* (large) Moderate chaos
Kk =3.83 x*(1) - x*@2) —> x*(3) — x*(1), etc. Apparent stability
(3-period)
Kk = 3.86 x*(1) - -+ = x*(3) — x*(1) and Intermittency
x*(1) —> --- — x* (large)
Kk =4.0 x*(1) > x*2) —> - -+ — x*(00) Complete chaos

dynamic regime the process is completely predictable in the short- and the long-
term, or both locally and globally. For x = 4.0 the logistic process is completely
chaotic, i.e., it is unstable in both the short- and the long-term, or unstable both
locally and globally (Pawelzik and Shuster, 1991). A small change in the ini-
tial condition will cause it to move to a completely different magnitude at an
unpredictable time.

The most interesting process regimes from the point of view of current research
into financial market processes, are the logistic parabolic processes that lie in
between these two extreme regimes. These processes are complex and highly struc-
tured, like the period-doubling bifurcation processes, when 3 < k < 3.83, which
oscillate between even numbers of stable equilibria, i.e., a set of equilibria with
different but even period lengths. They can become very complex when the num-
ber of stable equilibria in these sets increases and they can even exhibit moderate
chaos, but with periods of intermittency. Thus, periods of stability are interlaced
by periods of moderate chaos, or vice versa. Intermittency processes contain pro-
cesses that are stable in the short term or locally, and unstable in the long term or
globally, and processes that are unstable in the short term, or locally, and stability
in the long term or globally.
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Such complex processes are prevalent in nature because they tend to be better
able to survive changing environmental constraints. They always operate in high
states of uncertainty. This is the same with financial markets. This environmental
uncertainty cannot be eliminated, because the reasons for the buying and selling
actions of the individual market participants cannot be predicted. But lack of local
or short-term predictability may give such free market pricing systems their global
or long-term stability.

We saw that intermittency process regimes are very finely balanced. There are
small ranges of the scaling parameter « where the parabolic logistic process is in
a period of calmness and stability, but when the parameter moves outside these
windows of stability ranges, the process is plunged into moderate chaos. This
should provide cause for extreme caution for tinkering with well-working financial
markets, which show intermittency, i.e., fairly long periods of relative stability,
interrupted by fairly short periods of chaos. Institutional policy changes, which
change the shape of the institutional constraints, i.e., the scaling parameters, can
cause a stable market mechanism to move into moderate chaos and regimes of
intermittency. On the other hand, it can also be rescued from such chaos and periods
of intermittency, by counteracting institutional policy changes, i.e., by correcting
the shape of the institutional constraints. This does not mean that one should
eliminate or arbitrarily constrain the uncertain market pricing processes. Butit does
mean that we must first understand the actual quantitative parametrization of the
institutional and physical constraints of these complex market pricing processes,
before we let politicians tinker with them!

It is clear that the current level of theoretical and engineering understanding
of market pricing systems, which still relies on linearized models borrowed from
Newtonian physics, is highly insufficient, because actual market pricing process
are not both short- and long-term predictable, due to their nonlinear environmental
constraints. They show heterogeneous levels of predictability. We suspect that
most market pricing processes may be globally predictable, but short-term unpre-
dictable. The logistic parabola is just a simple analogue simulation model, and
a simple version of the parabolic Navier—Stokes diffusion equation, but it pro-
vides some clear guidelines. Considerable more empirical research is required for
the identification of the proper nonlinear dynamic configuration and the scaling
parametrization of actual financial market pricing processes.

9.6 Software

The computations of the first three Exercises can be executed in Microsoft EXCEL
spreadsheets or by using the Statistics Toolbox available from The MathWorks,
Inc., 24 Prime Park Way Natick, MA 01760-1500, USA. Tel. (508) 647-7000; Fax
(508) 647-7001; http://www.mathworks.com/products/wavelettbx.shtml.

The last Exercise uses Benoit 1.3: Fractal System Analysis (for Windows
95/98 or Windows NT), Trusoft International Inc., 204 37th Ave. N #133,
St Petersburg, FL 33704 Tel. (813) 925-8131; Fax (813) 925-8141; sales @trusoft-
international.com.
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See http://www.trusoft-international.com for details. This Benoit software
enables you to measure the fractal dimension and/or Holder—Hurst exponent of
your data sets.

9.7 Exercises

Exercise 387 Starting with an initial rate of return on investment x(0) = 0.1,
compute and plot the next 20 iterates of the parabolic logistic equation for a
Feigenbaum scaling parameter of k = 1.5,k =2,k =3.2,k =3.5andx = 4.0.
Your results should illustrate the convergence to equilibrium for k < 2 and the
period-doubling route to chaos for k > 2. How do these results illustrate that?
Determine the H-exponent of each of the five series, using wavelet MRA. Which
series are persistent and which antipersistent?

Exercise 388 Iterate the parabolic logistic equation with the Feigenbaum param-
eter k = 4.0 twenty times using initial values of x(0) = 0.1 and x(0) = 0.100001
and plot the sequence of x(t). Your results should illustrate the initial sensitivity
of a chaotic system to initial conditions.

Exercise 389  Write a simple computer program to graph the values of x (t) versus
varying scaling parameters k, 2 < k < 4, that result from repeated iteration of
the logistic equation. Do not plot the first 100 iterates during which the solution
approaches the strange attractor. Plot the next 10 iterates in a bifurcation diagram.
Show also that the bifurcation diagram is independent of the initial value of x (0).

Exercise 390 The strange or fractal attractor is the odd region plotted in the
phase space, to which the “trajectory” of the nonlinear discrete dynamic sys-
tem, represented by the logistic equation, is attracted. It represents all stable
equilibrium points of the system’s evolutionary process, and their limits. It is an
attractor, because no matter where in the phase space the process is started, the
x (1) is quickly attracted to the plotted region. It is strange, because the attractor
is neither a line nor a surface, but rather an object with a fractional dimen-
sion. A strange attractor is not a real physical entity, but an abstraction that
exists in phase space, i.e., a Euclidean space with as many (integer) dimensions
as are needed to describe the dynamic behavior of the process under investiga-
tion. For our process, this Euclidean space is the 2D [x(t), x(t — 1)] plane. One
point in the phase space represents a single measurement of the state of the rate
of return process as it evolves over time. When all such points are connected,
they form a trajectory that lies on the surface of a strange attractor. Deter-
mine the shape of the strange attractor of the chaotic logistic equation (when
k = 4.0)? Why is the global shape of the attractor a parabola? Show the sys-
tem’s state trajectory fort = 101, ..., 1,001 and demonstrate its “deterministic
irregularity.”

Exercise 391 Using the Benoit software, can you determine the fractal dimension
D of the strange attractor, which must be a fractional number 1 < D < 2?
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Notes

1

11

12

13

14

Crack and Ledoit (1996) present an interesting example of the existence of an observable
nonlinear robust structure in stock market pricing without any predictability of the stock
market returns.

The simulations with the logistic parabola were executed in a Microsoft® Excel 97
spreadsheet, on a simple Compaq ARMADA 1700 notebook with Intel Pentium II pro-
cessor. The growth parameter x was varied in steps of 0.1 for r = 1,2, ..., 1,100.
The Hurst exponents based on wavelet MRA of level 3 of the simulated data using
the software Benoit, Version 1.2, of TruSoft Int’l Inc. 1997, 1999. This is not the best
procedure, but it was the one available to us at this time. We prefer to compute the Hurst
exponent using the Haar wavelet MRA of MATLAB®.

This scaling or stability parameter is, indeed, the first cousin of the Lipschitzo;, = 1/az,
where oz is Zolotarev’s stability exponent.

Cf. James and Webber, 2001, p. 234 and their section 11.3 “An IS-LM Based Model,”
pp- 284-290, for more details on the behavior of this intriguing financial economic
model.

The stability of differential maps which map the unit interval into itself is discussed in
greater detail in Singer (1978).

We used the wavelet routine in TruSoft’s Benoit, Version 1.3, to compute the Hurst
exponent (cf. Section 9.6). However, there are some doubts about the reliability of the
this wavelet procedure incorporated in the Benoit software and we are in the process of
redoing the identification of the Hurst exponents for the various stability regimes.

For more images of critical points of nonlinear dynamic mappings, cf. Jensen and
Myer (1985).

Notice that the Excel spreadsheet plotter has a problem with sharp discontinuities at the
bottom of the chaotic, « = 4.0 process. Excel’s spline smoother curves the line below
x(t) = 0, although the process x(¢) > 0, always, by definition.

This is a familiar result for economists who have studied Solow’s one-period delayed
stable market pricing spiral, towards a unique price equilibrium, also called the dynamic
cobweb pricing model.

Figure 9.6 and the following time plots portray x(¢) for + = 901-1,000, after the
logistic process has completely stabilized. These oscillations are not transients, but
cyclic fluctuations between two steady-state equilibria.

This so-called Feigenbaum constant § was originally found by Grossman and
Thomae (1977).

The number of decibels is, by definition, 10log, of a squared magnitude ratio, such as
the spectral power ratio (cf. Chapters 5 and 6).

George Ferdinand Ludwig Phillip Cantor (1845-1918) was a Russian-born German
mathematician best known as the creator of set theory and for his discovery of the
transfinite numbers. He also advanced the study of trigonometric series, was the first to
prove the non-denumerability of the real numbers, and made significant contributions
to dimension theory. Cantor received his doctorate in 1867 and accepted a position at
the University of Halle in 1869, where he remained.

In 1971, a Belgian physicist, David Ruelle and a Dutch mathematician, Floris Takens,
together predicted that the transition to chaotic turbulence in a moving fluid would take
place at a well-defined critical value of the fluid’s velocity. They predicted that this tran-
sition to turbulence would occur after the system had developed oscillations with at least
three distinct frequencies. Experiments with rotating fluid flows conducted by American
physicists Jerry Gollub and Harry Swinney in the mid-1970s supported these predictions.
Another American physicist, Mitchell Feigenbaum, then predicted that at the critical
point when an ordered system begins to break down into chaos, a consistent sequence of
period-doubling transitions would be observed. This so-called “period-doubling route
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to chaos” was thereafter observed experimentally by various investigators, including
the French physicist Albert Liebhaber and his coworkers.

15 All solutions were obtained with Maple symbolic algebra software in TCI’s Scientific
Workplace, Version 4.0.

16 Cf. Chapter 3 for the comparison with stable processes with inexistent, i.e., noncon-
verging, means and variances.

17 Wavelet software for these computations was provided by Torrence and Compo, 1998
(cf. Chapter 8).

18 In classical financial-economics, equilibria are commonly static. Dynamic equilibria
have just started to appear in the theoretical financial-economic literature in the form of
state space and phase diagrams, although they were already familiar to mathematical
economists in the 1970s. For example, Takayama (1974, pp. 321-330) illustrates the
use of the phase diagram technique for a proof of global stability for the static three-
commodity market case (with gross substitutability).

19 For an example of the identification of such a chaotic attractor, cf. Peters (1991).

20 Indeed, the modern study of chaotic dynamics began in 1963, when the American
meteorologist Edward Lorenz demonstrated that a simple, deterministic model of
thermal convection in the Earth’s atmosphere showed sensitivity to initial conditions
or, in current terms, that it was a chaotic process (Lorenz, 2001). Cf. also the picture of
fractal atmospheric convection, i.e., the empirical breaking-wave patterns in clear-air
turbulence, due to changes in the wind within and around the jet stream, in chapter 2.

21 The term chaotic dynamics refers to the evolution of a process in time. Chaotic pro-
cesses, however, also often display spatial disorder — e.g., in complicated fluid flows.
Incorporating spatial patterns into theories of chaotic dynamics is now a very active area
of study. Researchers hope to extend theories of chaos to the realm of fully developed
physical turbulence, where complete disorder exists in both space and time. This effort
is widely viewed as among the greatest challenges of modern physics. The equivalence
in financial economics would be to find a complete chaotic dynamic theory of multiple
coexisting global market pricing processes, which can explain financial crises occurring
in several interlinked regional pricing markets (cf. Dechert, 1996).

22 Oliver Heaviside, 1850-1925, was an English physicist, who made important advances
in electromagnetism. He was the co-discoverer of the Kennelly—Heaviside Layer, a layer
in the earth’s atmosphere, occurring at 100-120 km above sea level, in which short-wave
radio waves are reflected and temperature increases with increasing altitude.
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10 Measuring term structure
dynamics

10.1 Introduction

Financial turbulence is a phenomenon occurring in antipersistent financial markets.
In contrast, financial catastrophes occur in persistent financial markets. A rela-
tionship can be established between these two extreme phenomena of long-term
market dependence and the older financial concept of illiquidity. The measurement
of the degree of financial market persistence and the measurement of the degree
of financial market illiquidity are related.

It has been suggested by Peters (1989, 1994) of PanAgora Management, that
to understand financial turbulence, the dynamics of cash flows between the var-
ious market participants, within and between different asset markets, should be
measured, identified and analyzed more carefully. Although there exists not yet
a complete theory of physical turbulence, let alone of financial turbulence, many
parallels between the two have been noted by Mandelbrot (1972, 1997, p. 43), as
we observed earlier in Chapter 8 and as we’ll discuss in greater detail in Chapter 11.

On the other hand, the accurate measurement of illiquidity and illiquidity risk
has gained in importance, as the example of the $4 billion bail-out of the collapsed
Long-Term Capital Management (LTCM) hedge fund in 1998 demonstrates. This
hedge fund applied a trading strategy known as convergence arbitrage (Jorion,
1999; Dunbar, 2000). This strategy is based on the idea that if two securities have
the same theoretical price, because they have the same return-risk profile, their
market prices should eventually, in the long run, be the same. But this strategy
only looks at the frequency distribution of the rates of return and ignores that risk
is a long-term memory or time-dependent phenomenon. Indeed, in the summer of
1998, LTCM made a huge $4 billion loss, because Russia defaulted on its debt,
which caused a flight to quality in the German bond market. There was a historical
sequence of events which caused a fairly rapid dissipation of the market value of
the German bond assets and thus of the equity of highly leveraged LTCM.

LTCM did not have a large direct exposure to illiquid and politically risky
Russian debt, but it tended to be long in illiquid German (off-the-run) bonds and
short in the corresponding liquid German (on-the-run) bonds. The spreads between
the prices of the illiquid bonds and the corresponding liquid bonds widened sharply
after the Russian default. Credit spreads also increased and LTCM was highly
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leveraged, with liabilities 30 times larger than its equity. Its financial leverage
was about three times larger than the financial leverage of an average commercial
bank. When it was unable to make its projected “risk-free” arbitrage profits, it
experienced huge losses and there were margin calls on its positions that it was
unable to meet.

LTCM’s position in 1998 was made even more difficult by the fact that many
other hedge funds followed similar convergence arbitrage strategies. When LTCM
tried to liquidate part of its portfolio to meet its margin calls by selling its illiquid
off-the-run bonds and by buying its liquid on-the-run bonds, other hedge funds
were facing similar problems and tried to do similar trades. The price of the on-the-
run bonds rose relative to the price of the off-the-run bonds. This caused illiquidity
spreads to widen even further and to reinforce the flight to quality. Thus, the
illiquidity problem was exacerbated and not alleviated. This is a clear example
of long-term illiquidity risk-dependence that was not foreseen by the assumptions
of the Geometric Brownian Motion (GBM) models used by LTCM’s dynamic
hedging managers and their illustrious Nobel Memorial Prize winning partners.

Despite its obvious importance, the proper measurement and analysis of credit
and illiquidity risks is still in its infancy. For example, there is still no agreement on
how market illiquidity should be measured. More precisely stated: there does not
yet exist a measurement standard for the various degrees of illiquidity. Which levels
of hypo-liquidity are prone to generate financial discontinuities or catastrophes,
which neutral levels of liquidity are prone to generate normal trading activity, and
which levels of hyper-liquidity are prone to generate financial turbulence?

Therefore, in this chapter we discuss the empirical measurement of the dynamics
of market illiquidity, in particular the illiquidity of cash flows, which is directly
related to the dynamics of the term structure of rates of return on cash investments
and to the concept of (bond and equity) duration (Culbertson, 1957). For a recent
survey on current theoretical work on term structure dynamics, cf. the article by
Hong Yan (2001). For a thorough discussion about a few traditional approaches
to the model identification of term structure dynamics, particularly by classical
principal component analysis, cf. the companion article in the same issue of the
Financial Analysts Journal by Chapman and Pearson (2001).

In Chapter 9, we discussed the phenomenon of chaos or nonunique deterministic
steady-state dynamic equilibria, by way of simple simulations with the parabolic
logistic equation, which is the “poor man’s version” of the celebrated parabolic
Navier—Stokes partial differential equation (PDE). The Navier—Stokes PDE is the
standard dynamic physical flow or risk (energy) dissipation model, which inspires
to replace the large set of affine multi-factor diffusion models by new nonlinear
financial diffusion models. In Chapter 11, we discuss more details of the identi-
fication and dynamic simulation modeling of financial turbulence. We’ll discuss
also how wavelets can be used to solve a discrete version of the nonlinear Navier—
Stokes PDE via the Galerkin finite elements solution method for such dynamic
simulations.

To accomplish the two ambitious objectives of measurement and simulation
of financial illiquidity, we reformulate and reinterpret the classical laws of fluid
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mechanics into cash flow mechanics, in particular, the law of conservation of
investment capital (= “mass”), of the cash flow rate (= “momentum”) and of
the second moment of the rate of cash return (= financial market risk = 2x
“energy”’). Therefore, our newly proposed cash flow laws are modeled on the
basic conservation laws of hydraulics and aerodynamics.!

For example, we’ll study Richardson (1926)-type “scale-by-scale cash-flow rate
of return budget equations,” e.g., the term structure of default-free government
zero-coupon bonds, which allows us to interpret the transfer of cash returns among
the different maturities, scales or frequencies of investment cash flow. It is on the
borders between fixed maturities that nonlinear mixing processes of cash flows
occur and where long-term dependence phenomena are found. For more detailed
background on the formulation of these laws in the mechanics of incompress-
ible physical fluids, cf. Batchelor (1970), Landau and Lifshitz (1987) and Tritton
(1988). Van Dyke’s (1982) photographic album provides inspiring 2-dimensional
(2D) visualizations of fluid dynamics and turbulence.

At first our new approach may appear somewhat contrived and artificial, but the
final result of these reformulations and reinterpretations consist of a set of various
useful quantifiable financial quantities, which will assist us with the measurement,
analysis and characterization of the complex dynamic financial markets. They
will do that in ways that cannot be achieved by most of the current concepts of
finance and economics, which were developed for Marshallian comparative static
pricing models and for Debreu and Arrow’s static general equilibrium pricing
models, and not for the current affine dynamic partial differentiation models. The
comparative static and the general equilibrium pricing models provided us with
many imaginative concepts and powerful qualitative insights, but they contributed
little to robust explanations and predictions of the empirically observed financial
market dynamics.

Despite the difficulties we encounter with such a “copy-cat” approach, the
current underdeveloped status of the liquidity analysis of the financial markets
commands us to break new grounds through interdisciplinary comparisons of ana-
lytical methodologies, so that we can make slow but steady progress in the difficult
areas of measurement and analysis of the risks of dynamic cash flow markets.

The fundamental cash growth rate accounting framework for multi-asset and
multi-country investment portfolios has already been developed by Karnosky and
Singer (1994) and Singer and Karnosky (1995). Los (1998, 1999, 2002) established
its empirical applicability and extended that accounting framework to a classical
Markowitz” mean—variance portfolio optimization and risk attribution framework
by using tensor algebra. In Chapter 12, we will extend this simple accounting-
cum-optimization framework even further to beyond Markowitz’ mean—variance
analysis, so as to include stable and heavy-tailed, skewed and excess-kurtosis, rate
of return distributions based on long-term dependence relationships.

In the current chapter we’ll focus on the term structure of so-called laminar and
turbulent investment cash flows. By way of several Examples and in the Exercises
we’ll demonstrate the empirical applicability of these new ways of measuring the
dynamics of the cash flows of investments and the term structure. For example,
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we’ll compute the coefficient of illiquidity (= “dynamic viscosity of cash flows”)
for a term structure based on the S&P500 stock market index.

For the discussion of financial turbulence in Chapter 11, starting with
Kolmogorov’s 1941 explanation for homogeneous fluid turbulence, we’ll draw
upon examples from meteorology and hydrology, because advanced dynamic
financial modeling encounters similar problems as in dynamic meteorological
and hydrological flow modeling, as originally suggested in Los (1991a,b). In
Chapter 11, we’ll describe the wavelet Galerkin finite elements method, based on
the wavelet multiresolution analysis (MRA) of Chapter 7, to dynamically solve
the nonlinear Navier—Stokes equations.

We expect that such identification and simulation of similar nonlinear diffusion
models will become a leading example for the study of transient dynamics — in
particular the occurrence of discontinuities, intermittency and turbulence — in the
global financial markets, as originally envisioned by Benoit Mandelbrot in the
1960s. Currently, we have the high frequency data, the advanced dynamic physics
modeling methodology, the signal and process engineering technology, and the
(graphics) computer power to realize Mandelbrot’s original vision.

One particular point we should emphasize right from the beginning: finan-
cial turbulence is not a “negative ” or a “disastrous” phenomenon. Intermittency
and turbulence may be unsettling for market participants, but they are efficiency
enhancing, deterministic, dynamic phenomena, which we must understand better
for a full appreciation of the ongoing proper functioning of the financial markets
and the risks they contain. Financial intermittency and turbulence are limited
phenomena that occur under particular nonlinear institutional constraints of well-
functioning financial markets, such as the foreign exchange markets of the
Deutschemark, the Euro or the Japanese Yen, when these markets are experiencing
severe differentials in liquidity persistence, respectively.

In other words, financial furbulence, which occurs in antipersistent financial
markets, must be sharply differentiated from the more fearsome financial crises,
which are unpredictable discontinuities. Truly catastrophic crisis phenomena —
like the 1929 and 1987 market crashes — occur when there is a large differential in
persistence between the various interconnected financial markets. Such financial
crises we either need to prevent by changing the institutional structure of the exist-
ing financial markets to make them all less persistent and more liquid, or against
which we must hedge ourselves by trading financial catastrophe bonds or deriva-
tives, to prevent their truly catastrophic consequences, as originally suggested by
Chichilnisky and Heal (1993) and Chichilnisky (1996). Such completion of the
finanical markets by enhanced arbitrage will make them more liquid and less prone
to discontinuities.

10.2 Dynamic investment cash flow theory

We will now discuss general cash flow streams.> When cash is in motion, its
properties are described at each point in time by the properties of its cash
flow rate.
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Definition 392 A cash flow rate AX;(¢t) at time t is the product of the cash
invested (= cash position) X (¢) at the beginning of investment horizon t and the
spot, zero or cash rate of return (= cash velocity) x; (t) for investment horizon t:

AX (1) = xc (1) X (1) (10.1)
since the invested value of an asset grows approximately as
X:(t4+1)=X(t)+ A X(1)
=[14+x: ()] X (1)
= X, (1) - " (10.2)
The most important part of this definition is the term cash rate of return x, (¢),
which can be used in many different exact cash accounting frameworks (Karnosky

and Singer, 1994; Singer and Karnosky, 1995; Los, 1998, 1999, 2001; Leow,
1999).

Remark 393 The current price based on the investment with horizon t is then
the discounted price

X (1) = Xo(t + De™5® (10.3)

Remark 394 Continuous compounding gives

Xe(t+7) =X () - 50T (10.4)
so that
In X, (¢ —InX. (¢
X () = — e+ -InX. 0 (10.5)
T

Example 395 According to the exact cash rate of return accounting framework
for multi-asset- multi-country portfolios, at time t an investor has three possible
investment instruments: (1) investment in an asset k in country i with rate of return
rik(t), (2) a cash swap with rate of return c j (t) —c; (t), with c ;(t) being the risk free
cash rate in country j into which the nominal is swapped, and c;(t) being the risk
free cash rate in country i out of which the nominal is swapped, and (3) the foreign
currency appreciation rate f;(t) of country j 3 Thus, one particular bilateral
investment strategy at time t is represented by the following strategic rate of return:

xiji(t) = rip(t) + [cj (1) — ci (O] + f;(0) (10.6)

with i, j € Z% being the indices for bilateral cash flows between the various
countries and k € 7, being the index for the various assets (stocks, bonds,
real estate, commodities, etc.). Notice that, according to the Capital Asset
Pricing Model (CAPM), such an international investment strategy is, equivalent
to [rir(t) — ci(t)], the sum of the asset risk premium in local market i, and
[cj(®)+ fj(t)], the cash return on currency j (Los, 1998, 1999, 2002; Leow, 1999).
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This leads to the following definitions of continuous and steady cash flows.

Definition 396 Continuous cash flow occurs in a particular cash flow channel,
when its cash flow rate AX.(t) is constant

AX (1) = x: ()X (1)

= constant (= independent of time) (10.7)
Remark 397 This equation is also called the cash flow continuity equation.

Continuous cash flow does not mean that the cash rate or return is constant, but
that the first difference of the cash flow is constant. A constant cash rate of return
defines a steady cash flow.

Definition 398 Steady cash flow occurs in a particular investment channel, when
its spot return rate

X () = x¢

= constant (= independent of time) (10.8)

It’s obvious that, under conditions of continuous cash flows, the spot return rate
x7 is high when the cash flow channel is constricted, i.e., where the investment
position X is small, and the cash flow return rate x, is low where the channel is
wide, i.e., where the investment position X is large.

Remark 399 Day traders, who have very short daily investment horizons, trade
very quickly with small investment positions, in the order of a $1,000 and reap
highly volatile returns x,(t) with very large amplitudes |x. (t)|. In contrast, insti-
tutional investors, such as pension funds, insurance funds or large mutual funds,
who usually have very long-term investment horizons, trade much slower with
very large investment positions in the order of $100 million and more, and who
invest for steady rates of return x. (t) with moderate amplitudes |x, (t)|. The trillion
dollar research question is: can such different types of traders, with investment
positions of different size and investment horizons of different lengths, coexist in
the same global markets without financial intermittency and turbulence, or are
these phenomena necessary and unavoidable consequences? Since day traders
add liquidity and reduce the persistence of a financial market, it is likely that they
reduce the possible occurrence of financial crises or catastrophes, which are phe-
nomena occurring in illiquid, persistent financial markets, when suddenly large
investment positions are set up, or, more likely, suddenly unwound in a panic
atmosphere. However, since day traders trade very fast and institutional traders,
such as the managers of pension funds and insurance funds usually trade very
slow, it is likely that the confluence of these cash flows with different investment
horizons and maturities and trading speeds causes vortices and turbulence, which
is an efficiency-enhancing phenomena, since it reconciles the variety of velocities
(= cash rates of return) of the confluent cash flows.
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10.2.1 Perfectly efficient dynamic financial markets

The motion of empirical cash flows in globally interconnected financial markets is
very complex and still not fully understood, because the flows start and stop at var-
ious times and go back and forth between billions of bilateral positions.* Until very
recently, financial economists have proceeded by making several heroic, simplify-
ing assumptions for stationary, and often static, markets. Following the classical
definitions of ideal, perfectly efficient physical flows, the following is my own sug-
gestion for a new idealization definition of perfectly efficient dynamic financial
markets, which can provide a new standard for the comparative measurement of
dynamic cash flows in nonstationary markets. This effort, to define what empirical
financial markets clearly are not, is intended to formulate benchmark quantities
for the measurement for the highly nonstationary financial market dynamics.

Definition 400 Perfectly efficient dynamic financial markets have cash flows,
which are:

(1) perfectly liquid (or nonviscous): there is no internal (institutional) friction in
the financial markets and all assets of different maturities in all markets can
be instantaneously purchased and liquidated. This means that the financial
markets instantaneously clear and that they are always in equilibrium.

(2) steady: the term rate of return x,(t) of each cash flow remains constant, i.e.,
it is not volatile.

(3) incompressible: the density of the cash transactions remains constant in
time, i.e., the volume of the markets’ buy and sell transactions remains uni-
form over time. There are no cyclicities, no intermittencies, no rarefaction
and condensation periods, and no discontinuities (“gapping”) in the market
trading.

(4) irrotational: there is no angular momentum of the cash flows, i.e., all cash
flows in a particular investment channel at a time t are in the same direction
and are not reversed within the same channel and all flows in all channels
are in the same direction. All decision makers with different time horizons for
investment receive the same information at the same time and interpret that
information correctly, simultaneously and in the same fashion (= the markets
are rational and show a “herd instinct” ).

Remark 401 There is some contradiction between this idealization of irrota-
tional cash flows and the financial-economic concept of a market of buyers and
sellers, or of risk hedgers and speculators, since in a market one needs two parties
with opposite views to conduct one arbitrage trade to establish a price. When
everybody within a particular financial market has the same idea and invest in the
same direction, that market’s prices go ballistic, i.e., the phenomenon of a market
bubble, of the kind we have experienced in the technology sector in the late 1990s
and which has just gone bust in 2002. But, of course, this also implies that there
are counterparts in coexistent financial markets, where prices become severely
depressed.
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In the idealized situation of a perfectly efficient dynamic financial market, the
cash flows in a particular investment channel are all streamlined in the same direc-
tion (there are no reversal trades within a channel or crossover trades between
channels) and move at the same constant flow rates x;(¢). There are no “bulls”
(positive investors) and “bears” (negative investors) trading at the same maturity
levels. This means, e.g., that the term structure of interest rates is horizontal can
only move up and down parallel to itself, because of changing inflation expec-
tations, and it does not rotate or curve. There is no time preference and there is
no risk differentiation. This is, of course, an abstraction from empirical financial
market reality, where slopes, rotations and curving of the term structures of interest
rates are difficult to model empirical phenomena (cf. Chapman and Pearson, 2001;
James and Webber, 2001).

10.2.2 Financial pressure and cash flow risk

Under such abstract, perfectly efficient dynamic financial market conditions, one
can formulate a Bernoulli equation for cash flows which quantifies the concept of
financial pressure.’

Definition 402 (Bernoulli equation for cash flows) In perfectly efficient dynamic
financial markets

FP(t) + 1 px2(t) = constant (10.9)

where FP(t) is the financial pressure at time t and p = 1/$ is the uniform cash
density in the investment channel with a particular horizon (maturity) t.

Remark 403 The uniform cash density p = 1/$ is, in financial terms, the
purchasing power of one dollar.

Remark 404 The Bernoulli cash flow equation is also called the cash risk
equation. It implicitly defines and measures the concept of financial pressure,
since

FP. (1) = constant — 1 px?(1) (10.10)

This implies that financial pressure is relatively large where investment cash moves
slowly and relatively low where it moves fast.

This Bernoulli equation for cash flows states that the sum of financial pressure
FP. (¢) and the local risk of the cash flow per dollar invested, % px% (1), is constant
in a cash flow investment channel (or “streamline”) of a particular term.

Remark 405 The local risk %pr(t) is not the same as the average risk

%pE {x% (1)} familiar from classical finance. In Chapter 8, we learned to measure
local volatility by wavelet MRA.
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This Bernoulli equation for cash flows describes a Venturi cash flow channel to
measure the difference in financial pressure between two different places along an
investment cash flow channel, as follows. The Bernoulli equation implies that

FP; (t) + Spx%(t) = FP, (1) + %prj (t), where (i, j) € Z? (10.11)

so that the financial pressure differential FPr (1) — FP¢ (1), measured simultane-
ously at two different horizons 7; and 7; at time ¢, is the difference between the
local volatilities or risks (= “dynamic energies”) of the uniform cash flow at these
two maturity points

AveFP(1) = FPy, (1) — Py, (1)
= §olx; (1) — x} (0]
—1pAgx* () (10.12)

When the financial pressure at an “upstream” point, investment horizon, or matu-
rity, 7; is higher than at “downstream” point or horizon t;, the cash flow velocity
X7, (t) at maturity 7; is higher than at maturity 7;, and vice versa.

This point about the cash flow pressure differential A, FP(¢) becomes clearer,
when we take account of the size of the investment positions at the two investment
horizons. When the cash flow between the two investment horizons is continuous,
as thus far we have assumed, when

xe, (1) Xz, (1) = xr, (1) Xy, (1) = constant (10.13)
then
xo 1) = 220 ) (10.14)
=% 0
and

Ao, FP(1) = =3 pAg,x* (1)
= %p[x? (1) —x2 (0]

L [X,0) e
2” L X, ”(t)} 50

1 X, (1)) 5
1 [ X0 - X2
2 X2 (1)

x2 (1) (10.15)

T

Note that, under the condition of a continuous cash flow, AT[T/' FP(t) > 0 if
and only if X % (1) > X %j (t). This financial market cash flow system operates as
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follows. Consider a particular very crowded asset investment market at a particular
investment horizon, with many market participants, where a lot of cash is squeezed
together. As soon as an extra investment channel at another investment horizon
opens up and cash begins to exit that particular asset market, the squeezing, or pres-
sure FP, is least near this small exit, where the motion (= cash flow rate of return
x (1)) is greatest. Thus, under the assumption of perfectly efficient dynamic finan-
cial markets, the lowest financial pressure occurs where the investment channel is
smallest and the cash return rate or local risk is highest, e.g., in emerging finan-
cial markets, where the marginal productivity and the risk of capital investment
is highest. In contrast, the highest financial pressure occurs where the investment
channel is largest and the cash return rate or local risk is lowest, e.g., in devel-
oped financial markets, where the marginal productivity and the risk of capital
investment is lowest.

Remark 406 One should be on the alert for financial intermittency and
turbulence when the difference in financial pressure between the upstream and
downstream financial markets, Ay FP(t), is large. When the difference in the
cash investments in each of the two connected markets, X % (t)—X % (1), is very
large, the local risk x% () = ((Xr, (1)) / (X, (D)) x<, (1)) in the downstream market

is very large. Under such circumstances, the uniform local risk term, % px%(t),
begins to figure prominently in the form of the financial Reynolds number (see
below). A typical high financial Reynolds number empirically measures the onset
of intermittency and financial turbulence.

Multiplying the local risk of the uniform cash flow by its flow rate provides the
rate at which the risk is transferred, i.e., it provides its financial power.

Definition 407 The Cash Flow Risk (CFR) with investment horizon T at time t
is defined by

CER(t) = $px2(1) AX (1)

= %px%(l)[xr(f)xr(f)]
= Lo (X (0) (10-16)

This leads to the definition of available cash flow risk per dollar invested.

Definition 408 The Available Cash Flow Risk (ACFR) per dollar invested is
given by

CFR(t) 1
ACFR(t) = Yo = 505 (0 (10.17)

Remark 409 The ACFR is the local skewness of the term rate x. (t).
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Definition 410 The Average Available Cash Flow Risk (AACFR) per dollar
invested is given by

AACFR(t) = 1pE{x} (1)) (10.18)

Remark 411 The AACFR is similar to the third distribution moment or the global
skewness of the term rate x,(t). It is a classical result that the skewness is a measure
of vortex stretching (Frisch, 1995, p. 156), to be discussed in Chapter 11.

This last definition involves the third moment (skewness) m3 = E {xf (1)} of
the distribution of the cash flow rate of return x;(¢) in the term structure of spot
rates {x;(¢) for all 7}. For (symmetric) Gaussian investment rates returns m3z = 0
and thus the AACFR = 0. Gaussian distributions do not exhibit any AACFR
phenomena. In contrast, asymmetric distributions of investment rates of return
m3 # 0, as we discussed in Chapters 1 and 3. Thus, the AACFR is nil, when the
distribution of the rates of return is symmetric around zero, e.g., when it s as likely
to make money as it is to lose it. The AACFR is positive when the distribution of
the rate of return x, (¢) is positively skewed, and negative when its distribution is
negatively skewed. Interestingly, as we mentioned in Chapters 1, 2 and 3, most
empirical financial distributions are skewed and thus exhibit AACFR # 0. Until
recently, by systematically assuming most return distributions in finance to be
Gaussian, financial economists avoided to discuss the dynamic CFR phenomena
in which signal processing engineers and physicist are so interested! By assuming
Gaussian distribution financial economists prohibited themselves from discovering
why financial turbulence occurs.

10.3 Nonlinear relationships in finance

Now, we need first to make a digression to a few essential financial concepts and
definitions and relationships to see that investment cash flows X (¢) are nonlinearly
related to the yields x; (), both in a static and a dynamic sense. The static nonlinear
relationship is represented by the term structure of interest rates at a particular
time ¢. The dynamic nonlinear relationship is represented by the nonlinear price
diffusion equations and related curve-fitting functions of generalized dynamic
term structure models of each of the spot interest rates on the term structure. To
understand the importance of these relationships it is crucial to understand that in
finance

asset (or liability) price = discounted cash flow related to investment horizon t

Next, to motivate further our use of wavelet MRAs, we’ll propose to use the
Navier—Stokes nonlinear diffusion equation as a generalized version of the Black—
Scholes pricing equation. Such a nonlinear diffusion equation can lead to stability,
periodicity, cyclicity, turbulence and intermittency, as we discussed in Chapter 9,
using the logistic equation as a simplified example of such a nonlinear diffusion
equation. In Chapter 11, we’ll then discuss how we can measure the essential
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parameter values of this generalized price diffusion equation using wavelet MRA.
In Chapter 11, we’ll also discuss how we can solve this nonlinear diffusion equation
using wavelet—Galerkin method and use the solution to simulate each type of yield
and thus price behavior of the various cash flows in the financial markets. We’ll
see that the results of such simulations crucially depend on the correct value of the
parameter value of the nonlinear term in the diffusion equation.

After the motivational discussion of the generalized price diffusion equation,
and, again, analogously to definitions in physical flow dynamics, we continue with
the definition of a coefficient of cash flow illiquidity, which allows us to measure
the degree of illiquidity in the financial markets using wavelet MRAs.

10.3.1 Linear combinations of assets and liabilities

To understand the centrality of a dynamic valuation of assets, which relates cash
flows, prices and rates of return, we only have to look at the basis structure of
finance: double-entry bookkeeping and the law of one price or, equivalently,
pricing by arbitrage.

The double-entry bookkeeping model of accounting shows that the value of
any concern can be represented as a linear portfolio of fundamental and derivative
financial instruments (cf. Los, 2001, p. 24). The Accounting Identity of the balance
sheet with current market values is

Assets(r) = Liabilities(¢) + Equity(¢)
or A(t) = L(t) + E(¢t)
or, slightly rewritten, E(t) = A(t) — L(t) (10.19)

This Accounting Identity is the basic model for exact financial modeling, since
financial instruments can be viewed as combinations of long and short positions
of the fundamental securities. Changes in the net equity position A; E(t) over the
accounting period t, which is usually one quarter of a year or a year, are produced
by the corresponding changes in the assets and liabilities, as reflected in the income
statement®

AE (1) = AAc(t) — AL (1)
or xFWE(t) = x () A (1) — xF (1) L (1)
or Net Income. (t) = Revenues; (r) — Expenses_ (t) (10.20)

on a market value basis, where xTA (¢) is the market valued Rate of Return on
Assets (ROA) over the period 7, xTL () is the market valued rate of debt liability
expense (= rate of interest on all debt) over the period t, and xf (¢) is the market
valued Rate of Return on Equity (ROE) over the period t. Thus, the Accounting
Identity combines the bundles of discounted cash flows in a linear fashion and
these discounted cash flows are nonlinearly related to the rates of return.

The rational law of pricing by arbitrage implies that all other financial instru-
ments, like derivatives, can be derived from fundamental asset valuations by simple
linear combinations. Call and put options can be synthesized from a linear portfolio
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of bonds and stocks (cf. Los, 2001, pp. 164—166). Forwards and futures can be
represented as time-shifted bonds or stocks (cf. Los, 2001, pp. 225-227). Swaps
can be represented by a combination of a long and a short bond, or, equivalently,
by a series of zero coupon bonds, or a series of long and short forwards (cf. Los,
2001, pp. 239-243). But the resulting portfolios may not behave in a linear fashion.
This can lead to quite complex situations in international cash flow analysis, as the
following simple example shows.

Example 412 One can form a square matrix of bilateral cash flow channels
between all investment horizons within the same country, so that every cash flow
investment channel associated with a particular term rate of return x,(t) is adja-
cent to every other cash flow investment channel, resulting in a net rate of return
for both cash channels together

Ar,»rjx(t) = x;(t) — Xt; ()
=Xx;j (1)

so that we form the bilateral cash rate of return matrix or strategic investment
return matrix

xu(@  xp@® ... x,n@®)

x21(t)  x22(0)

xX(1) = (10.21)

xT]’1(l) le,Tz(t)
Each side of the matrix represents the term structure of assets in the same country.
Alternatively, one can form a matrix of all the cash rates of one particular maturity
of a whole set of countries. This means that the global term structure problem is at
least a 3-dimensional (3D), or a cubic array problem. Such a cubic array can be
reduced to a 2-dimensional (2D), or matrix problem by vectorization and the use
of tensor algebra. Using tensor algebra, Los (2002) provides empirical examples
of such bilateral cash rates of return matrices based on the short-term cash rates

and stock market index return rates in 10 Asian countries (including Japan) plus
Germany.

Thus, we need to look at the nonlinear structures of the fundamental assets
and liabilities of various horizons in various countries, which can be combined in
myriad ways into advanced financial instruments.

10.3.2 Nonlinear term structure of interest rates
The term structure relates the yields of the assets and liabilities to the cash flows

invested, in a nonlinear, exponential relationship.

Definition 413 The term structure or spot rate curve {x; (), T} of any asset at
time t is defined by the functional relationship between spot or zero rates x(t)
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and the investment horizons or maturities T, written in continuous and discrete
time forms as

X (1) = e — 1

1/t
X (t+t
= [M} -1 (10.22)
X (1)
The term structure measures the current, spot rates of return on investments
with different maturities or investment horizons. A related definition is that of the
discount function.

Definition 414  The discount factors 8; (1) = e ® form the discount function
or discount curve {6;(¢), t}.

Example 415 The fundamental security of a simple (Treasury) bond at time t can
be decomposed into a series of zero coupon bonds. A zero coupon bond, or pure
discount bond, with maturity T and principal payment B(t), has zero coupons,
so that its (discounted) present value is

B(t + 1)e T in continuous time
PBy(1) = { B(t+1)
[1+x: O]

Thus, we have, ex post, by approximation the nonlinear balance relationship
between rates of return and cash flows

in discrete time (10.23)

[1+x: ()] = &=

B(t
_Buto (10.24)
PBy(7)
A t-year spot interest rate at time t is the interest rate of a zero bond
B(t 1/t
= | BErOT (10.25)
PBy(1)

This term structure of interest rates is the nonlinear relationship between the spot
interest rate x.(t) and the maturity T for a particular grade of credit quality
of obligations (e.g., bills, notes, bonds) (Barclay and Smith, 1995). The research
question is either how do the spot rates x. (t) develop over time for each investment
time horizon t, or how does the term structure (or cash flow velocity field) {x (t), T}
develop over time?

Example 416 For the second fundamental security of a stock we have the follow-
ing valuation. For (not necessarily constant) dividend payments D (t) and a cost
of capital x.(t) at time t, the dividend discount model (DDM) of stock valuation
for an ongoing concern (= a firm with an infinite life time) computes the stock’s
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present value at time t to be equivalent to an infinite series of “zero coupon bonds”
with maturitiest = 1,2, ...,00

o

& D+
PSo) = 2 T me T

=1

o0
= Z D(t + t)e 0T (10.26)
=1

Thus, for each of the dividend payments we have the cash flow relationship

[1+x. ()] ="

D(t
_Di+q) (10.27)
PSo ()
so that the t-year spot dividend yield is
Dt +0)1"
t)=|—— -1 10.28
X (1) |: PSo(7) :| ( )

10.3.3 Parametrized term structure models

We can generalize this financial constellation further. For a m x 1 vector X(z) of
current asset spot prices within a particular currency and an m x n matrix X(¢, 7)
of (certain or uncertain) cash flows between now and the investment horizon, or
time to maturity 7, one wants to find an n x 1 vector §;(¢) of discount factors at
time ¢, so that

X(1) = X(t, 1)8. (1) + (1) (10.29)

where the m x 1 vector of residual errors &(¢) are small.” The n x 1 vector of
discount factors 8§, (¢) is a function of investment horizons, or times to maturity,
defined for all maturity times T € [0, 00), so that §;(t) = [8(t1),...,8(tu)],
where {7} ;=1 .. » is a set of n cash flow times. The term structure can be easily
found from this vector of discount factors since the n x 1 vector of spot rates
X7 (1) = [x7;(t) = —Indy; (t)/r(,-]/j:L o If the vector &, (#) depends on a small
(«n) number of parameters, §,(t) = &,(t|a, b, ...), then fitting the discount
function or curve to the empirically observed discount factors involves choosing
this small set of parameters via error minimization or a calibration search. The
resulting calibrated vector of discount factors §; (¢) represents a coherent curve (as
it should based on rational expectations, c.q. market arbitrage), instead of a set of
independent discount factors {5(z;)}.

There are two main types of curves commonly used in fitting this discount
function: affine interest rate diffusion models and term structure fitting models.
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10.3.3.1 Affine interest rate diffusion models

Term structures are currently directly derived from many different theoretical affine
interest rate diffusion models, like the very popular one-factor term structure mod-
els with mean-reverting short rate dynamics of Vasicek (1977) and Cox et al.
(1985), the two-factor extended Vasicek term structure models of Heath et al.
(1990, 1992) and Hull and White (1990, 1993), the two-factor dynamic mean
model of Sgrensen (1994), the three-factor model of Balduzzi et al. (1996) and the
stochastic volatility term structure models of Longstaff and Schwartz (1992). We’1l
discuss the one-factor affine diffusion model in some detail to provide a flavor of
these parameterized affine term structure models.

The one-factor diffusion models of the term structure of interest rate are the
simplest (Hong Yan, 2000). The dynamics of the short rate xo(¢) are described by
the stochastic differential equation

dxo(t) = plxo()]dt + oxo(t)]dz(t) (10.30)

which means that the change in the short-term interest rate can be decomposed
into a drift u[xo(#)] dt over the time period (¢, t +dt) and an increment of a GBM,
dz(t), with an instantaneous volatility or risk measure o [xo(?)].

Remark 417 Since empirical evidence shows that, in a principal component
analysis of the covariance matrix of the term structure about 90 percent of the
variation of the term structure is attributable to the first component, which is
interpreted to be the level of the interest rate, any point on the term structure may
be used as a proxy for it (Chapman and Pearson, 2001). This factor is generally
taken to be the instantaneous short rate of interest (= the intercept of the term
structure). The scientific problem with principal component analysis is, though,
that the percentage of variation attributable to a particular component is dependent
on the number of components that are retained from the covariance matrix. If all n
components are retained, the question becomes: what is the size of the covariance
matrix, since that determines the percentage of variation decomposition.

The return on a zero coupon bond of maturity t can then be expressed as

dX.(1)
X (1)

= ux, dt +ox, dz(t) (10.31)

where the expected return on the bond py, dt is directly related to the drift
wlxo(¢)]dt and volatility o [xo(¢)] of the short rate and the volatility of the bond
return, o, is related to o [xo(¢)]. The no-arbitrage condition applied to the whole
set of zero coupon bond prices requires that the market price of risk is

K =X o] (10.32)

UX,

where x( () is the credit risk-free rate of return. The market price of risk L[xo(t)]
is the required compensation (or premium) in the form of excess return over the
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credit risk-free rate for bearing one unit of bond price risk as measured by the
bond’s volatility of return.

By applying It&6’s Lemma, the bond price X (¢) satisfies a partial differential
(diffusion) equation:

X (@) d{ulxo®)] — Alxo(t)]o [xo ()} X (1)
ar dxo(7)

132X, (1) ,
T 32’ [xo ()] + x0(1) X (1) (10.33)

This simple diffusion model can be solved by symbolic integration. But for
some diffusion models no closed form symbolic integration solution exists and
they have to be solved by numerical integration.

Example 418 In the very popular Vasicek (1977) one-factor mean-reversion
model, the short rate follows an Ornstein—Uhlenbeck process as follows

dxo(t) = k[ — xo(t)]dt + oy dz(t) (10.34)

where k measures the speed of mean reversion, X is the long-term mean to which
the short rate is reverting, and oy is the instantaneous volatility of the short rate;
all are assumed constant. In this model, the market price of risk is a constant

Alxo(®)] = 2o (10.35)

After integration the resulting diffusion equation, the price of a zero bond is then
shown to be of the form

X, (1) = A =B(@x1)] (10.36)

where T is the remaining time horizon. Thus the zero bond price X (t) is
exponentially linear in the short rate xo(t)

In X (1) = A(z) — B(t)x0(t) (10.37)

This implies that the spot rates of all maturities, x. (t), are linear in the short term
rate xo(t). The horizon dependent deterministic functions A(t) and B(t) relate
the spot rates of varying horizons (maturities) to the short rate xy(t), as follows

B - (00 1 0:\2]  [07B(0)*]

B(t) = —— (10.39)

This one-factor Vasicek model produces thus term structure shapes that are either
upward sloping, downward sloping or humped. Notice that when the parameter
k (which regulates the speed by which the short rate returns to its mean) is very
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large, i.e., when we have an ultra-efficient or ultra-liquid instantaneously adjusting
market
In X.(¢t) = A(7)
= —TX (10.40)

or the value of the zero coupon bond of maturity t is
X (1) =e ™ (10.41)

Because of the symmetric Gaussian distribution of z(t) the model can generate
negative interest rates x,(t). This is not a problem for real interest rates, but it is a
problem for modeling nominal interest rates and the pricing of interest rate (fixed
income) derivatives (Bakshi and Chen, 1996, Rogers, 1996).

Example 419 7o eliminate negative nominal interest rates, the Cox, Ingersoll
and Ross (1985) (CIR) term structure propose a one-factor affine term structure
(CIR) model with a square root process for the short rate:

dxo(t) = k[x — xo(t)] dt + ox+/x0(t) dz(t) (10.42)

This process has a reflecting boundary at xo(t) if 2k x > axz. Hence, it can exclude
negative short rates of interest. The market price of risk is now depending on the
short rate, since:
ro/xo(t
Alxo(1)] = Aovrolt) (10.43)
Ox

The resulting price of the zero bond still has the same form as in the Vasicek model,
since it is still exponentially linear in the short rate:

X, (1) = A =B(0x ()] (10.44)

although now the horizon dependent deterministic functions A(t) and B(t) are
as follows

Qe 29 ekt oty)T/2
A = X [ ve } (10.45)
Oy 2y + (k + 2o+ y)(erT = 1)
2(e?" — 1
B(r) = @ -D , (10.46)
2y + (k + 2o+ y)(e¥T — 1)
where

Yy =/ (k + 10)? + 202 (10.47)

The fact that the price of the zero bond is exponentially linear in the short rate
and that the drift and variance terms are linear in the one or two factor(s) is
characteristic of the general class of affine term structure models (Duffie and Kan,
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1994; Dai and Singleton, 2000). This characteristic of linearity makes these affine
models theoretically very tractable.

The ultimate kind of theoretical affine term structure modeling is found in
the so-called “random field” or “stochastic string” models, developed initially
by Kennedy (1994, 1997) and extended and characterized by Goldstein (2000),
and Santa-Clara and Sornette (2001). These random field models describe the
dynamics of the forward rate curve through an infinite-dimensional Gaussian
(Wiener) shock vector dz(t), i.e., each point on the forward curve is driven by
its own affine model. With a carefully defined correlation structure between the
shocks dz;(t),i = 1,2, ..., oo these infinite-dimensional models allow a flexible,
consistent and complete description of the evolution of forward rates that matches
the market prices at all times. Unfortunately, in reality we have only information
about a finite number of shocks dz; () and these models are therefore scientifically
uncorroborated.

For interesting discussions and generalizations of affine models, cf. Brown and
Schaefer (1994a,b) and Duffie and Kan (1994, 1996), respectively. For exam-
ple, affine term structure models may incorporate jump diffusion processes, like
in Ahn and Thompson (1988), Das and Foresi (1996), Duffie and Kan (1996),
who formally specified restrictions on the jump—diffusion processes to main-
tain the exponentially affine structure for bond prices, and Duffie er al. (2000),
who provided a general treatment of a transform class readily applicable to
valuing fixed-income securities. James and Webber (2001) present a complete
classification of affine term structure models.

10.3.3.2 Nonlinear term structure models

Based on the discussion in Chapter 9, the quadratic term structure models, in
which the term interest rates x; (¢) are quadratic functions of the factors, should
attract special attention for more detailed empirical research, because they harbor
the potential for chaotic dynamic equilibrium regimes. Examples are Longstaff’s
(1989) nonlinear term structure model, its modification by Beaglehole and Tenney
(1992) and Constantinides (1992) model for a nominal term structure. We already
discussed the nonlinear, three-factor, Lorenz term structure model of Tice and
Webber (1997) in Chapter 9.

10.3.3.3 Empirical identification of affine interest rate diffusion models

There is now alarge proliferation of theoretical parametrized term structure models
in the finance literature. For example, Luenberger (1998, pp. 406—408) lists no
less than seven of the best-known one-factor affine models: the Rendleman and
Bartter (1980) model, the Ho and Lee (1986) model, the Black, Derman and Toy
(1990) model, the Vasicek (1977) model, the CIR (1985) model, the Hull and
White (1990, 1993) model, and the Black and Karasinski (1991) model.
One-factor and two-factor affine term structure models assume that the dynamics
of zero bond prices are driven by the same source or two sources of random shocks,
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respectively, and, therefore, that the term structure spot rates are locally perfectly
correlated with each other. This assumption is empirically falsified (Hong, 2001).
Empirical evidence suggests much more complex volatility or risk term struc-
tures than any of these simple affine term structure models allow for (Chapman
and Pearson, 2001). Empirical studies show that (1) correlation between the var-
ious spot rates x,(¢) are different from unity, and (2) these spot rates are highly
correlated if they have the same horizon t, but their correlations are significantly
reduced for different time horizons or terms 7. In other words, the term structure
and yield curves are highly segmented. Moreover, based on empirical evidence,
the shorts rate covolatility structure is much more complex than these simple affine
factor models can accommodate.

These observations are all quite important for the financial markets, because,
e.g., the value of interest rate derivatives critically depends on the specification
of the volatility term structure. But, once more than one factor is introduced to
explain the shape of the term structure, confluence phenomena begin to occur
and the diffusion processes become more complex, because of the mixing of the
random processes. When these mixing diffusion processes are subject to nonlinear
constraints, we have the model setting for possible chaotic phenomena.

It is now high time that rigorous and meticulous empirical identification and
analysis weeds out the theoretical models that cannot be corroborated by empiri-
cal evidence. The reason that this has not yet happened is that the emphasis in the
empirical corroboration process has traditionally been placed only on explaining
the first two moments of the resulting theoretical frequency distributions. This
procedure provides insufficient discriminating identification for proper empirical
falsification. No attention has been paid by the empirical financial researchers to
(1) the higher order moments of these frequency distributions and (2) the distribu-
tion and dependence relationships over time. If they had done so, most, if not all, of
the proposed parametrized term structure models would already have been falsified.

10.3.3.4  Term structure fitting models

Term structure fitting models, like smoothing splines and Nelson and Siegel (1987)
curves, do not derive from a particular interest rate model and do not explain the
observed dynamics. They rely on the prevalence of stationary price developments.
These curve-fitting families of curves also depend on a set of parameters. They are
often used to calibrate interest rate models at a particular time, such as the extended
Vasicek model. Since they rely on stationary market conditions, they promptly
become very inaccurate in volatile times. These families of spot or forward rate
curves may be linear or nonlinear.

Linear families of curves A linear family forms a vector space with a set of a
finite, preferably small number of basis functions — like sinuses or wavelets — so
that every curve in the family can be represented as a linear combination of these
basis functions — like in the Fourier and wavelet analyses. In a linear family the
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discount factor §(7) can be represented as

K
8(r) =) M (x) (10.48)
k=1

for some fixed set of finite basis functions ¢y (t), k = 1, ..., K, where K < n.
Otherwise stated, the nonlinear discount factor can be expanded into a linear basis.
The set {¢x(7)}k=1,...x is the small set of basis functions. The function §(t) is
determined by the vector of resonance coefficients A = [Aq, ..., Lx]. Form the
matrix K x n matrix ® = [¢x(tj)k=1,...k,j=1,...,n> S0 that the n x 1 vector of
discount factors §(t) = ®’A, and define the m x K matrix D(¢, ) = X(¢, 7)®’,
then we have to find the K x 1 vector A from:

X(1) =D(, 1)A +e(t) (10.49)

so that the residual errors in the vector &(¢) are very small. There are now only K
resonance coefficients A; to find. Typically, in a term structure problem, K = 6
or 7, for a suitable set of basis functions.

Other linear curve fitting methods are splines. Splines are linear non-parametric
interpolation methods, in particular smoothing, cubic, exponential and B-splines,
as described by De Boor (1978) and Dierckx (1995) and implemented to term
structures by Vasicek and Fong (1982) and Steeley (1991).

Nonlinear families of curves These are mostly a family of static curves with
relatively few parameters, often advocated by economists, to directly model either
the spot rate curve or the forward rate curve. The resulting curves succeed fairly
well in capturing the overall shape of the term structure or the forward rate curve
at one particular time fy, as long as it is not too complex, and as long a high
accuracy is not required, and as long as the market conditions are stationary, which
is, unfortunately, seldom the case. There are different versions of this family of
curves.

Nelson and Siegel (1987) proposed the original family of such forward rate
curves with a parsimonious four parameters (8o, 1, 82, k)

fe(t0) = fo+ (B1 + B (10.50)
If this represents a curve fitted to forward rates, then the term structure at time
to 1S

_ ,—kt
ﬁ2> 1z Prpsa (10.51)

x:(t0) = Bo + (ﬂl + n Tt f

The immediate short rate at time #g is xo(f9) = Bo + B1 and the correspond-
ing long rate is lim;_, o x;(fy) = Bo so that the parameters By and B; have a
direct intuition. B, and k control the height and the location of the hump in the
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Figure 10.1 Nelson and Siegel curve fitted to UK government bond (gilt) rates derived from
nine bonds for 7y = September 4, 1996. Notice the slight overspricing of the
short bond by five basis points.

term structure. Figure 10.1 shows a Nelson and Siegel (1987) curve fitted to UK
government bond (gilt) rates derived from nine bonds for o = September 4, 1996
(This is Figure 15.15 in James and Webber, 2000, p. 447). The fitted term structure
is remarkably smooth. If anything, it is too smooth. It does not fit the empirical term
structure well at the short end: it over-prices the short maturity bond rate by five
basis points. James and Webber (2001, p. 444) unearthed many working papers
with similar examples, with variations in the number of parameters to be fitted.

10.4 Liquidity and financial turbulence

In the imperfect empirical international financial markets, in which asset investors
with different cash investment horizons — day traders, bank treasurers and pension
fund managers — trade, friction can occur between the various investment cash
flows, which show a great diversity of changing strategic cash flow rates of return
x;j(t). Such friction can cause financial turbulence, or financial crises, depending
on the degree of persistence of the financial markets. Now that we have defined
continuous and steady cash flows, let’s, initially rather informally, define turbulent
cash flow. A more precise definition will be provided later in this chapter.

Definition 420 Turbulent cash flow is irregular cash flow characterized by
vortices, whirlpool-like regions, or “eddies”

AX:(t) = x:(t) X, (t) = irregular, with possible vortices, or (10.52)
AX (1) = e(t), withe(t) ~iid. and —0.5<d <05 (10.53)
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Remark 421 This effectively means that the cash flow rates of return series x (t)
are irregular for some or all investment horizons t. Recall that, in Chapter 8, we 've
already characterized and measured various degrees of irregularity by computing
the fractal spectrum based on the Lipschitz ay and the corresponding fractal
dimensions.

But what can we imagine a cash flow vortex to be? It clearly forms a cascade
or term structure according to the time horizons t;. Therefore, we suggest the
following definition.

Definition 422 A cash flow vortex occurs, when the fractional differences
AYX (1) first rapidly increase in density (become quickly more rapid) and then
rapidly decreases in density (become quickly less rapid). In other words, a
cash vortex occurs, when the fractional differentiation (in particular the second-
order differentiation, or convexity) of the cash flow X, (t) is heterogeneous and
there exists a fractal spectrum of Lipschitz irregularity coefficients o, such that
d<ap, <d+1.

Thus, cash flow vortices are regions of heterogeneous fractional differentiation
of the cash flows X (¢), which can lead to period-doubling and intermittent behavior.
It shows up in the records of financial time series as clustering of the increments
of the FBM.

Example 423 Figure 10.2 shows the series of vertical ocean shear at various
depths (in meters), collected by Mike Gregg of the Applied Physics Laboratory
of the University of Washington. At the right side, around 1,000 m deep, there is
a shear stress/strain vortex, where two ocean flows of different temperature and
density flow above each other. Figure 10.3 shows a 6-scale wavelet coefficient

| | | | |
300 450 600 750 900 1,050
Depth (m)

Figure 10.2 Vertical ocean shear at various depths. At the right side, around 1,000 m
deep, there is a shear stress/strain vortex where two ocean flows of
different temperature and density flow along each other.
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Figure 10.3 A 6-scale wavelet coeficient sequence decomposition of ocean shear
series in Figure 10.2. The high frequency wavelet resonance coefficients
are at the bottom, the low frequency resonance coefficients at the top.
The physical adjustment vortex at c. 1,000 m depth is noticeable at all
decomposition levels.

sequence decomposition of this series. The high frequency wavelet coefficients are
at the bottom. The physical adjustment vortex is noticeable at all decomposition
levels. This means that it consists of a cascade of singularities. It is defined by first
showing volatility with increasing amplitude, immediately followed by volatility
with decreasing amplitude.

Example 424 In Figure 10.4 we have a financial time series plot of more than
9,300 minute-by-minute quotations on the Philippine pesos collected in real time
by my students on the trading floor of the Nanyang Business School of Nanyang
Technological University in Singapore for the month of July 1997. At the left side of
Figure 10.4, we notice the sharp discontinuity in the Philippine pesos immediately
after the Thai baht crisis break on July 2, 2001. The Philippine pesos had been
constant (= 100 percent persistent) until that instance. Immediately after the
break, there is adjustment turbulence, when the pesos adjusts to its new level, after
which it (relatively) stabilizes. Later in July, after a period of relative tranquility
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Figure 10.4 More than 9,300 minute-by-minute quotations on the Philippine pesos col-
lected in real time for the month of July 1997. Immediately after the Thai baht
crisis break on July 2, 2001, there is adjustement turbulence in the pesos/USD
exchange rate, when it adjusts to its new, more stable, depreciated level. Later
in July, there is another sharp discontinuity, immediately followed by financial
adjustment turbulence, which includes a financial vortex.

(persistence), there is another, although somewhat less abrupt, discontinuity at the
right side in the plot, again immediately followed by adjustment turbulence, which
includes a vortex. In Figure 10.5 this dramatic sequence of the Philippine pesos is,
somewhat crudely, analyzed in a 3-scale wavelet resonance coefficient sequence
decomposition, using Benoit software, which shows that the dynamic phenomena
of vortices are identifiable at all three scale (~ inverted frequency) levels. The low
scale (= high frequency) wavelet coefficients are in the top panel. Vortices show
an integrated cascade of frequencies. At this point we conjecture that the reason
for such adjustment turbulence to occur is the friction between the persistent cash
flow investments in pesos in the Philippines and the antipersistent cash flows of
the US dollar cash markets, when the cash flowed rapidly out of the now more
risky Philippine emerging market back to the safe haven of the United States.
Such an adjustment takes place apparently in several turbulent cash flow bursts,
interspersing periods of relatively calm laminar cash flows. Compare now the
preceding physical time series analysis of vertical ocean shear with this financial
time series analysis. Notice the striking similarity between the 6-scale wavelet
decomposition in Figure 10.3 and this 3-scale decomposition of the Philippine
pesos in Figure 10.5. It is clear that more in-depth study needs to be done of
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Figure 10.5 Three-scale wavelet resonance coefficient series of the minute-by-minute quo-
tations on the Philippine pesos in Figure 10.4. The disturbances with the
subsequent financial adjustment vortices are clearly visible at all three scale
levels.

1-dimensional (1D) cash flows in the global financial markets to identify the correct
model for this kind of intermittency that cannot be generated by GBMs.

10.4.1 Illiquidity: cash flow viscosity

Why would such financial turbulence, consisting of a series of financial vortices,
occur? In Chapter 9, we learned that nonlinear constraints combined with a feed-
back process increases the number of coexistent steady-state equilibria via the
period-doubling process. In addition, the physical theory of flow dynamics pro-
vides us with some clues, or, at least, with some quantifiable entities, which can
measure when turbulence may occur, even though no completely acceptable model
or theory of financial turbulence exists. The term viscosity is used in flow dynamics
to characterize the degree of internal friction, illiquidity, or persistence in a fluid.
Equivalently, we can informally define in finance:

Definition 425

cash flow viscosity = cash flow illiquidity

= degree of persistence of adjacent cash flows  (10.54)



Measuring term structure dynamics 363

It’s clear that differences in viscosity, illiquidity or persistence of the cash flows
implies that they can’t quickly mix and adjust to each other in an infinitely fast
fashion.® This internal cash flow friction is associated with the resistance of two
adjacent layers of cash flows to move relative to each other, due to Newton’s Second
Law for flows.

Proposition 426 (Newton’s Second Law) Any force applied to a flow results in
an equal but opposite reaction, which in turn causes a rate of change of momentum
in the flow.

Because of the illiquidity or persistence of investment cash flows, part of their
steady financial risk, represented by a finite, integrated amount of local risk

E{xf(t)}=/|xf(t)|2dt < o0 (10.55)

is converted to random risk, represented by an infinite integrated amount of local
risk

E{xf(t)}zfle(t)|2dr—> 00 (10.56)

which can cause cash vortices on the edges of the adjacent investment cash flow
channels.

In physics, shear stresses are the internal friction forces opposing flowing of
one part of a substance past the adjacent parts. But how does cash flow stress
and strain occur in finance and what do these phenomena mean in financial terms,
in particular, in terms of the term structure of interest rates f[x;(¢), ]? In the
financial markets, there are stresses of investment cash flows with different degrees
of illiquidity adjacent in the complete term structure, flowing past each other
within and between the various financial term markets and their maturity “buckets,”
indexed by the investment horizons t;, as follows.

Definition 427 Financial cash flow stress is the change in the asset term struc-
ture relative to the original asset prices, Ax,(t)/ X, (t). It is the quantity that is
proportional to the cash flow supply of earnings on an investment with a time
horizon of T periods, causing deformation of the term structure of the asset return
rates.

Definition 428 Financial cash flow strain is the change in an asset price relative
to its maturity AX(t)/t. It is the quantity that is proportional to the cash flow
demand in a particular maturity “bucket.”

When we express the cash strain per unit of time Az = 1 we have the cash rate
of return gradient, or term structure gradient.
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Definition 429 The financial term structure gradient (TSG) is given by

Cash flow strain (t)
At
AX ()]t
At
X (1)

- (10.57)
T

TSG,(t)

This TSG is the cash flow rate of return of an asset with investment horizon
or maturity 7 relative to its term 7, as a measure of the degree of term structure
deformation caused by cash flow shearing, i.e., caused by the differences between
the cash flow rates of return with different investment horizons. The TSG (¢)
measures the steepness of the term structure of interest rates from its origin at a
particular moment in time #, as in Figure 10.6. This gradient is conceptually similar
to the laminar velocity profile of the physical hydraulic flow in pipes.

The TSG, (¢) is largest when the short-term rates x, (¢) (for small 7) are large,
e.g., because of an inverted term structure, or because of high inflation expectations.
However, the size of the TSG; () > 0 is less important than the speed by which
the TSG< (¢) changes for a given term t. The TSG, (¢) for a particular maturity

Term structure Xﬂu

TSG(t)

0 1 Term ©

Figure 10.6 The term structure gradient, TSG(?), is the cash flow rate of return x, (¢) of an
asset with investment horizon or maturity t relative to its term 7, as a measure
of the degree of term structure deformation caused by cash flow shearing. The
TSG(r) measures the steepness of the term structure of interest rates from its
origin, at time ¢.
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term t changes most when the term rate x, () changes a lot, i.e., when |Ax. (¢)| or
|Ax,(t)T]is large. This leads us to the coefficient of dynamic cash flow illiquidity

For small cash flow stresses, financial stress is proportional to strain and we can
define a coefficient of cash flow illiquidity, or dynamic cash viscosity, based on
this simple linear financial stress—deformation relationship.

Definition 430 The coefficient of dynamic cash flow illiquidity or viscosity at
time t is

cash flow stress
ne(t) =

cash flow strain
Axe (1)) X< (1)
x(1)/7
Ax. ()T
x7 (1) X7 (1)
Ax (1)t
AX. (1)

(10.58)

This relative illiquidity coefficient measures the (small) change in the term
structure Ax. () multiplied by its term (maturity) 7 relative to the cash flow rate
AX;(t) = x:(t) X (t). When the investment cash flow is continuous, i.e., when
the investment cash flow rate AX,(t) = x,(¢) X, (¢) is constant, all illiquidity is
measured by the empirical change in the term structure Ax,(¢) for each term t,
ie., by Ax;(t)t.

Notice that for very short maturity terms 7, even a fairly large change in the
short-term rate, Ax, (#) = small, does not indicate illiquidity, because the product
| Ax;(t)t| remains small, for a continuous cash flow rate. On the other hand, for
very long maturity terms even a small change in the long-term rate, Ax,(t) =
large, can indicate illiquidity. Indeed, we observe most volatility or risk at the
short-term end of the term structure and least volatility or risk at the long-term
end, even for markets, like in the United States, which are considered most liquid
in the world, for all maturity terms (Jamdee and Los, 2003).

Notice also that when the illiquidity measured by n(¢) is large for a given
change in the term cash flow A X (¢), the term structure gradient TSG; (¢) is large,
which occurs, as we noted earlier, when the short-term rates are very high, i.e.,
x7(t) = large for small t. This situation occurred in the Eurodollar market around
1980, as can be observed in Figure 2.7 in Chapter 2.

When the Ax;(¢) varies inversely with the term 7, the illiquidity coefficient is
constant, n(¢) = n, for continuous cash flow. Another way of expressing this, is
to state

Ax;(1)T = n¢x¢(t) X (t) = constant (10.59)
Thus, for laminar cash flow, the “force of illiquidity” or “of viscosity resistance” is

Ax ()T o x (1) X1 (2) (10.60)



366 Term structure dynamics

It is proportional to the cash flow rate, i.e., the rate of cash return x, (t) for matu-
rity T and the size of the original cash investment X, (¢). The constant illiquidity
coefficient n; is then the proportionality coefficient.

Still a different way of interpreting this relative illiquidity coefficient is to state
that it measures the absolute relative change in the interest rates of a particular
maturity |Ax; (¢)/x,(t)], relative to the size of the average cash flow | X, (¢)/t| in
a particular maturity market:

Axy (1) /x: (1)
X ()/t
After these introductory definitions — which can and should all be calculated

from empirical financial data — we are in the position to define the abstract perfect
cash flow liquidity.

(10.61)

n:(t) = ‘

Definition 431 Perfect cash flow liquidity exists when n,(¢) = 0.

Thus, perfect cash flow liquidity exists either

(1) when Ax;(t) = O for finite invested cash flows X, (¢) and finite investment
horizon terms 7, implying that the finite term structure remains unchanged
under financial stress, and each cash rate of return x (¢) for investment horizon
T is constant; or

(2) when the term rates of return are infinite x; (t) = oo for all finite cash flows
X (t) and finite terms 7; or

(3) when the cash flow for a finite term t and a finite term structure rate x (¢) is
infinitely large X, (#) = o0, i.e., the situation of deep liquid financial markets,
like in the United States; or

(4) when the term equals zero, T = 0, for a finite investment cash flow X (¢) and
a finite spot rate of return x; (#) = xo(#) (= instantaneous cash).

Alternatives (2)—(4) are, in principle, unrealistic mathematical extremes, so that
perfect cash flow liquidity only exists, when the term structure remains unchanged
(= alternative (1))! But there are also situations where alternatives (2) and (3)
combine, i.e., when the term rates x;(¢) and the cash flows X (¢) are both very
large for a finite term 7. In such situations n.(¢) | 0, and perfect liquidity is
approached. Alternative (4) identifies the intercept of the term structure or (theo-
retically) instantaneous cash, e.g., the almost perfectly liquid Fed funds rate for
overnight interbank lending.

Most real world cash flows are non-perfectly liquid with n,(¢) > 0, because
most real world cash flows are term-dependent. There is not much instantaneous
cash in comparison. Also, infinite term rates of return and invested cash flows
empirically don’t exist, nor do zero investment horizons. Thus, the only realistic
outcome is that perfect cash flow liquidity exists when the cash rate of return for
each investment horizon is constant and Ax;(¢) = O for finite invested cash flows
X+ (¢) and finite investment horizon terms t. That is the situation of small or no
term structure volatility.
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This particular expression for the illiquidity coefficient i, (¢) is only valid when
the term structure x.(¢) varies linearly with the term 7, i.e., when the rate of
cash return gradient x;(¢)/t is uniformly constant for each term t. That is when
the term structure is constant. Then one may speak of Newtonian cash flows, in
which stress, illiquidity and the rate of cash flow strain are linearly related. This
is, of course, seldom the case with the dynamic term structures in the international
financial markets, where nonlinear institutional constraints exist, as we already
discussed in Chapter 9. Empirically, the term structures of the cash investment
markets vary nonlinearly, in such a way that the short-term cash rates of return
vary relatively more (= have larger amplitudes), and vary more frequently, than
the long-term cash rates of return.’

Remark 432 Term structure modelers have, somewhat inconsistently, attempted
to capture this nonlinear dynamics of the term structure by, first, (linearly) cor-
relating the various terms x,(t) with each other for a limited number of terms
1 < t < T, and, then, by analyzing the resulting covariance matrix using a
static principal component, or factor analysis (cf. the comprehensive survey of
term structure models by Chapman and Pearson, 2001). The objective of such
spectral analysis is to capture most of the variation of the term structure by retain-
ing a small number, say three, principal component factor loadings, like Factor
1 = level, Factor 2 = slope and Factor 3 = curvature of the term structure. Such
inexact (linear) identification schemes analyzing covariance matrices is inherently
subjective, because which eigenvalues are to be considered significant and to be
retained, when there are more than three term rates x.(t), and which should be
considered representing noise? (For a detailed discussion of such “prejudices” of
principal components analysis, cf. Los, 1989). One of the biggest current research
challenges is to model the nonlinear diffusion dynamics of the interrelated terms
of the stochastic term structure vector X;(t) = [x1(t), x2(t), ..., x7(@)]. The
empirical evidence overwhelmingly shows that simple linear diffusion models of
the Markov type cannot properly capture the complex dynamics of the empirical
term structures of interest rates in the various countries in the world.

When the rate of return gradient is not uniform, as is usually the case, we must
express the illiquidity coefficient in the general marginal form:
Ax. (1)) X (1)
dx(t)/0t
Ax(t) - 0T
dx7 (1) - X (1)

N (1) = ‘

(10.62)

Thus, we compare the empirical change in the required cash flow over an infinites-
imal small change in the term or horizon, Ax; (¢) - dt, with the infinitesimal change
in the available cash flow rate dx. (t) - X, (¢). That is, a measurable comparison is
made between the marginal financial cash flow stress and the marginal financial
cash flow strain.'” This invariably means that we have to measure the changing
illiquidity of each financial market continuously, and preferably, in real time.
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10.4.2 Laminar and turbulent financial cash flows

‘We’ll now define the important identifying concepts of laminar and turbulent cash
flows. We are already familiar with the whole spectrum of dynamic steady-state
cash flow regimes from the discussion in Chapter 9, from stable, via period-
doubling and intermittent to completely chaotic equilibria. Here we look, still
informally, at only two regimes: the completely stable, unique or laminar regime
and the completely chaotic, nonunique or turbulent regimes.

Definition 433  If the adjacent layers of illiquid term cash flow smoothly along-
side each other in a financial market, and the term structure rates x;(t) are
constant, and thus the whole term structure remains immobile, the stable stream-
line flows of investment cash through the financial markets (of particular term and
risk profiles) are called laminar.

Definition 434  If the streamlined term cash flows in a financial market, at suf-
ficiently high term structure rates x.(t), become highly irregular cash flows with
highly irregular cash flow (velocity) rates x.(t), so that part of the term structure
or the whole term structure is very volatile, they are called turbulent.

Both, laminar and turbulent cash flows are easily illustrated by hot cigar smoke,
which initially, when it leaves the cigar is laminar, but then turns turbulent due
to the nonlinear constraints imposed by the interactive heat exchange with the
cooler environment. One can measure and visualize such changes in the whole
term structure of interest rates by a properly formulated wavelet scalogram that
displays a series of scalograms of all investment horizons or maturities 7.!!

My current conjecture is that the nonlinear expectation constraints inherent in the
logical term structure x () can cause chaos in the short-term cash flows in finan-
cial markets to emerge, when particular parametric thresholds in the interlocking
term structures are surpassed. In other words, particular shapes of interlocking
term structures, at sufficiently high-term rates, can cause irregularities to emerge
particularly in the short term range.

Remark 435 Small, perfectly liquid, laminar cash flow motions are called acous-
tic cash flow motions and (linear) Fourier Transform (FT) analysis can be used
to decompose such steady and continuous global cash flow motions in subcompo-
nent flows. However, when any of these conditions do not apply, and we deal with
large-scale, so-called non-acoustical cash flow motions, like cash flow turbulence,
we need (nonlinear) wavelet MRA to analyze and decompose the volatility or risk
of cash flow rates x. ().

10.4.3 Financial Reynolds number

Analogously to physical turbulence measurements, I also conjecture that the onset
of cash flow turbulence can be identified by a dimensionless parameter, called the
Reynolds number for uniform cash flow. In hydrodynamics and aerodynamics, the
Reynolds number is a dimensionless ratio related to the velocity at which smooth
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flow shifts to turbulent flow.!?> There is no fundamental reason why we should
not be able to measure a similar Reynolds numbers for financial cash flows. The
end-of-chapter Exercises show how, using the S&P500 data in Appendix B.

Definition 436 The financial Reynolds number Re (¢) for a uniform cash flow
of maturity term T is given by:

apx (1)
Nz (1)

Re; (1) =

pxc ()T
Axr ()T /x: ()X (1)
PX2(t) X (1)
Ax (1)

(10.63)

where a = T is the length of the particular cash flow channel, and p = 1/$ is again
the uniform cash flow density, which renders the Reynolds number dimensionless.

The beauty of the Reynolds number is that it is a dimensionless number that
measures dynamic similarity (Reynolds, 1883). It characterizes the ratio of the
nonlinear advection ,ox%(t)Xr (t) to the linear dissipation Ax,(t). Cash flows
with the same Reynolds number look the same, whereas cash flows with differ-
ent Reynolds numbers look quite different. It is a measure of the amount of cash
flow volatility present at a particular time in a particular channel. When the finan-
cial Reynolds number is constant, Re; (f) = Re., for turbulent cash flows with
investment horizon t, we have:

PX2(1) X (1)

Axe (1) = Re
T

(10.64)

This is the same very simple nonlinear diffusion equation of the type we encoun-
tered in Chapter 9, when we discussed the logistic parabola. Also, for turbulent
cash flow, the “force of illiquidity resistance” contains clearly a quadratic cash rate
of return x%(t). It is proportional to the square of the rate of cash return and the
size of the cash flow:

Axy ()T o x2(1) X (1) (10.65)

This conforms to what we learned in Chapter 9 about the chaotic regimes of
adynamic growth system governed by quadratic constraints. This quadratic expres-
sion has a much higher value than the “force of illiquidity resistance” for laminar
cash flow, which we know to be linearly proportional to both the rate of cash return
and the size of the cash flow:

Ax ()T o x (1) X1 (2) (10.66)
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Remark 437 The financial Reynolds number is proportional to the uniform local
cash flow volatility per dollar squared % ,oxf (t) at the “downstream” measurement
point. When the financial pressure “upstream” is high, this uniform local “down-
stream” volatility increases rapidly, producing a large financial Reynolds number.
Turbulent cash flows have violent and erratic fluctuations in velocity and finan-
cial pressure, which are not associated with any corresponding fluctuations in
the exogenous forces driving the flows, as the simulations in Chapter 9 clearly
demonstrated. Thus, the classical financial-economic models where “shocks” are
exogenous, i.e., impacting from outside the dynamic financial systems, are cur-
rently being replaced by dynamic models where the volatility is endogenous, i.e.,
self-generated.

Financial turbulence should be considered a manifestation of the nonlinear
nature of the underlying fundamental price diffusion equations. The “force of illig-
uidity resistance” is measured by a quadratic term. As we discussed in Chapter 9,
this quadratic term is the essential nonlinear constraint “causing” deterministic
chaos or turbulence to occur at particular values of the growth rate parameters of
the underlying simple dynamic processes. Feedback loops of the simple dynamic
investment cash flow processes quickly increases the complexity of the aggregated
dynamic investment cash flow process of several interconnected financial markets.

Remark 438 The physical flows in round pipes are laminar for Re, () < 2,000,
but physical turbulence begins to occur for Reynolds numbers, Re(t) > 3,000,
when the nonlinear advection term begins to dominate the negligible linear
dissipation. On the other hand, in physical turbulent flow over flat surfaces
Re; > 500,000. We don’t know yet what the critical values are for the finan-
cial Reynolds numbers. This is an important issue for the empirical research into
the antipersistence regimes of financial markets.

Since we have ap = 7/$, the Reynolds number for uniform cash flows can be
interpreted as a term based return/liquidity risk ratio per dollar invested and sized
for the horizon t:

apxc (1)
N (1)
w0l

ne()|$

The higher the cash rate of return x, (¢) on an investment asset with horizon t, and
the lower the cash illiquidity 1. (¢) (= the higher the cash liquidity) for that same
horizon 7, and the longer the investment horizon, the larger the financial Reynolds
number and, thus, the opportunity for financial turbulence.!3

In other words, the financial Reynolds number measures the cash rate of return
on a cash investment relative to its illiquidity coefficient n.(t), which is quite a
different, and, perhaps, just as important financial measure as the usual market
volatility risk o, ().

Re; (1) =

(10.67)
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It’s a matter of current empirical financial research to determine at which mag-
nitudes of this financial Reynolds number financial turbulence begins to occur.
This expression shows that the financial Reynolds number for finite term rates of
return x. (t) becomes very large when the illiquidity risk approaches zero, while the
investment horizon T is very long! As we discussed earlier, under the conditions of
perfect liquidity, n, () | 0, and the financial Reynolds number becomes very large.
Thus, financial turbulence is a phenomenon of very liquid, antipersistent financial
markets and not of illiquid, very persistent markets. Efficiency-enhancing finan-
cial turbulence of liquid, antipersistent, ultra-efficient financial markets contrasts
sharply with the high-risk discontinuity phenomena of very illiquid, persistent and
inefficient markets, and the two should not be confused!

10.4.4 Wavelet financial Reynolds numbers and intermittency

How can we translate this financial Reynolds number in terms of the wavelet MRA
of Chapters 7 and 8? Recall from Chapter 7 the definition of the scalogram of the
cash rate of return x;(¢). Then, analogously to Farge et al. (1996), we have the
following definition:

Definition 439 The local financial wavelet spectrum Sw (7, a) of the term rate
of return x. (t) is defined as its scale-standardized scalogram

P b
Swir.a) = 0D
LACROTS
N a
where the Wavelet Transform (WT) W (t, a) of x;(t) is defined as in Chapter 7.

(10.68)

Remark 440 The scale a refers both to the dyadic scale proportional to the
inverse of the frequency of the financial time series and to the length of the horizon
of the cash flow channel: a ~ 1/w ~ 7.

A characterization of the local “activity” of x (¢) is given by its wavelet inter-
mittency, which measures local deviations from the mean spectrum of x;(z) at
every horizon 7 and dyadic scale a. It is a local measure of financial risk, i.e.,
a measure of risk localized in the scale (frequency)-time domain. We no longer
need the idealized statistical concept of ergodicity of Chapter 1 to measure average
financial risk. With a scalogram we can measure local or instantaneous financial
risk. In addition, we can now measure financial intermittency by wavelet MRA as
follows.

Definition 441 The financial wavelet intermittency of the term cash rate of return
X7 (t) is defined as the relative wavelet spectrum:

W, o)l

[ IW (T, a)PdT (10.69)

Iw(t,a) =
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Remark 442  One advantage of this financial wavelet intermittency measure is
again that it is dimension-free and expressed as a simple percentage between zero
and one.

Next, we implement the suggestion by Farge ez al. (1996, p. 651) to express the
financial Reynolds number in terms of wavelets, as follows.

Definition 443 The wavelet financial Reynolds number is defined as

W )
ReW(T, a) — M
n: (1)
W ’
_ M (10.70)
N+ (I)Ow
where p = 1/0y, and the standard deviation
0.5
oy = ‘ / |Ve.a(t)?dda (10.71)
RZ

is the standard deviation of the analyzing wavelet . ,(t) of the scalogram W (t, a)
over all time horizons T and all scales a.

Remark 444 Our expectation is that at large scales a ~ t, i.e., at very long
time horizons t, the wavelet financial Reynolds number coincides with the usual
large-scale Reynolds number Re (t). In the smallest scales, i.e., at very short time
horizons, like time ticks, one expects this wavelet financial Reynolds number to be
close to unity, when averaged over time.

Analogously to Farge et al. (1996), the current empirical research questions
regarding the analysis of financial market dynamics are the following. With such
a wavelet financial Reynolds number defined for time horizons t and scales a,
are there time horizons v where such a Reynolds number is much larger than
at others? How do such time periods correlate with time periods of small-scale
activity within the cash flow? If so, then Rew(z, a) could give an unambiguous
answer of the activity at very small scales (or at any desired scale a). Such time
periods of high Reyw (t, @) can then be interpreted as periods of strong nonlinearity,
i.e., periods of financial turbulence.

In other words, if this interpretation of Farge et al. (1996) is correct, we can
just look at these scalograms of financial Reynolds numbers to detect periods of
strong nonlinearities and thus of financial turbulence.

10.5 Software

The computations of the first four Exercises can be executed in Microsoft EXCEL
spreadsheets, or by using the Statistics Toolbox available from The MathWorks,
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Inc., 24 Prime Park Way Natick, MA 01760-1500, USA. Tel (508) 647-7000; Fax
(508) 647-7001; http://www.mathworks.com/products/wavelettbx.shtml.

The computations of the following three Exercises can be executed by using the
MATLAB® Wavelet Toolbox, available from The MathWorks, Inc., 24 Prime Park
Way Natick, MA 01760-1500, USA. Tel (508) 647-7000; Fax (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

A complete wavelet analysis toolkit called Wavelab can be obtained at no cost
from: http://playfair.stanford. EDU:80/"wavelab/.

This Wavelab is a very complete set of MATLAB® scripts that implement both
the basic wavelet and related transforms and more advanced techniques. There is
full documentation, a set of tutorials, and section of “Toons,” short for cartoons.
These Toon scripts reproduce from scratch the figures in many papers of Stanford’s
wavelet research group consisting of Dave Donoho, Ian Johnstone et al., describing
the theoretical research underlying the algorithms in Wavelab. By studying these
scripts and by experimenting with the data, the reader can learn all the details of
the process that led to each figure. This forms part of the new discipline of Repro-
ducible Research, i.e., the idea to provide the reader full access to all details (data,
equations, code, etc.) needed to completely reproduce all the results normally pre-
sented only in an advertising summary form in scientific publications. The pioneer
of Reproducible Research is Jon Claerbout of Stanford University’s Geophysics
Department (Claerbout, 1994; Buckheit and Donoho, 1995).

10.6 Exercises

Exercise 445 Compute the daily changing term structure x.(t) of total rates
of return for the S&P500 stock index (use the daily observations for 1988 of
Sherry, 1992, pp. 29-32, available in Appendix B) for the terms t = 1 day,
21 days (= 1 month), 63 days (= 1 quarter), 126 days (= 1 half year) and 252
(= 1 year) investment terms (= investment horizons 7).

Exercise 446 Plot the average term structure of the total rates of return for the
S&P500 stock index for overlapping observations (only).

Exercise447 Compute for each term t its coefficient of financial illiquidity . (t),
for each day, for the available data. (Eliminate DIVO! and VALUE! expressions
by inserting asterisks *).

Exercise 448 Compute the daily and average financial Reynolds numbers for
each cash investment channel for a standard unit cash flow, for the available data.
Can you point to days of potential financial turbulence?

Exercise 449 Compute the term structure of volatility for the rates of return for
the S&P500 stock index for non-overlapping windows.
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Exercise 450 In the spirit of the risk dissipation model of Mandelbrot and Wallis
(1969), compute the term structure of implied volatility for any high frequency FX
option data available to you (cf. Xu and Taylor, 1994).

Exercise451 Compute the local wavelet financial spectrum Sw (t, a) of x; (t) for
the available S&P500 data. Do the same for any high frequency FX data available
1o you.

Exercise 452 Compute the financial wavelet intermittencies Iw(t, a) of x(t)
for the available S&P500 data. What is the advantage of the wavelet intermittency
over the wavelet spectrum? Do the same for any high frequency FX data available
to you.

Exercise 453 Compute the financial wavelet Reynolds numbers Rew (t, a) of
X7 (t) for the available S&P500 data and compare them with the results from the
previous Exercises. Is there financial turbulence in the available data? Do the
same for any high frequency FX data available to you.

Notes

1 A flow dynamics approach to the cash flows in financial markets is not new in economics.
Compare, for example, the Keynesian circular income—expenditure flow dynamics mod-
eling of an economy in the 1950s at the London School of Economics and Political
Science (LSE) by engineer A. W. Phillips, familiar from the (expectations-augmented)
Phillip’s Curve in undergraduate textbooks on macroeconomics. Unfortunately, the
financial-economic research of markets has focused on the static “equilibrium theory”
of market pricing of Nobel Memorial prize winners Gerard Debreu and Kenneth Arrow,
while the crucial dynamic “transport theory” has mostly been neglected. Consequently,
the dynamics of cash flows has not been further developed since Phillips’ heuristic
macroeconomics research using hydraulic models in the basement of LSE. But fluid
dynamics has a long mathematical history going back to Dutch mathematician and
engineer Simon Stevin’s (1586) work on the principles of “weighting” or pressure,
in particular water pressure, Italian Evangelista Torricelli’s law of efflux (1644), and
French Blaise Pascal’s uniform pressure law of hydrostatics (1653). Sir Isaac Newton
devoted over one quarter of his famous Principia Philosophae Naturalis to the analysis
of fluids (Book II, 1713) and added some original ideas, like his hypothesis of viscosity.
This was followed by the mathematical explanations of the mechanics of ideal, fric-
tionless fluid mechanics by Daniel and Jacques Bernouilli (1738) and Leonhard Euler
(1755). In 1827, Claude Navier derived the equations of viscous flow, which were
published by Sir George Gabriel Stokes in 1845, the celebrated Navier—Stokes equa-
tions. Work by Joseph Boussinesq (1877) and Osborne Reynolds (1883) on laminar
(streamlined) flow and turbulent (erratic) flow extended these Navier—Stokes equations
to turbulent flow, by including the Reynolds stresses and measurements, to be discussed
in this chapter for cash flow dynamics.

2 This terminology is borrowed from “Part IV: General Cash Flow Streams” in Luen-
berger, 1998, pp. 417474, and the title of the book of Van Horne, 1998). Cash and
capital flows are abstractions, since there are no physical flows, but abstract investment
flows over time. An electronic “transfer” is in physical reality a changing of a few dig-
its on computer and communication lines. But the abstract images of “transfers” and
“diffusions” are very helpful in explaining financial valuation and risk analysis.
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3 In such cash accounting frameworks, one usually adopts the US dollar as the base
currency, or numéraire.

4 Currently a very intense research effort is emerging to understand these complex inter-
connecting cash and capital markets, as signified by the accelerating pace of publications
by physicists and operation research analysts on studies of the financial markets (cf.
Mantegna and Stanley, 2000; Urbach, 2000; Ilinski, 2001).

5 Daniel Bernoulli’s most famous work, Hydrodynamics (1738) is both a theoretical and
practical study of equilibrium, pressure and velocity of fluids. He demonstrated that as
the velocity of fluid flow increases, its pressure decreases.

6 It is easy to view liabilities as “negative assets,” when a balance sheet is viewed in
terms of portfolio analysis, e.g., when immunizing a bank’s balance sheet against term
structure volatility.

7 The survey in this subsection is adapted and summarized from James and Webber
(2001), pp. 425-453 an excellent source for recent term structure modeling. The error
represents, e.g., unexpected default risk.

8 In Chapter 4, we introduced and discussed the definition of mixing random processes,
in particular strong-mixing random processes.

9 Craig Holden, of the Kelley School of Business at Indiana University has made is
a simple historical demonstration of this nonlinearly varying term structure: “Craig
Holden’s Excel-based Interactive ‘Movie’ of Term Structure Dynamics” (1996), which
can be downloaded from his web page: http://www.bus.indiana.edu/cholden/

The spreadsheet movie demonstrates that historically the short-term interest rates are
much more volatile than the long-term rates. It also demonstrates the great variety of
shapes a term structure can exhibit over time.

10 We use the partial derivatives 9 to indicate that we’re interested in variation on the term
structure x, (¢) caused by a marginal change in the term t at a fixed time ¢.

11 At Kent State University, we’re developing a full color liquid crystal display of the
scalogram of the real time term structure of US Treasury rates for the new derivatives
trading floor affiliated with our new Master of Science in Financial Engineering program
(http://business.kent.edu/msfe/).

12 Osborne Reynolds (1842-1912) was an English scientist whose papers on fluid dynam-
ics and turbulence remain basic to turbine operation, lubrication, fluid flow and
streamlining, cavitation, the effects of tides and temperature differentials of global
oceanic flows.

13 The value of an asset is computed as the sum of the discounted (future) cash flows asso-
ciated with that asset. Each asset has a particular maturity, even though it is sometimes
assumed to have an infinite maturity, as in the case of, e.g., the assets of a firm, based
on the accounting principle of an “ongoing concern.” However, in reality, any firm has
finite assets, i.e., projects with finite maturities.
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11 Simulation of financial turbulence

Big whirls have little whirls,

That feed on their velocity;

And little whirls have lesser whirls,

And so on to viscosity.
(Richardson, 1922)

11.1 Introduction

In this chapter, we will first address the few available basic laws of fully
developed physical turbulence and interpret them in financial terms, in a simi-
lar fashion as we’ve interpreted the laws of fluid mechanics in terms of financial
cash flows in Chapter 10. Physical turbulence is a phenomenon measured in
a 4-dimensional (4D) space—time frame of reference in cubic meter seconds.
Financial turbulence is, on the surface, a simpler phenomenon measured in a
2-dimensional (2D) magnitude—time reference frame of percentage seconds.

However, it is also clear from the examples we encountered in Chapters 8
and 10 that it is probably interaction between the cash flows of the various financial
markets that causes vortices to arise. Very recently, the issue of how interdependent
financial markets are and how they transmit financial contagion has become an
important research question (Forbes and Rigobon, 2002).

In Chapter 8, not only did we observe adjustment vortices immediately after
domestic trading regime changes in the foreign exchange markets, like the changes
from pegged to floating exchange rate regimes, but we also observed adjustment
vortices occurring in well-working financial markets caused by disturbances in
neighboring interconnected markets, like the impact of a stock market crisis in
Brazil on stock market pricing process in Chile.

Next, we’ll spend some time on how we can obtain numerical solutions for
the nonlinear diffusion equations that describe financial turbulence, like the finite
difference method, the spectral method, and the Galerkin finite element method.
In particular, we’ll explain the considerable analytic power of the new wavelet
Galerkin method in both its scalar and matrix forms.
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11.2 Theories of physical and financial turbulence

How does the critical phenomenon of physical turbulence occur? Universally
accepted exact or inexact mathematical models to completely explain physical
turbulence do not yet exist. We are obliged to provide, first, an informal interpre-
tation of the existing theory of physical turbulence, which is part of the theory of
vortex formation or vorticity dynamics, before we can interpret these theories in
financial terms.

The statistical theory of turbulence was introduced by Kolmogorov (1941a—c),
Obukhov (1941a,b) and Taylor (1935, 1938). This involved applying the statistical
tools used for stationary stochastic processes to understand the partition of risk
at different scales or frequencies, using Parseval’s Theorem (cf. Chapter 5), in
the solutions of the Navier—Stokes diffusion equation, i.e., the nonlinear dynamic
equations that can produce intermittency and chaos. Kolmogorov’s statistical point
of view, and assumption of ergodicity, was justified by the loss of the uniqueness of
the dynamic solutions, i.e., the emergence of chaos, or fully developed turbulence,
for very large Reynolds numbers and large values of time.

The intermediate scales of turbulence — the inertial zone —lie between the small-
est scales, where through viscosity, the dynamic risk is dissipated in noise, and the
largest scales, where exterior forces supply the risk.! The theory of Kolmogorov
states that, in this inertial zone, risk is neither produced nor dissipated, but only
transferred, without dissipation, from one scale to another and according to a con-
stant rate o,. In the financial markets and in financial terms, this inertial zone is
represented by the fundamental term structure of interest rates. Major amounts
of risk are supplied at the long-term end of the term structure, which are trans-
ferred along the term structure until they are completely dissipated in noise at the
short-term end. Thus, the problem of term structure analysts of how to dynami-
cally model the term structure of interest rates is the same problem of turbulence
physicists and flow dynamics specialists. In both cases, no universally acceptable
dynamic model exists for this inertial zone of risk.

The ergodicity assumption asserts that turbulence is statistically homogeneous
(= translation invariant through time), isotropic (= invariant under rotation) and
self-similar (scaling invariant). The velocity components x, (¢) are then treated as
random variables, in the probabilistic sense, and their statistical description is then
derived from the corresponding auto- and cross-correlation functions (ACFs and
CCFs) to measure their dynamic forms of stationarity.

The mathematical tool uniquely adapted to Kolmogorov’s ergodic statistical the-
ory of dynamic stationarity phenomena is the Fourier Transform (FT) of Chapter 6.
By associating scale and frequency in the usual way, Kolmogorov arrived at the
following expression for the average spectral distribution of risk

P(w) = 23w 73 (11.1)

where P (w) is the FT of the (fractal) time series variable x; (¢).
This ergodic statistical model of turbulence is self-similar, i.e., scale-invariant,
and are determined by a specific scale exponent (cf. Chapters 3 and 4 for the
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theory of scaling invariance). The theoretical value % of the scaling exponent of
turbulence is obtained from physical principles in Kolmogorov’s 1941 theoretical
paper on turbulence (Kolmogorov, 1941c).

The main problem with this ergodic statistical approach is the assumption of
statistical homogeneity. As the following example clearly demonstrates, two time
series may exhibit exactly the same spectral distribution, but their distribution
through time is not the same: while the first time series is homogeneous, the
second time series is heterogeneous and contains a vortex spiral.

Example 454 The top and bottom panels in Figure 11.1 show two fractal time
series with exactly the same risk spectrum P(w) o< w~%/3. The ordinates mea-
sure the amplitudes, while the abscissas measure the respective time lines. While
the top panel in Figure 11.1 shows a fractal time series of regularly distributed
noise, the bottom panel shows a fractal time series with a vortex spiral. Notice
the intermittency of the vortex spiral: there is a period of increasing frequency of
variation or condensation, followed by a period of decreasing frequency of vari-
ation, or rarefaction. A comparison of these two time series clearly demonstrates
that average statistical or frequency information alone is insufficient to completely

(a)4_00I||||I||||I||||I||||I||||I

—4.00||||||||||||||||||||||||||
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Figure 11.1 An indictment of global (average) statistical analysis: two very different
fractal time series with the same global risk spectrum P (w) o 0~/ of
turbulence. However, the fractal time series in the top panel (a) is homoge-
neous, while the time series in the bottom panel and (b) is heterogeneous
and shows a vortex spiral.
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identify and model a time series, that the ergodic assumption is not satisfied, and
that time information must simultaneously be used in combination with frequency
information to obtain an accurate picture of a risk diffusion process.

Various laboratory experiments, like in wind tunnels and in fluid basins, have
shown that the risk associated with the small scales of turbulent flow is not
distributed uniformly in space. This particular observation, that the systematic
model of the transfer of risk is not homogeneous, but heterogeneous, or spatially
intermittent, has led several authors to hypothesize that this dynamic model must
be either monofractal (Mandelbrot, 1975), or multifractal (Frisch and Parisi, 1985).
If so, the use of the stationarity-based FT cannot identify and elucidate the mul-
tifractal structure of fully developed turbulence. This observation has led to the
important application of wavelet Multiresolution Analysis (MRA) by Marie Farge
(1992a,b; cf. also Farge et al., 1996).

As we discussed in Chapter 8, the Wavelet Transform (WT) is the ideal tool
for analyzing multifractal structures, and Uriel Frisch (1995) has verified his con-
jecture by going into the heart of a turbulence, or Gagne signal and by traveling
across the scales to compute the multifractal spectrum. His empirical observation
results have already been reviewed in Chapter 8. After earlier theoretical specula-
tions about the shape and dynamics of vortices, Frisch’s empirical measurement
results are currently used by Farge et al. (1996) to simulate physical turbulence
by numerically solving the Navier—Stokes diffusion equation using the wavelet
Galerkin method, to be discussed later in this chapter.

Example 455 Although physical turbulence is spatially a 3D phenomenon, it’s
simulations are often presented in 2-dimensional (2D) isocontour projections,
where we look down on 2D snapshots of 3D vortices at different moments in
time. In Figure 11.2, Farge et al. (1996) simulate the formation and dissipation
of a 2D vortex, based on a pseudo-wavelet computation of 2D Navier—Stokes
equations. The first three panels show the evolution of the 2D vortex spiral for
t = 10,20, 40. The final panel shows its the scalegram with the average risk
spectrum of its diameter at t = 40, from which the slope —(2H + 1) = —% is
measured, so that the Holder—Hurst exponent is identified as H = % Notice the
slight periodicities in the scalegram.

11.2.1 Informal theory of physical turbulence

But what causes physical turbulence? A complete theory of turbulence has not yet
been formulated, and the following remains therefore a strictly informal presenta-
tion of the physics involved. In physical terms, when the relative speed difference
between adjacent flows increases, because of an increase in pressure difference,
the friction between these adjacent flows increases too, according to the risk equa-
tion. Newton’s Equation of State informs us that, for incompressible fluids with
constant volumes (= homogeneity assumption), when the pressure of the adjacent
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Figure 11.2 Simulated evolution, t = 10, 20, 40, of a 2D vortex spiral, based on a pseudo-
wavelet computation of 2D Navier—Stokes equations, with its risk (energy)
spectrum computed at t = 40. In the last panel, the ordinate measures the
scale ~ 1/w, while the abscissa measures the spectrum P (w).

flows increases marginally, the local temperature or risk of the boundary layer
rises with it, as follows.

Proposition 456 (Newton’s equation of state)

pressure x volume FP,, xV

= = constant (11.2)
absolute temperature Temp,,,,

For constant volume V, this equation in marginal form equals:
ATemp,,, = AFP,,, (11.3)
= _%PAmnx2(t) (11.4)

where the pressure difference AF Py, is the same we encountered in Chapter 10,
i.e., essentially a difference in local risk Amupx>(t).
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Thus, the local risk difference results in a temperature or local risk change, which
causes differences in risk dissipation and time dependency. The rising temperature
or risk of the boundary layer leads to faster risk dissipation, and ultimately to
irregularity, or randomness, of the microscopic flows on both sides of the boundary
layer between the adjacent flows. This boundary layer of local risk, or shock wave
front, defines the funnel shape of a vortex, which is, essentially, the shape of the
term structure of interest rates.> We can thus look at the dynamic FT transform of
the financial term structure to interpret the changing of its shape. The convexity
deformation (or “stretching”) of the shape of a vortex, and of the financial term
structure, is responsible for risk transduction and subsequent risk dissipation. Thus,
such convexity vortices effectively transduce the risk between high risk flows and
low risk flows.

Indeed, these spiral vortices come into existence, when a flow gets stalled against
its boundaries, or against another slower flow, or against a flow moving in the oppo-
site direction. The stalled flow breaks into pieces that roll over themselves, like the
waves on a sandy beach. Right at the boundary, the flow has zero velocity. But we
don’tknow when a specific vortex will come into existence or will die away. Vortex
formation appears to be a random occurrence, although it is actually deterministic:
it is a set of non-unique equilibria, therefore, a chaotic development, i.e., clearly
a nonlinear dynamic development. Because it is essentially chaotic, based on a
period-doubling feedback process, we cannot describe the initial conditions with
enough accuracy to be able to predict all the resulting consequences (cf. Chapter 8
why this is the case). Although we cannot yet predict precisely how such highly
structured vortices form and interact, we can predict something about the average
case of the formation of a vortex.

For instance, the average eddy moves a distance about equal to its own
diameter before it generates small eddies that move, more often than not, in
the opposite direction. Those smaller eddies generate still smaller eddies and
the process continues until all the energy dissipates as heat through molecular
motion.

(Stevens, 1974, p. 55)

If this “shock wave front” theory of vortex formation is correct, then we know
from acoustics what the shape of the initial vortex is, since the envelope of a wave
front forms a cone, whose apex half angle 6 is given by the expression

X (1)

sinf = ,
xn (1)

with x,, (1) > x,,,(¢) (11.5)
which is the inverse of the Mach number = x,,(t) /X (1).>

Example 457 The left panel of Figure 11.3 provides a graphical model of a
(horizontal) vortex with its shock wave front produced when a source moves from
position Sy to S, with a speed vs, which is greater than the wave speed v in that
particular medium (e.g., liquid or gas). The envelope of the wavefront forms a cone
whose apex half-angle is given by sin@ = v /vy, the inverse of the Mach number.
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Conical
shockfront

Figure 11.3 Theoretical and empirical representations of a shock wave. At the left (a) the
envelope of the wavefronts forms a cone whose apex half-angle is given by
sinf = v/uvy. At the right (b) a stroboscopic photograph of a bullet moving
from right to left at supersonic speed through the hot air above the candle
forming a wave front.

The right panel of Figure 11.3 shows an empirical strobographic photograph of
a bullet moving at supersonic speed through the hot air above a candle. Note the
thin hyperbola of the shock wave in front of the bullet fired from the right to the
left in this picture. (Source: Serway, 1992, pp. 467—468).

The shock wave front carries thus a large amount of risk on the boundary layer,
which defines the cone of the vortex. The higher the “downstream” velocity x;,,
compared with the “upstream” velocity x,,, the narrower the angle of the cone of
the vortex. However, because the risk of the various flows dissipates at different
rates at different velocity levels, the shape of the developing vortex cone is not
constant, but actually a hyperbolic “funnel” shape, which stretches its shape over
time. The absolute apex of such a vortex is a singularity.*

In a sense, it is the much faster velocity by which the singularity of the vortex
is created relative to the velocity of the surrounding medium, why the vortex is
formed in the first place (Farge and Holschneider, 1990). Thus, vortex dynamics
(the rate at which vortices are created and then vanish) is intimately related to two
phenomena:

(1) the relative velocity differences between the velocity of a singularity (which
is “infinite” by definition) and the finite velocity of the medium in which it is
created, and

(2) the relative rates of risk dissipation, i.e., the stability of the singularity
distribution (which we discussed in Chapter 8).
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11.2.2 Informal theory of financial turbulence

My financial interpretation of this informal theory of physical turbulence for the
critical phenomenon of financial turbulence and the formation of vortices in finan-
cial market pricing processes is now as follows. Financial cash flows dynamics is
“spatially” 2D, because of the dynamic interaction between two rates of return of
adjacent investment cash flow channels, e.g., within a domestic term structure of
interest rates.

Suppose, there is an increase in financial pressure AFP,,,(t) > 0, because
of major differences in the rates of return x;(z),i € {m,n} on cash invest-
ments at the beginning and the end of existing investment cash flow channels
between segments of a steep domestic term structure, or between two term struc-
tures, e.g., in two different countries. These major differences may have been
caused by the sudden announcement of a change in trading regime from a pegged
exchange rate to a floating exchange rate, or by a sudden insight in the true val-
uation of corporate shares due to the due diligence auditing for an initial public
offering (IPO) in a stock market. Similar examples, we’ve earlier discussed in
Chapter 8.

This increased financial pressure requires rising of the local risk of the boundary
layer or wave front between the two adjacent cash flows. This I interpret to mean an
increase on the margin in the frequency of buy and sell transactions in the adjacent
markets, i.e., a steep increase in the number of independent transactions per unit of
time. The consequent increased transaction frequency of price singularities could
lead to turbulent, i.e., rotational and random, rapidly mean-reverting flows: small
cash flows that go rapidly back and forth between adjacent investment cash flow
channels, caused by noise traders (= small risk arbitragers), of which we find
more and more trading on the world-wide web.

Eventually we’ll observe intermittency: periods of condensation = periods of
increased velocity and efficiency of transactions, i.e., of antipersistence and stabil-
ity, followed by periods of rarefaction = periods of reduced velocity and efficiency
of transactions, i.e., of persistence and fundamental instability. These periods of
temporarily increased scaling followed by periods of temporarily reduced scal-
ing are observable in scalograms, as a variation in price singularity frequencies.
Interpreted in statistical terms, such intermittency should be observable as a shift
in the singularity spectrum from low Lipschitz irregularity oy (= high Zolotarev
stability oz = lepto-kurtosis of the distribution of the rate of cash return x(z)), to
high Lipschitz irregularity «; (= low Zolotarev stability oz = platy-kurtosis of
the distribution of the rate of cash return x(¢)).

Such intermittency of sequences of condensations and rarefactions of price sin-
gularities may thus cause the emergence of financial market vortices. When these
cash vortices remain relatively small in amplitude and duration, because of high
efficiency of trading (= fractal antipersistence = low Lipschitz «; = high sta-
bility oz = lepto-kurtosis of distribution of the rates of cash return x(#)) in the
financial markets, the financial markets will not experience major disruptions in
their trading. But when this concentration, or increase in frequency of cash flow
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trading, cannot occur because of low efficiency (= fractal persistence = high
Lipschitz «; = low stability az = platy-kurtosis of distribution of the rates
of cash return x(¢)) in the financial markets, the existing financial pressure may
produce very large amplitude price singularities, i.e., financial crises, which will
disrupt the cash flow rates, by disrupting the investment cash positions X (¢).

That’s why I introduced in the preceding chapter the definition of a cash vortex,
which I repeat here:

Definition 458 A cash flow vortex occurs, when the fractal differences AYX (1)
first rapidly increase in density (become quickly more rapid) and then rapidly
decreases in density (become quickly less rapid). In other words, a cash vortex
occurs, when the fractional differentiation (in particular the second-order differ-
entiation, or convexity) of the cash flow X (t) is non-homogeneous and there exists
a fractal spectrum of irregularities. Or, differently stated, when many values of
—0.5 < d < 0.5 are co-existent.

This is an observable phenomenon. As we demonstrated in Chapter 8, we can
now measure the fractal spectrum of market rates of return series from which we
can measure H = d 4 0.5. In both the physical and financial sense, it is clear that
the observable essence of turbulent flow motion is (1) spiral vortex or convexity
dynamics, i.e., the interaction between the magnitude scales of rate of cash return
x7 (¢) relative to the dependency structure of the risk dissipation and (2) periods of
intermittency. This requires a simultaneous time—frequency analysis, preferably
in real-time.

11.3 Measurement and simulation of turbulence

The phenomenon of turbulence was discovered physically. But the mathematical
modelling of turbulence is still a major problem of modern science, which remains
incomplete, despite an intense research effort since the first theory of Kolmogorov
of 1941 and Kolmogorov’s amendment of 1961. It is only very recently that we
have drastically improved the measurement technology, thanks to wavelet MRA.
No mathematical model exists yet to build a complete statistics—physics framework
based on the Navier—Stokes equations for turbulence, that would enable us to truly
understand the behavior of turbulent physical flows and, by analogy, of turbulent
financial flows.

The physical experimentation that led to these and similar discoveries is quite
peculiar. To a great extent, experimentation in flow dynamics is done while the
underlying physical principles, like the Navier—Stokes equations, are in no doubt.
In fact, the quantities observed are completely determined by these known non-
linear partial differential equations (PDEs).® So, the purpose of the recent and
current experiments is not to verify the proposed theory but to replace a compu-
tation from an unquestioned theory by direct measurements. Wind tunnels were
used as analogue computers to integrate these PDEs.

The main reason often given for this paucity of mathematical turbulence mod-
els is that the number of degrees of freedom needed to compute the spatially
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3D Navier—Stokes is so large. At high Reynolds number, the solutions of these

3D PDEs scale as Re?/ - Reg/ 4, by direct numerical integration. Since the
Reynolds number Re, runs into the thousands, this integration involves a very
large number of measurements and real-time computations and produces extremely
complex spatio-temporal behavior. Vector—matrix computation can now be done in
an extremely fast fashion and in real time. Wavelet MRA is a vector—matrix based
measurement and computation technique to visualize such complex nonlinear
dynamic behavior.

Moreover, the argument that the computations become (too) complex and time-
consuming is not valid for finance. In finance, the problem of the high number
of degrees of freedom is considerably less. In finance, we only deal with 1D
turbulence (vorticity) caused by the friction within the same market caused by
adjustment problems over time, or with 2D turbulence between adjacent bilateral
cash flows of two different markets, like, for example, the spot and futures mar-

2
kets. The solutions of the 1D Navier—Stokes equations scale as Regl/ 2" Rei/ 4

and the solutions of the 2D equations only scale linearly as Re?/ 2 = Re;. That
is quite a relief for financial vortex dynamics and makes such computations fea-
sible using real time tick-by-tick data from the financial markets. Still, wavelet
MRA computations can reduce the computational burden even more, since they
are based on vector computations.

11.3.1 Kolmogorov’s homogeneous (isotropic) turbulence

Let’s now step back for a moment and review in greater detail what we have
learned thus far about turbulence theory, measurement and analysis. In 1941,
the Russian mathematician Kolmogorov formulated an analytic statistical theory
of homogeneous, isotropic turbulence for viscous (= illiquid), incompressible
(-constant density) fluids with high Reynolds numbers, based on the notion of
self-similarity or scaling (Kolmogorov, 1941a—c).” He expanded on the earlier
work by Richardson (1926), who introduced the notion of self-similarity in the
form of a hierarchy of vortices linked by a cascade.® Such a cascade model we
discussed by way of an example in Chapter 8. It is now tested by physicists in
physical fluids (Meneveau and Sreenivasan 1987a,b, 1991), in foreign exchange
markets (Ghasghaie et al., 1996) and in stock markets (Mantegna and Stanley,
1996, 1997; Arnéodo et al., 1998).
A crucial descriptor of such financial vortices is the velocity field.

Definition 459 A velocity field is the nD density distribution of the nth-order
velocity vector X(t). For turbulence and vorticesn = 1,2 or 3.

In the following definitions this density distribution is described by only its
second moment. When a Gaussian density distribution is assumed, this is sufficient
to describe also its fourth moment or kurtosis (cf. Chapter 1). However, this is an
insufficient description, when the velocity fields are actually stable non-Gaussian
distributions (cf. Chapter 3), as is currently accepted by most scientists. Therefore,
the kurtosis of these velocity fields should be determined for each dimension
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separately and conjunctively. It is usually assumed that there is no skewness, since
risk dissipation is considered symmetric, because of the assumption of a uniform
medium. But even this uniformity assumption is now being challenged, because
of the Doppler effect (Farge et al., 1996; Nolan, 1999a,b).’

But let’s begin with Kolmogorov’s original theoretical physical turbulence
model.

Definition 460 For Kolmogorov’s homogeneous turbulence, the velocity field of
x(t) is modeled by n orthogonal time series processes x;(t), whose increments
have a variance proportional to the time lag t:

E{|xi(t) — xi(t — T)[*} ~ (0: 1) = (0,7)* (11.6)

where o, is the (noise) risk dissipation coefficient, which is independent of spatial
location.

Kolmogorov’s homogeneity assumption of the independence of location of the
diffusion errors ¢, and the constancy of the risk dissipation coefficient o,, exclude
intermittence, i.e., the convolution of the dissipation at various locations, since
the dissipation rate 2H = % is assumed to be the same in all three orthogonal
spatial dimensions (giving rise to the connotation “isotropic’’). Thus, Kolmogorov
(1941a—c) predicted that the velocity of a vortex is proportional to the cube root
of its size. He predicted, e.g., a vortex moving twice as fast as another will usually
be eight times as large; or that a vortex moving ten times as fast will be a thousand
times as large.

Remark 461 Notice that in Kolmogorov’s model the n D risk density distribution
of x(t), described by its second-order moment, dissipates over time at a constant
rate. Thus, turbulence eventually ends in risk dissipation. Due fo the viscosity
of the adjacent flows, the risk of the macro-scale visible motions transforms via
period-doubling processes into complete micro-scale chaos.

Kolmogorov’s model implies that each 1D time series process x;(f) is sta-
tistically homogeneous with Lipschitz regularity o = H = %, so that its
fractal Hausdorff dimension is zero (a point dimension), according to the inverted
Legendre transformation of Chapter 8:

D(ap) = ;2%[(0% +0.5)g — t(g)]

. 1
= ;Ielﬂfg [(5 + 0.5) 2 — r(Z)]

= inf |:§ — 1(2):| =0 (11.7)

geR

Thus, Kolmogorov’s (1941) turbulence theory predicts that his 1D velocity trace
x; () is afractal random process with stationary increments, whose power spectrum
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decays with a scaling exponent t(2) =2H + 1 = % (cf. Chapter 8):
P(@) = o} || "D
= o2l (11.8)

The success of Kolmogorov’s average statistical theory comes from numerous
empirical verifications of this power law of spectrum decay, initially from measure-
ments of turbulence of shear flows, empirically, in the oceans and, experimentally,
in wind tunnels (Grant et al., 1962; Batchelor, 1969; Anselmet ef al., 1984), and
more recently from measurements of turbulence in the atmosphere by Kida and
Okhitani (1992), Gagne and Castaing (1991) and Schmitt et al. (1992). All empiri-
cal measurements show that the actual scaling exponent of turbulence is very close
to Kolmogorov’s predicted value of t(2) = % Figure 11.4 shows the results of
Gagne and Castaing (1991), as reproduced in Frisch (1995, p. 154).

As Mandelbrot (1982, p. 278) states:

This verification constitutes a striking triumph of abstract a priori thought over
the messiness of raw data. It deserves (. ..) to be known outside the circle of
specialists.

P(wp,) T T T T

6

Figure 11.4 Data in the time domain from nine different turbulent flows with dis-
sipation scales ranging from 130 to 13,000, plotted in a spectrogram
with log—log coordinates. The abscissa measures the wavenumber w, and
the ordinate the energy spectrum P(w,). Both axes have been standard-
ized and the resulting curves have been shifted to give the best possible
superposition for measurement of the common slope —(2H +1) = —5/3.
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Physical antipersistent processes show approximately H ~ % = 0.33 and

persistent processes H ~ % = 0.66. Similarly, in the financial markets, we find that

the very antipersistent developed FX markets of the (former) German Deutsch mark
(DEM) (now the Euro) and of the Japanese Yen (JPY) show a homogeneous H ~
0.32. (Karuppiah and Los, 2000), while the rate of return in the slightly persistent
S&P500 stock market shows a homogeneous H = 0.60 (Peters, 1994, p. 137).

The volatilities priced by option markets exhibit (scaling) power law phenom-
ena with antipersistent H =~ 0.44 (Peters, 1994, p. 150), where the large-scale
phenomena are the sum of many small-scale phenomena. Peters speculates that
this is caused by the amplification process that underlies the long-memory process
of computed implied volatilities. These striking analogous results again strongly
suggest that there might be a relationship between financial cash turbulence and
the persistence of investment cash flows.

As we discussed in Chapter 10, the financial equivalent of turbulence, caused
by friction between adjacent illiquid (viscous) cash flows, would be the cash flow
exchanges between short-term (small scale) investors, like day traders, and long-
term (large scale) institutional investors, like pension and insurance funds, as Peters
(1994, p. 177) conjectured:

(1) In the stock, bond, and currency markets, volatility increased at a faster
rate than the square root of time. This relationship of one investment horizon to
another, amplifying the effects of smaller horizons, may be the dynamic reason
that volatility has a power law scaling characteristic. At any time, the fractal
structure of the markets (that is, many investors, who have different investment
horizons, trading simultaneously), is a snapshot of the amplification process.
This would be much like the snapshot taken of turbulent flow.

(2) The stock and bond markets do have a maximum scale, showing that
the memory effect dissipates as the energy in turbulent flow does. However,
currencies do not have this property, and the energy amplification, or memory,
continues forever. Volatility, which has a similar value of 7(g) to turbulent
flow, should be modeled as such.

In contrast to Peters (1994), we find that the world’s bond and stock markets are
predominantly persistent, while the anchor currency markets are predominantly
antipersistent. That’s also why Mantegna and Stanley (1997, 2000) cannot find
turbulence in the stock markets, since turbulence is essentially an antipersistence
phenomenon.

11.3.2 Intermittent turbulence and chaos theory

Kolmogorov’s (1941) average statistical turbulence theory does also not account
for the coherent structures within turbulent flows, such as vortices and intermittent
turbulence. Turbulence in fluid flows is characterized by localized regions or coher-
ent structures of strong variations in the velocity and pressure of vorticity fields.
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It is assumed, that these coherent structures control the dynamics and statistics of
the turbulent flows.

These phenomena contradict Kolmogorov’s hypothesis of homogeneity, which
is at the root of his (1941) statistical theory of turbulence. The low-order flow
structures follow Kolmogorov’s law, but the higher order flow structures depart
strongly from this law, since turbulent flows are actually highly intermittent.

Confronted with the empirical evidence of the 1940s and 1950s, Kolmogorov
modified his homogeneity assumption in 1961, by introducing a time-varying risk
dissipation rate to give an ad hoc explanation of the intermittency of turbulence
(Kolmogorov, 1962). Although Kolmogorov’s ad hoc modification is conceptu-
ally flawed, it opened the door, first, to the homogeneous monofractal turbulence
models developed by Mandelbrot (1974, 1975) to explain risk exchanges between
fine-scale time series structures and large-scale time series structures, and, second,
to the current heterogeneous multifractal turbulence models. The computation of
the singularity spectrum D (o ), discussed in Chapter 8, plays thus an important
role in the current testing the various proposed turbulence models to corroborate
if the average statistical theory is true, or, currently already much more likely, if
the localized non-statistical theory is true.

Let’s now first examine Kolmogorov’s (1962) amendment.

Definition 462 For monofractal (fractally homogeneous) turbulence, the (cash)
velocity field of X(t) is modeled by n orthogonal time series processes x; (t), whose
increments have a variance proportional to the time lag T as follows

E{lxi(t) — xi(t — D))} ~ (0:0)*# = (0,7)*/PTB (11.9)
where B = [3 — D]/3.

In classical homogeneous physical turbulence the Hausdorff dimension D = 3,
and the constant B vanishes, leaving the classic Kolmogorov exponent 2H = %
However, Mandelbrot (1982) found that in nature 2 < D < 3. Such a wide range
is not helpful and more precise determination of the fractal dimension D was thus
required, since a shape with a Hausdorff dimension 2 < D < 3 may be either
“sheet-like,” “line-like,’or “dust-like.” Nowadays, we find that there is a whole
dimensional spectrum D(«r,) for a range of co-existent o s.

The next phase of research is represented by the following much more sophis-
ticated definition of the risk dissipation in vortices, which does allow for
intermittency, and which is based on the work of inter alia, Frisch and Parisi
(1985), Farge et al. (1996) and Mallat (1999).

Definition 463 For fractally heterogeneous or multifractal turbulence, the veloc-
ity field of x(t) is modeled by n orthogonal time series processes x;(t), whose
increments have a variance proportional to the time lag T as follows

E{|xi(t) — xi(t — T)*} ~ (07)** (11.10)

so that ay,; # ayj fori # j.
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Remark 464 Notice that this most recent description of risk dissipation does
allow for intermittency, i.e., covariance between the orthogonal dissipation pro-
cesses, since the dissipation rates differ from each other for each n orthogonal
direction. This implies that no longer Gaussian velocity fields are assumed, which
have the same kurtosis (and skewness) in all dimensions, but stable non-Gaussian
velocity fields, since the velocity field may have different kurtosis in each direction.
The kurtosis of the velocity field in each dimension i is measured by az, = 1/ar,.

To find the multifractal support for turbulence, Frisch and Parisi (1985) used the
experimental wind tunnel time series (= the “Gagne” signal) supplied by Anselmet
et al. (1984). As Meyer (1993, p. 120) relates, they evaluated the average power
of the gth power of the change in the 3D velocity vector x(¢) in a turbulent flow,
i.e., they computed Gibbs’ partition function of the change (cf. end of Chapter 8):

Z(q, Arxi) = E{|Arx;|?}
= E{lxi(t) — x;(t — 7)|7} (11.11)
To their surprise, Frisch and Parisi (1985) found a power law in terms of
|Apx;|"@ (11.12)

where the exponent 7(g) does depend nonlinearly on the moment order g. They
interpreted that to mean that turbulent flow develops multifractal singularities (by a
period-doubling process), when the Reynolds number Re () becomes very large.

What is the relationship between this multifractal structure and the nonlinear
power law? When one discusses a multifractal “structure,” one means that for each
difference order d > 0, there is a set of singular points, with Hausdorff dimension
D(d), on which the increase in velocity, or the acceleration, acts like | A, x; 4.
The contribution of each of these “singularities of difference (order) exponent d”
to the average value E{|A;x;|?} is of the order of magnitude of the product:

|Azxi | Apx; PP@ = |Apx; 943 7P@D (11.13)

whereby the second factor, |A,x; |32 is the probability that a ball of radius
| A;x;| intersects a fractal set with Hausdorff dimension D(d).

When the radius of this ball approaches zero, |A;x;| — 0, the dominant term
is the one with the smallest possible exponent, which implies that:

T(q) = d>ior}§€R[dq +3 - D(d)] (11.14)

The exponent t(g) is therefore given by the Legendre transform of the
Hausdorff € dimension D(d). The nonlinear dependence of the exponent 7(g)
on the moment order g is caused by this Hausdorff dimension D(d) of the singu-
larity set, and thus indicates that the abrupt changes in velocity correspond to a
multifractal structure.

As we discussed in Chapter 8, the wavelet MRA is the ideal research tool to
analyze such multifractal structures. Nowadays, the measurements of turbulence
in wind tunnels, ocean shear flows and, for the first time, in financial markets, are
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analyzed with wavelet MRA. Thanks to colorized visualization one can actually
display the multifractal structure of turbulent flows in scalograms, as we’ve already
done in Chapter 8.

Everson et al. (1990) criticized this ad hoc or phenomenological approach to
study turbulence by showing that wavelet MRA of Brownian motion produces very
similar 2D visualizations. In the past decade, their critique has moved turbulence
research into a higher gear. It has moved from the qualitative to the quantitative and
to extract the fractal exponents o1, and the corresponding Hausdorff dimensions
D(ar) from various turbulent time series x (¢), like financial market pricing series,
as we also already learned in Chapter 8.

These theoretical and empirical measurement developments already induced
Zabusky (1984), the discoverer of the soliton, to comment on Kolmogorov’s
FT-based spectral theory as follows:

In the last decade we have experienced a conceptual shift in our view of
turbulence. For flows with strong velocity shear . . . or other organizing charac-
teristics, many now feel that the spectral description has inhibited fundamental
progress. The next “El Dorado” lies in the mathematical understanding of
coherent structures in weakly dissipative fluids: the formation, evolution and
interaction of metastable vortex-like solutions of nonlinear partial differential
equations. . .

In other words, the statistician’s averaging spectral decomposition, which is
based on the ergodic stationarity assumption (cf. Chapter 1), has inhibited and
slowed down scientific progress. As Farge (1992a,b) points out, ignorance of the
elementary physical, and for the purpose of this book, financial mechanisms at
work in turbulent (cash) flows arises in part from the fact that, until very recently,
we reasoned in Fourier modes (wave vectors), constructed from functions that are
not well localized but have infinite support.

This particular ergodicity-based statistical viewpoint ignores the presence of
clearly observable coherent structures that can be observed in physical time space
and whose dynamics appear to be essential (Van Dyke, 1982). These coherent
structures are observed in natural flows, experimental flows in laboratories and
in numerical simulations (Basdevant et al., 1981; McWilliams, 1984; Couder
and Basdevant, 1986; Farge and Sadourney, 1989). But these coherents are not
represented in the prevailing statistical theories based on the ergodic stationarity
assumption (cf. Monin and Yaglom, 1975).

Farge (1988) and Farge and Sadourney (1989) conjectured, based on their visu-
alization of the simulation results of dynamic 2D turbulent velocity fields, that the
dynamics of such 2D turbulent flow is essentially dominated by the interactions
between the coherent structures (vortices) that advect the residual flow situated
between them, while the latter seems to play no dynamic role.

Indeed, in terms of the financial markets, the 1D and 2D financial vortices, gener-
ated in the rate of return and risk dissipation processes by the major announcements
and political interventions, advect the residual cash flows of the noise traders, but
the latter flows appear to play no dynamic role.
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As Farge discovered, wavelet MRA, which decomposes the velocity fields on
a set of functions with compact support, does provide well-localized time-scale
analysis to delineate and interpret the coherent structures of such vortices, as we
will see in the following simulation analyses.

We’ll discuss first some simulation models of financial cash flow turbulence to
see what actually happens when a laminar cash flow turns into a turbulent cash
flow and dissipates into complete chaos.

11.4 Simulation of financial cash flow turbulence

11.4.1 Intermittency of financial turbulence?

Since we can characterize the degree of randomness, or irregularity, c.q., the insta-
bility of financial innovations in pricing series, is it possible to summarily measure
turbulence in the financial markets, as we observed such financial turbulence, e.g.,
in 1994, following the Mexican Financial Crisis, or in 1997, following the Asian
Financial Crisis, or in 1997 and 1998, following the Brazilian stock market and FX
market crisis, respectively? And may such measurement of financial turbulence
ultimately lead to a quantitative financial-economic theory of financial turbulence,
which would be contrasted to the current financial-economic theory of stationary
financial innovations underlying the normal valuation of risk by derivatives?

Peters (1994, pp. 167-183) produces a simple treatment of financial turbulence,
while Farge et al. (1996) provide a more elaborate, but very similar treatment
for physical turbulence. Schroeder (1991, p. 126) provides the same 1D model
for a simple additive relaxation process as they use, which can exhibit long-term
dependence, i.e., both antipersistent and persistent behavior:

X (1 + 1) = pxo (1) + V(1 = pHe(r),
with0 < p < 1, x;(0) = 0, and £(¢) ~ uniform distribution (11.15)

Here p measures the correlation coefficient between adjacent data intervals. It is
related to the relaxation time interval t by the equation

p=e /7 (11.16)

For a set of relaxation times that are scaled a factor of 10 (e.g. T = 1, 10, 100, .. .),
the correlation coefficients are obtained by taking decimal roots, e.g., p = 0.37,
0.90,0.99, ...

This equation has a complex interaction between its various parts. The first term

X (t+ 1) = pxc (1)
=e Vx@) (11.17)

is a simple AR(1) process, like we examined earlier in Chapter 4. Thus, this
equation contains an infinite memory. Pure AR(1) processes are only serially
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persistent. But this turbulence equation can produce antipersistent time series.
The secret lies in the second term, which is a random shock with a feedback twist.
Its coefficient:

VA =p2) = (1 —e 2703 (11.18)

is inversely related to the correlation coefficient p in the first term. The stronger
the AR(1) process, i.e., the larger p, the less strong the random shock with its
V(1 — p?) coefficient, and the weaker the AR(1) process, the stronger the random
shocks. This shock becomes then part of the infinite memory process.

This inverse influence of the random shock feedback prevents the system from
ever reaching equilibrium. If these random shocks were not included, each x; ()
series would reach its own unique equilibrium by its relaxation time 7. But the
system continues to be perturbed. It continually reverses itself and therefore never
settles down, since it creates coexistent nonunique equilibria. Although this model
can produce both antipersistent and persistent behavior, it is still not the correct
model, since it cannot produce intermittent behavior or vorticity.

Indeed, Peters (1994, pp. 177-180) proceeds to model the antipersistent volatil-
ity processes by the logistic equation we already discussed in Chapter 9, since that
is the simplest method for simulating the self-similarity model of turbulence. It is
characterized by a period-doubling route from orderly to chaotic behavior. Indeed,
many financial economists have empirically observed the clustering phenomena in
market pricing processes, e.g., large price changes are followed by more large price
changes and small ones by more small ones, as well as the intermittent periods of
complete unpredictability.

The current important research question is: what imposes the parabolic or higher-
order constraints in the financial markets? Are the convexity constraints of the
zero coupon bonds of the basic term structure providing sufficient nonlinearity on
the cascade of the term structure to cause chaos to emerge when this convexity
increases simultaneously with the speed of trading? Many financial economists
have already proposed two- and multi-factor price diffusion models for the term
structure (cf. Chapter 10).

11.4.2 Visualization of financial vorticity attractors

We have now two theoretical models of light blue (= antipersistent) random
processes, which produce averaged behavior for which the homogeneous Hurst
exponent is 0 < H < 0.5: the additive relaxation model discussed in this
chapter and, more importantly, the multiplicative logistic equation or “poor man’s
Navier—Stokes equation,”which we studied in Chapter 9. Both are iterated feed-
back processes, i.e., processes that fractionally integrate over time. In the relaxation
model, the power decay is due to correlation time and random events. In the logistic
equation, power decay is due to a nonlinear transformation of the random process
itself. The logistic equation can produce richer behavior than the relaxation model,
since it can produce intermittent turbulence and 1D vortices.
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But there is a significant empirical problem with both models, as models for
empirical financial turbulence. Neither of these two time series processes generates
the lepto-kurtic, high-peaked, heavy-tailed frequency distributions that we find to
be characteristic of financial time series x; (¢) withO < H < 0.5, except when they
are close to complete chaos! And none of the existent theoretical financial diffusion
models shows the aperiodic cyclicity in their power spectra, that is emphirically
observable!

Considering that kurtosis, measured by

C4 =My — 3m%
= E{x*(1)} = 3E{x>(1)} (11.19)

can be viewed as an alternative measure of intermittency, as Mandelbrot (1975)
suggested, this lack of proper kurtosis produced by the various turbulence models is
a very serious theoretical and empirical research issue. Therefore, it is necessary
to carefully study the spectrum of the singularities found in the empirical rates
of return (velocities) x;(¢) to find an explanation for the non-Gaussian kurtosis
of these rates. Next, we must numerically integrate the nonlinear Navier—Stokes
equations in such a way that they exactly reproduce the vorticity observe in the
financial market pricing series.

In Chapter 8, we have seen that the singularity analysis by wavelet MRA provides
a powerful visualization and analysis tool for exactly this kind of research. Indeed,
Mandelbrot already conjectured in 1976 the following statement regarding the
multifractal nature of turbulence (Mandelbrot, 1982, p. 107):

the turbulent solutions of the basic equations [of flow dynamics] involve sin-
gularities or “near singularities” of an entirely new kind. The singularities
are locally scaling fractal sets, and the near singularities are approximations
thereto.

11.5 Multiresolution analysis of financial turbulence

Since the early 1990s, the measurement analysis of turbulence has considerably
improved by the use of wavelet MRA to compute multifractal spectra D(ar).
Computations with wavelet maxima on turbulent processes show that the mul-
tifractal spectrum D(¢r) is at a maximum at opg = %, as predicted by the
Kolmogorov (1941) theory of homogeneous, isotropic turbulence.!? However, the
computed singularity spectrum D () does not have its support reduced to a single
point {a1o} = {%}, which verifies that turbulent processes are not homogenous,
monofractal processes, but must be heterogeneous, multifractal processes (Muzy
etal., 1991).

Indeed, other dimensional estimates of o, than Kolmogorov’s (1941) homoge-
neous H = 1 have already been conjectured and corroborated. In his work on
homogeneous fractal turbulence, Mandelbrot (1975, 1976) conjectured that turbu-
lence in real 3D-space is a risk dissipation phenomenon carried by a fractal set of
dimension around 2.5 < D(ar) < 2.6, but probably below 2.66, i.e., somewhere
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between a flat 2D-plane and truly 3D-space. Numerical work in support for his
conjecture is provided by, e.g., Hentschel and Procaccia (1983), Chorin (1988) and
Hentschel (1994). The boundary of such a turbulent area in space reveals a hierar-
chy of indentations, whose depth increases with the value of the classic measure
of hydrodynamic scale, the Reynolds number Re; (¢). These scaling indentations
show up as aperiodic cyclicity in the power spectra of the rates of return x; ()

To put this within our scientific perspective of possible turbulence in 1D financial
cash flows, charted in the Euclidean return time space {x (¢), t}, financial turbulence
would be characterized by arate of return variance exponentof 2H = % + B, where
we should find according to Mandelbrot’s (1976) corroborated conjecture that the
value of the Kolmogorov’s (1962) correction term is lying in the narrow range:

(3-2.5)

(3—-12.6)/3=0.1333 < B < 0.1666 = T (11.20)
so that the homogeneous Hurst exponent is
0.3999 < H < 0.4166 (11.21)
and the Zolotarev stability exponent
1
24 <az <= —) <25 (11.22)
oL

which indicates that turbulence is antipersistent and considerably more stable noise
than Gaussian noise. From the Legendre transformation for homogeneous fractals
in Chapter 8, the equivalent time decay scaling exponent for turbulence 7(2) =
2H + 1, so that

1.7999 < 7(2) < 1.8332 (11.23)

As we discussed in Chapter 8, we empirically find that the developed FX markets
for the German DEM (now the Euro) and the JPY show an average H ~ 0.32,
suggesting that these developed markets may contain truly antipersistent turbu-
lent cash flows, since we also find that the equivalent Zolotarev oz = 3.125
shows substantial distributional stability. In addition, the Mexican peso market
shows a homogeneous H = 0.41, i.e., within the bound conjectured by Man-
delbrot. Indeed, as we observed, the Mexican Peso/US Dollar (USD) rate shows
several adjustment vortices in the observed period in the 1990s. Similar results
we have already observed for several European financial markets. (Lipka and
Los, 2002).

In contrast, most of the developing Asian FX markets in the period May—August
1997 had a Hurst exponent 0.42 < H < 0.67, or 1.49 < az < 2.38, with mostly
H ~ 0.48, or oz = 2.083, suggesting that they behaved more like Random Walks,
even though some of these FX markets were unstable and others stable. Not all
financial markets are alike: they exhibit different degrees of persistence.
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These observations also suggest that the 1997 Asian Financial Crises was not due
to imperfections in the Asian FX markets, since they behaved overall as Random
Walks, which conventional financial economics considers sufficiently efficient. It
is more appropriate to conclude that the outcome of this series of financial crises
was initiated by a black-noise crisis in a imperfectly functioning commercial loan
market, which spilled over in the turbulent Asian FX markets, i.e., more like the
consequences of the subsequent Russian sovereign bond and German bund market
crises in 1998, which brought down Long Term Capital Management, Inc., and
the Brazilian stock market crisis in September 1998 and its FX market crisis in
January 1999.

It is then possible that the subsequent contagion turbulence in the international
FX markets is caused by the difference in cash flow rates of return between the
developed JPY, DEM (now Euro) and USD anchor FX markets and the Asian FX
markets. Cash flows in the developed FX markets show higher liquidity and less
persistence than the cash flows in the developing FX markets. The friction between
these laminar cash flows may have caused turbulence and “cash vortices,” because
of the differences in financial pressure, i.e., because of different rates of financial
risk dissipation.

11.5.1 Recent advanced research of financial turbulence

Mandelbrot (1982, p. 98), the “Father of Fractal Geometry,” said:

Our knowledge of the geometry of turbulence remains primitive indeed, and
partof fractal analysis of turbulence is the geometric counterpart of the analytic
analysis of correlation and spectra.

Farge, who measures and simulates the Navier—Stokes equations using wavelet
MRA, confronted this issue even more directly and bluntly stated:

The main factor limiting our understanding of turbulent flows is that we
have not yet identified the structures responsible for its chaotic and there-
fore unpredictable behavior. Based on laboratory and numerical experiments,
we think that vortices (or coherent structures) are these elementary objects,
from which we may be able to construct a new statistical mechanics and
define equations appropriate for computing fully developed turbulent flows.

(Farge et al., 1996, p. 664)

Farge proceed by introducing models based on the WT to explain the distribution
of vortices in turbulent fluids (Farge et al., 1996; Kevlahan and Farge, 1997). As
we observed in Chapter 10, indeed, wavelet MRA of financial market time series
detects regions of intermittent turbulence and financial vortices. Peters (1994)
conjectures that these are caused by the cash flow exchanges between short-term
horizon investors, like day-traders, and long-term (institutional) investors, but
other explanations are likely to be found.
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Much better mathematical modeling of the empirical observations is required
to corroborate such far-reaching conjectures and to construct a reliable financial-
economic theory of financial cash flow dynamics.

The current idea is to find simple models of financial cash flow turbulence
that mimic the behavior of financial 2D Navier—Stokes nonlinear PDEs at high
Reynolds numbers, but which would be easier to solve numerically and, perhaps,
even analytically. These cascade, hierarchical and similar models can then be
used to study some properties of turbulent cash flows, such as the risk cascade
between small and large scales, the associated probability distribution func-
tions, intermittency and all departures from Kolmogorov’s ergodic homogeneity
assumption.

All the simplifying 3D physical turbulence models are very recent. The first
attempt was only made in the early 1970s by Desnyanski and Novikov (1974), who
devised a so-called shell or cascade model, where the 3D Navier—Stokes equations
are represented on a discrete set of wavenumbers in Fourier space, each Fourier
shell corresponding to one octave. These models were popular, since with these
models it is easy to obtain a very large inertial range, up to Reynolds numbers
Re, = 10'°, at limited computational cost. The reason is that the degrees of
freedom of these models scale only as Re;, i.e., the same way as in 2D. However,
these simple models are known to be unrealistic and are used mainly for simulation
and training purposes.

Zimin (1981) proposed a hierarchical model that was defined in both space and
scale. To solve this model, he projected the 3D Navier—Stokes equations onto a
so-called Paley—Littlewood basis and then discretized by octaves, few in the large
scales and more in the small scales, in accordance with the uncertainty principle.
Next Zimin used semi-Lagrangian wavelets to compute the evolution of the flows.
His work foreshadowed the current wavelet decomposition models of 2D contour
dynamics, of which we showed an example by Farge et al. (1996) earlier in this
chapter.!!

As Farge emphatically stated in 1990 (quoted in Meyer, 1993, p. 122):

The use of the wavelet transform for the study of turbulence owes absolutely
nothing to chance or fashion, but comes from a necessity stemming from the
current development of our ideas about turbulence. If, under the influence
of the statistical approach, we had lost the need to study things in physical
space, the advent of supercomputers and the associated means of visualization
have revealed a zoology specific to turbulent flows, namely, the existence
of coherent structures and their elementary interactions, none of which are
accounted for by the statistical theory. ..

The time—scale wavelet MRA allows us to decouple the dynamics of the coherent
structures of turbulence from the residual flow. The difficulty arises because the
Navier—Stokes equations are nonlinear. Thus, the interactions between the coherent
structures and the residual flow cannot be eliminated. The coherent structures
differ from solitons in that they are not particular solutions of the Navier—Stokes
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equations. By using the WT one can extract these particular coherent turbulence
structures from the residual flow and study them in much greater detail.

11.5.2 Wavelet representation of turbulent financial flows

The WT bases have two very useful properties, allowing us to construct
adaptive wavelet MRA-based numerical schemes for solving the complex 3D
Navier—Stokes PDEs:

(1) Velocity field compression. The use of wavelet bases allow a much larger
nonlinear approximation compression of a velocity field, e.g., of the rates of cash
flow returns x (), than Fourier bases. Less wavelet coefficients have to be computed
for a nonlinear approximation of a vorticity field than Fourier coefficients to obtain
the same explanatory power. Furthermore, as we saw in Chapter 8, the magnitude
of the approximation error €;(t) = x(¢) — X;(t) between x(¢) and its wavelet
series expansion, as represented by the d — 1 largest coefficients (= integer order
of the Taylor approximation X, (¢)), can be estimated in some Lebesgue space by a
fractional power — the Lipschitz o . This fractional power exponent only depends
on the irregularity of x(¢), since we saw in Chapter 8 that

lx(t) — X ()] < K|t — ™ (11.24)

The nonlinear wavelet approximation of the dynamic cash flow return rate x (¢)
is associated with a discrete time grid, which is refined where there are singularities
of this function. Considering that a rate of return series x (¢) is almost always fractal
(= consist of a sequence of singularities), this implies that we need to focus on high
frequency financial data with very small time scales and identify their singularity
spectra to properly model financial turbulence.

(2) Differential operator compression. A second consequence of the double
localization of wavelet bases (in time t and scale a) of wavelet bases is that
some pseudo-differential operators become almost diagonal when projected (=
decomposed as linear expansion) onto these bases. This means that they have very
few significant coefficient and their discretization matrices are very sparse, SO
that fewer computations are needed, speeding up the computations and reducing
computing time.

The first wavelet adaptive schemes for the Navier—Stokes equations were derived
by Charton (1996), and Frohlich and Schneider (1995). The most commonly used
method for solving nonlinear PDEs is currently the Galerkin Finite Element method
based on the discrete WT, which we’ll discuss in the next section.

11.6 Wavelet solutions of financial diffusion equations

In the 1990s, wavelets have become a popular tool to solve nonlinear PDEs. One of
the reasons is that simulations of nonlinear phenomena in, e.g., financial turbulence
can produce solutions with discontinuities and singularities. This is particularly the
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case when one models the financial cash flow in the vicinity of a linear boundary
condition, like for the early exercise decision of American options.

As we’ve observed in Chapter 8, discontinuities in velocity and density are
also due to shock waves-like the announcement of the change from a pegged to a
floating exchange rate regime, generating vortex and other small-scale fluctuations
along the linear boundary, i.e., phenomena with different scale lengths (Perrier,
1989).12

Three kinds of methods are applied to solve the PDEs, which model this class
of nonlinear phenomena: (1) the finite differences method, (2) the finite elements
method of Galerkin and (3) the spectral method.

(1) The finite difference method replaces the differential operator by a difference
operator by discretization of the space—time field.

(2) The finite elements or Galerkin method uses a set of test functions with small
compact support. The equation is then integrated against these functions and
the final solution appears as a combination of this finite set of functions
(Thomee, 1984).

(3) The spectral method decomposes the solution onto a basis of global support
consisting of sinusoidal functions and then truncates that solution into a finite
number of terms.

The robustness of the first two methods in the representation of irregular func-
tions and the accuracy of the spectral method in smooth regions have together led
to a search for a mixed method that is numerically inexpensive and whose accu-
racy is independent from the solutions geometry. This search has led to the current
focus on the Galerkin’s finite elements method in combination with the spectral
method and through them on the wavelet Galerkin method.

As we have seen in Chapter 7, discontinuous functions can be approximated
using a wavelet basis without spurious fluctuations all over the spectral domain,
since wavelets are localized functions. Perrier (1989) was the first to exploit this
particular property to construct the new wavelet method for solving PDEs, but
many others have improved this method further (Xu and Shann, 1992; Beylkin,
1993; Dahlke and Weinreich, 1993; Qian and Weiss, 1993; Amaratunga and
Williams, 1994; Beylkin and Keiser, 1997).

Although the details of the numerical solution of nonlinear PDEs by wavelets
are difficult, the overall approach is quite straightforward.

11.6.1 Wavelet Galerkin solution of Burgers diffusion equation

The following two sections are adapted from the excellent review of wavelet appli-
cations by Bendjoya and Slezak (1993). It will demonstrate how the localization
properties of the WT incorporate the advantages of both the finite difference
and spectral methods. In particular, how the WT localizes the distorting Gibbs
phenomenon (cf. Chapter 5).
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11.6.1.1 Solution of 1D diffusion equation and the Gibbs phenomenon

Consider first the following solution of a simple 1D diffusion equation as an exam-
ple to show how the localization properties of the WT can direct us to the advantages
of both finite difference and spectral solution methods:

%[x(t), t] = —ul[x(), t]%[x(t), t] withtr >0 and x(¢) € [0, 1]

(11.25)

where the unknown function is f and u[x(¢), ¢] stands for the transport velocity
assumed to be 1-periodic in space. This function is now quite well-known among
financial engineers (Wilmott et al., 1998, pp. 58-70, etc.).

We can now choose an approximating expansion ¢ (x), using the basis set
(Y}, k=1,...,N:

N
$(x) =Y exyr(x) (11.26)

such that at each collocation point, i.e., a point where f(x) is known:

d(xi) = f(xi) (11.27)

and also
—(xl) = ch_(xz (11.28)

is an approximation of 9 f/9x (x;). In other words, information can then be obtained
from the approximating expansion ¢ (x) on the unknown function f(x) and on its
derivatives df/dx at the known collocation points x;, and then between these
collocation points by interpolating expansion.

For example, as we saw in Chapter 5, a sharp shock, modeled by a 1-periodic
Heaviside function as in Figure 11.5 can be interpolated using a Fourier trigonomet-
ric basis (Perrier, 1989). The Fourier resonance coefficients ci are easily computed
by inner products, so that the Fourier expansion

N/2

p) = Y e (11.29)

k=—N/2

approximates f(x) with ¢ (x;) = f(x;) at each collocation point.
If, instead of the Fourier basis, one uses the orthonormal wavelet basis
{Yr}, k=1,..., N, the wavelet resonance coefficients are again computed as
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inner products:

1
/0 J )i (x)dx

Ck =
| V-l
~ = D FO ) (11.30)
i=0
Since the collocation condition ¢(x;) = f(x;) is not automatically satisfied,

the following Nth-order constraint linear system needs to be solved to get a
numerically closely approximating result:

N
P() =D cr(x) (11.31)
k=1
with
¢ (xi) = f(x;) forallx; (11.32)

From careful analysis it appears that the amplitude of the remaining approxi-
mation error — the Gibbs phenomenon or spurious sinc(t) oscillations — strongly
correlates with the irregularity of the particular analyzing wavelet used, as can be
seen in Figure 11.5. Notice in panel (d) of Figure 11.6 how the discontinuities are
sharply localized, since the Gibbs phenomenon is localized due to the intrinsic
localization property of the wavelet.

The fundamental difference between the use of a Fourier basis and the use
of a wavelet basis is that the Gibbs phenomenon in the Fourier case extends to
the whole domain, while in the wavelet case it is sharply localized. Therefore,
it is possible to detect and compensate for the discontinuities using the wavelet

(a) 1.33 o (b) 1.33 ()
0.77 | 0.77 1

Y Y
0.22 0.22

33 - - - - 33 - - - -
000 025 050 075 1.00 000 025 050 075 1.00

Figure 11.5 Gibbs phenomenon: panel (a) shows the 1-periodic Heaviside function f(x),
which represents a singular solution like a shock; panel (b) shows the inter-
polated expansion ¢ (x) using a Fourier trigonometric basis. The Gibbs
phenomenon (= spurious sinc(t) oscillations) extends over the whole domain.
The number of collocation points is 32.



406 Term structure dynamics

(@ #0391 ®) $(9 1
14 1]
0 ! 0
©) ¢ - @ 3%:
14 1
0 ] 0 1

Figure 11.6 Approximation of the Heaviside function f(x) in panel of Figure 11.5, using
a wavelet basis. Panel (a) shows the Haar W° analyzing wavelet basis. Panel
(b) the W? wavelt basis. Panel (c) the W* wavelet basis. Notice that the Gibbs
phenomenon of spurious sinc(t) oscillations is now localized near the discon-
tinuities and that its amplitude is related to the irregularity of the analyzing
wavelet. (Here W" is the functional space of n times differentiable functions.)
Panel (d) shows the derivative d¢/dx derived from the interpolated expansion
¢ (x) using the Haar W° wavelet basis.

basis of interpolation with finite support. This is impossible by using the Fourier
trigonometric basis, since it has infinite support.

11.6.1.2 Wavelet solution of the regularized Burgers equation

Thus, wavelets can be used to solve partial differential equations because of their
multiscale property, which helps to approximate functions, without losing their
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discontinuities. This enables the filtering of numerical volatility without smoothing
out the empirical physical volatility. The wavelet (MRA) decomposition provides
the best compromise between the accuracy, the efficiency and the adaptability of
numerical solutions. The wavelet MRA is adaptable, as it automatically determines
the smallest scale, and the corresponding sampling grid, that needs to be taken into
consideration according to the local gradient. Consequently, it is currently accepted
that the natural approach is to decompose the numerical solution into a wavelet
basis {yx(#)} and not into a Fourier basis. The simplest 1D diffusion equation is
the Burgers equation with periodic boundary conditions and which, in the case
of small-scale diffusion (with variance 0> = 107>), has a close affinity with the
Black—Scholes equation:'?

flx@),nl f[x(1). 1] | 597 flx (1), 1]
o - O R )2
with ¢t > 0 and x(¢) € [0, 1] (11.33)

where f[O, ] is given and f[0, ] = f[1, z].

This equation can be viewed as a 1D Navier—Stokes equation with a convection
term f[x(¢), t1(f[x(¢), t]/dx(t)) and a viscosity term o>(d° f[x(r), t]/9x(t)?).
As we observed from our simulation of the parabolic logistic equation in
Chapter 9, the nonlinear viscosity term generates larger and larger gradients
(0f[x(2), t])/(0x(?)) leading to the formation of local small-scale vortex structures
via period-doubling and to singular discontinuities, when the solution f[x(¢), ]
becomes singular. A competition takes place between the convection term and an
increasing viscosity term. The gradients are damped and discontinuities do not
occur after the critical time when the viscosity term has become largest: then the
solution collapses to zero. Thus, the solution shows a clear multiscale or cascade
behavior.

The Burgers equation can be rewritten in a discrete way as follows

) 92
Jfor1— fu = _fn£5t +02 St

(11.34)

9x2
so that
32 9
[1 — 02—2} Fot1 = fu — £ s (11.35)
ax ax
with the boundary condition
Jn41(0) = for1 (D) (11.36)

where 4t is a constant time step, so that t = nét, f,, = f(x,ndt), and [ is the
identity operator. This gives us the parabolic difference equation:
-1

2
for1 = [1 — 028—] [fn - fn%&] (11.37)
0x

9x2
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Knowing now f, and the discrete wavelet v j;, the resonance coefficient of f,, 41
and the wavelet vector v j is computed by the inner product:

227! 3fy
(fut+1: ¥jk) =<|:1_02@i| [fn_fn%&il,lﬁjk>
21" ofy ik
=<["“2@] [f"‘f"%&]’[""zﬁ}@f">

3fn
= (fna 0jk> — ot <fna, 9jk>

1 239jk
= (fn, Ojx) + E‘St 1 ™ (11.38)

by application of the product differentiation rule. Here 0 is a precomputed family
of functions, such that for each wavelet v j; we have

82
Vi = [I_GZQ] 0k (11.39)
Now, we can reconstitute the following expression for f,1:

Jot1 = o1, Vi) Vjk (11.40)

The strong gradient regions are detected by the WT. Therefore, the required
lattice, or grid refinements occur only for sharp gradients and not for the moderate
extended gradients.

Thus far, the solution f[x(¢), t] of the Burgers equation has been computed
using (1) a Fourier spectral method, (2) a fixed non-adaptive wavelet decompo-
sition method and (3) an adaptive wavelet decomposition method. As we saw,
the Fourier spectral method produces the Gibbs phenomenon, spreading all over
its time domain. The second method presents spurious numerical volatility in the
neighborhood of the discontinuities. Both these artifacts are caused by lack of res-
olution in these neighborhoods. The numerical solution has proven to behave only
satisfactorily with the WT method, since the strong gradient regions are then sam-
pled at sufficiently fine scales. Compactly supported wavelets (such Daubechies
wavelets are localized in space, which means that the solution can be refined in
regions of high gradient, e.g., regions of stress concentrations, without having to
regenerate the scale—time grid for the entire problem.

11.6.2 Matrix wavelet Galerkin method

The solution method we just discussed is an application of the wavelet Galerkin
finite element method. Wavelet Galerkin methods employ appropriate wavelet
bases for the discretization of boundary integral operators. This yields quasi-sparse
system matrices which can be compressed to O (NJ) relevant matrix entries without
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compromising the accuracy of the underlying Galerkin method. Herein, O (NJ)
denotes the total number of unknowns.

The Galerkin method is now one of the most widely used methods for treating
the spatial portion of time-dependent parabolic problems, like those common in
models of cardiac wave propagation and in the parabolic diffusion models of the
interest rate term structure (James and Webber, 2001, p. 333). A very general
definition of the Galerkin method is the following.'*

Definition 465 The Galerkin method is a method of determining coefficients ci
in an expansion:

xX(1) = cur(t) (11.41)

k=1

of the linear (differential) equation L|x(t)] = 0, so that the linear operator L|x(t)]
is orthogonal to every finite element ¢y (t) fork =1, ..., n.

Often the differential equations are time-dependent, L[x(¢),#] = 0, and the
Galerkin’s finite element approximation is done in the form of a spatial variable
x(t), thereby reducing the PDE first to a system of ODEs in the frequency or scale
domain and then to an eigenvalue or spectral problem in the time domain.

The general Galerkin method reduces to the simple solution of a linear system
as follows. Suppose, we have a forced dynamic system of the form:

Lx(t) = q(t) (11.42)

where L is a linear operator, like the difference or differential operator of Chapter 3,
q(t) is a given function, and x (¢) is the unknown process. We try to solve for x (¢)
by selecting a set of basis functions 1, ¥, . .., ¥, with the property that the x ()
is expanded as follows:

n

xX(1) =) exr(n) (11.43)

k=1
The resonance coefficients ¢ can be solved using the linearity of the operator L:
n
Lx(t) = ) eelyn(t) = q(1) (11.44)
k=1

Since g (¢) doesn’t lie in the space spanned by the transformed basis functions Ly,
we solve this linear equation by the approximation:

n
b (Z cx Ly — q(t)) =0, foralli, wherel <i<n (11.45)

k=1
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where the function ¢; (-) is the inner product ¢; (v) = (¢;, v) , so that

i (Z kL — ‘I(f)) = ch@Llﬁk —¢iqg(t) =0 (11.46)
k=1 k=1
or
ch¢iLl/fk = ¢iq(t) foralli, wherel <i <n (11.47)
k=1

Thus, an original PDE can always be reduced to a solvable linear system of
ODEs of the matrix—vector form (Cooper, 2000, pp. 442—446):

Ac=Db (11.48)
where the square n x n matrix

A = [¢i L] (11.49)
the n x 1 vector

¢ = [cx] (11.50)
and the n x 1 vector

b = [¢ilq (1) (11.51)

This linear system can be solved for the vector of resonance coefficients ¢ = [c],
from which we can then reconstruct the unknown time series x (¢):

c=A"p (11.52)

Often the linear dynamic system must be solved subject to initial and terminal
constraints on x (t), which imply constraints on the resonance coefficients ¢ = [cx].

The Galerkin approximation method provides thus an orthogonal projection of
the true solution onto the given finite dimensional space of possible approximate
wavelet solutions. The error between the solution in the infinite dimensional data
space V and the finite N-dimensional wavelet space is orthogonal to all wavelets
spanning the space of possible Galerkin solutions. Therefore, the orthogonal pro-
jection of the Galerkin approximation is always the best approximation in the risk
space. Since the differential operator is positive definite, the matrix A is invertible
and the approximate solution is unique.
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11.6.3 Wavelet Galerkin solution of Navier-Stokes equations

Studies of turbulence are now increasingly making use of the wavelet Galerkin
method (Argoul et al., 1989; Farge and Holschneider, 1990; Farge, 1992a,b; Farge
et al., 1996). Let’s discuss the adaptive wavelet method to solve the financial
Navier—Stokes equations, based on the theory of acoustic spherical waves, in which
the (Lagrangian) wavelets represent vorticity and behave as particles evolving over
phase—space coordinates.

We look for an approximate wave function, w(t, t) (= the solution of the Navier—
Stokes equations), which is the superposition or linear expansion of wavelets
evolving in phase—space, as follows:

d

wr. ) =Y Dy (t_—b"(t)> (11.53)

P a(1)

Here 1 is the base wavelet, and ax (t), br () and ci(t) are the time-dependent
scale, translation and resonance coefficients, respectively. For the PDEs in finan-
cial cash flow dynamics, there is the simplifications by (f) = ¢. The wave function
w(t, t) represents the vorticity.

In the financial markets this vorticity w(z, t) is the convexity of the cash position
at time ¢. In bond markets, e.g., this would be the convexity of the invested zero
coupon bond value. The longer the maturity term, or horizon, 7, the higher the
convexity w(z, t), and vice versa.l®

The continuous time Navier—Stokes parabolic diffusion equations in terms of
the velocity field and vorticity are as follows:

% +x OV =20

w(t, 1) = VX, (), and x,(t):(

V2w(fs t) +g(l)
X, (1) X, o)\ (T €01 >0
3‘[i T >

8‘17]'
(11.54)

Here w(z, t) = vorticity, X; () = term structure of all rates of cash return
(= velocity vector), n;(t) = dynamic cash viscosity (or illiquidity), which tends
to zero in the limit of large Reynolds numbers Re., i.e., for very turbulent flows,
g(t) = exogenous force in investment channel of term 7, X, (#) = investment cash
flow of term t; and there are usually some boundary conditions. Here Vw(z, t) =
ow(t, t)/0t is the first-order differential operator for all available terms 7, while
Vzw(r, ) = 82w(r, t)/01101> is the second-order differential operator for all
available terms 7. Thus, we have the viscosity or convexity term

w(t, 1) = VX, (1)

.<10)

11.55
3‘[131’2 ( )
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This system of dynamic equations has several recognizable parts:

(1) Financial risk dissipation equation:

[810(1, D)oo

a7 w(T, t)] =g(t) (11.56)

where the left-hand side is the risk kernel, describing the financial risk dissipation
process. This is the parabolic second-order partial differential equation that can
cause chaos by period-doubling, as we noticed in Chapter 9.

(2) Vorticity (Poisson) equation:

w(z, 1) = VX, (1) (11.57)

the solution of which can be obtained as the steady state solution w*(z, t) of the
risk dissipation equation, which is usually reached within a few iterations.
(3) Nonlinear interaction term:

x: () Vw(z, 1) (11.58)

which can be computed by the wavelet Galerkin method. This term is then writ-
ten as a convolution between the wavelet coefficients of x(#) and the vorticity
derivatives dw(t, t)/0t.

(4) Boundary or collocation conditions. These are in general included in the
definition of the spaces V ;, when constructing the multiresolution analysis (MRA)
for the scale-discretization of the equations.

When n,(f) — Oas Re; — 00, the Navier—Stokes equation collapses to Euler’s
equation:

ow(t, 1)
ot

and the nonlinear advection term is no longer controlled by the linear dissipa-
tion term. Moreover, Euler’s equation models how financial risk is conserved,
whereas the Navier—Stokes equation models how it dissipates. Risk conservation
is reversible in time, whereas risk dissipation is irreversible.

If one then considers a particular risk regime state, i.e., a state of cash flow such
that the risk contribution from external forces is dissipated by the viscous friction,
then the vorticity dynamics are described by:

+x:(6)Vw(r,t) = g(t) (11.59)

dw(z, 1 IX. (1
Ww@H v d XD (11.60)
ot 31']'
or
dw(z, 1 IX. (1
W@ _ ey 2@ (11.61)
ot 81’]‘

Thus, the Lagrangian variation of vorticity, dw(z, t)/d¢, is equal to the product
of the vorticity w(z, t) and the velocity gradients V(0 X (¢)/07;), which leads to
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stretching of the term structure x. (t) (velocity tube) at all terms 7; by the rate of
return (velocity) gradients V(9 X (r)/d7;) = Ax, (). This stretching or flattening
of the term structure may then explain the transfer of financial market risk from the
macro scales of the cash flows, e.g., long-term institutional capital flows, toward
the smallest scales of the cash flows, e.g., the short-term money traders cash flows.

Remark 466 Such term structure stretching by the rate of return gradients is
mathematically only possible in 3D. In 2D, the vorticity is a Lagrangian invariant
of the motion, because in the absence of risk dissipation, it is conserved throughout
time along a cash flow trajectory, or:

ad
w(t, t) —0
at

Thus, financial term structure stretching in a particular country can only occur
when cash flows of three separate domestic maturity terms are simultaneously
considered, or the cash flows of a particular term from three different countries,
or the cash flows with two foreign currency ratios, e.g., in the form of a cross-
currency swap. For example, for three different maturity terms, T < To < 13, we
can have that the rate of the moderate term x.,(t) is too low, while the rates of
the short term x+, (t) and and the long term x.,(t) are too high. Then the rates of
the short and long term is usually lowered and the middle rate be raised by the
market forces, i.e., the sale of the bonds of moderate terms and the buying of the
short- and long-term bonds. In other words, by simple average return arbitrage
along the term structure. This will stretch or flatten the term structure of the three
zero rates. But more analogously to the risk (energy) redistribution by a vortex,
one can consider a credit risk premium situation, where the risk premium of the
short and long terms is partially transferred to the moderate term, for a more even
distribution of the financial risk along the term structure. In other words, by simple
risk (second moment) arbitrage along the term structure.

(11.62)

For numerical solution of the Navier—Stokes diffusion equations, their dis-
cretization can be performed by introducing again a finite time step §¢ setting
w(t, t) ~ w(t, ndét) to be the approximate solution at time ¢t = ndt. The discrete
wavelet coefficient wy (t, n) ~ w(r, n) belongs to a finite dimensional subspace
V; obtained from an MRA {V} ;> of the Hilbert space L2[0, 1].

The wavelet Galerkin method is then implemented as follows. Suppose V; = 27
(dyadic space). Then, according to Chapter 8, wy (t, n) can be expanded onto a
wavelet basis {11} of V, so that we get the simple discrete MRA:

J—12/-1

wy(t,n) =coo(m) + Y > djxm¥;x(r) (11.63)

j=0 k=0

Remark 467 The Galerkin method uses only the few (non-negligible) wavelet
detail coefficients dj x(n) larger than a given threshold {d; i (n) : |djx(n)| > &},
further saving on computing time and memory.
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After discretization, the risk dissipation equation is:
(1 — 28tV2> w(t,n+1) =w(r,n) + 6tf(n) (11.64)
o

so that we obtain the parabolic difference equation:

-1
wt,n+1) = (1 - Q&Vz) [w(z, n) + 81f (n)] (11.65)
Jo

An easy way to reduce this 2D system to several 1D systems is to use a tensor
wavelet basis and to approximately diagonalize and split the 2D risk kernel into
two 1D operators:

n ! n. 8\ n 02\
<1 - —8tV2) ~ (128t - —8t— (11.66)
p p 0T p 01y

Remark 468 This adaptive wavelet Galerkin method works well for linear(-ized)
equations, and was very recently applied to the study of the formation of galaxies
(cf. Farge et al., 1996). A global simulation at resolution 1,0242 can be run on
a simple workstation and doesn’t need a supercomputer. But in the nonlinear
case there are technical difficulties when two wavelets approach each other in
phase—space. That is when the intended operator split can’t work because of too
much interconnectivity between the wavelets. This non-splitting effect is called an
“atom’s collision” (Teng and Uhlenbeck, 2000).

11.7 Software

The computations of the following Exercises can be executed in Microsoft
EXCEL spreadsheets, or by using the basic MATLAB® software available from
The MathWorks, Inc., 24 Prime Park Way Natick, MA 01760-1500, USA.
Tel.: (508) 647-7000; Fax: (508) 647-7001; http://www.mathworks.com/products/
wavelettbx.shtml.

11.8 Exercises

Exercise 469 Nowadays, financial markets have many different kinds of market
participants, e.g., institutional investors with long investment horizons of several
years and day traders with ultra short investment horizons of no more than a
day. These participants trade parallel to each other in the same financial mar-
ket. Peters (1994, p. 173) states that: “Under the Fractal Market Hypothesis, it
is more likely that different investors, with different investment horizons, react to
the information with multiple relaxation times; that is, the information affects dif-
ferent investors differently, depending on their investment horizon.” Simulate the
resulting fractal speculative market pricing process by implementing the EXCEL
spreadsheet instructions of Peters (1994, p. 174), for four values of t = 1, 21, 63
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and 126 days. (What correlation coefficients? Result?) What is the homogeneous
H-exponent of the resulting summation process? Use the wavelet analysis of
Chapter 8, to compute the homogeneous H -exponent for the simulated time series.
Is the resultant financial market pricing process persistent, or antipersistent?

Exercise 470 Vary the time constant of the simulated process in the preceding
question. What are the mean, variance, skewness and kurtosis of the resulting
summation processes?

Exercise 471 What is financial turbulence? Is financial turbulence common in
the S&P500 stock market? And in the FX markets? Would you be able to visu-
alize it? What may cause it when it occurs? Is financial turbulence desirable or
problematic in financial markets? Why, or why not?

Exercise 472 Construct a simple Navier—Stokes model for a derivative pricing
risk diffusion process, identify its monofractal Hurst exponent. Identify its multi-
fractal dimension, when it has one. Corroborate the results with high-frequency
empirical data, if you can.

Exercise 473 Take a well-known Black—Scholes financial diffusion equation,
resulting from an application of It6’s lemma and numerically solve it for different
parameter values using the Galerkin wavelet method. Use MATLAB® software
(cf. Cooper, 2000 for an introduction on how to numerically solve PDEs with
MATLAB®) and high-frequency data for an empirically collocated or calibrated
simulation.

Notes

1 In financial terms, noise in the financial market time series would indeed be produced
by noise trading, i.e., small, fast cash trade transactions, that are almost immediately
reversed.

2 The funnel shape of an adjustment vortex we’ve already measured in the Thai baht,
when we visualized this adjustment in a 3D scalogram in Chapter 8. We noticed it also
in the scalograms of the vortices generated by the discontinuities of the Mexican and
Brazilian Financial Crises.

3 When the Mach number >1, we speak of supersonic velocity. When the Mach
number <1, we speak of subsonic velocity. When the Mach number = 1, we speak of
sonic velocity. Thus, the terms super- and subsonic are relative terms! They measure
the velocity relative to the velocity of the surrounding medium.

4 The basic cone shape of a vortex has been corroborated by many natural phenomena.
However, the measured geometric shape of the funnels of tornados and cyclones is much
more elongated than this simple proportional relationship suggests, due to the change
in viscosity, when risk or energy dissipation enters the equation, as we will see. The
1997 movie “Twister” shows the direct approach to the measurement and modeling of
catastrophic tornado vortices by a team of courageous tornado chasers, which places a
mass of tracers with built-in radio transmitters in the singularity of a tornado. By tracking
all the tracers in the funnel of the tornado, the exact geometric shape of the tornado and
the dynamics of the boundary layer can be established. Fortunately, in the financial
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markets we do not have to make such dramatic and heroic empirical measurements,
since the term structure is directly observable.

5 The French engineer Claude Louis Marie Henri Navier (1785-1836) was born in Dijon.
His father, who was a member of the National Assembly in Paris during the time of the
French Revolution, died in 1793. Thereafter, Navier was cared for by his uncle Emiland
Gauthey, who was considered the leading civil engineer in France. During this first
year at the Ecole Polytechnique, Navier was taught analysis by Fourier, who became
a lifelong friend of Navier as well as his teacher. Navier became soon recognized as
a scholar of engineering science, by editing the works of his uncle Gauthey and by
adding a somewhat analytical flavor. When Navier became a professor at the Ecole des
Ponts et Chaussées in 1830, he changed the syllabus to put much more emphasis on
physics and on mathematical analysis and less on empirical principles. A specialist in
road and bridge building, he was the first to develop a theory of suspension bridges,
using variational calculus. But Navier is remembered today, not as the famous builder
of bridges, for which he was known in his own day, but rather for the Navier—Stokes
equations of fluid dynamics. He gave the well-known Navier—Stokes equations for an
incompressible fluid in 1821, and the equations for viscous fluids in 1822. Navier derived
his correct equations despite not understanding the physics of shear stress in a fluid,
but rather he based his work on modifying Euler’s equations based on (what is now
considered) unacceptable reasoning.

6 Sir George Gabriel Stokes (1819-1903) was a British physicist and mathematician
whose law of viscosity (1851), describing the movement of a small sphere through a
viscous fluid, established the science of hydrodynamics. Stokes Law (1847) states that
the frictional force on a particle = 6wran, (¢t)x(¢), where a = radius or scale of particle,
n. () = coefficient of viscosity (illiquidity) and x (¢) = flow velocity, provided that the
Reynold’s number R;(¢) = 2apx(t)/n:(t) < 1.

7 Russian mathematician Andrei Nikolaevich Kolmogorov (1903-1987) made fundamen-
tal contributions to mathematical logic, the theory of functions, differential equations,
topology and other branches of mathematics. However, as we noted in Chapter 1,
Kolmogorov is most renowned for his work in the field of probability, for which he
published his first paper in 1929. He then expanded it into a landmark book, pub-
lished in German in 1933 and translated into English in 1950 as The Foundations of
the Theory of Probability. The book presented the first full axiomatic treatment of the
subject.

8 Lewis Fry Richardson (1881-1953) was a very interesting, original and industrious
researcher, who broke new ground with his studies of turbulence, but who was often not
understood by his contemporaries. He attended Cambridge University on a scholarship
and earned his BA in physics, mathematics, chemistry, biology and zoology, since he
could not make up his mind what career to follow. He started out as a meteorologist
and wrote a path-breaking book on Weather Prediction by Numerical Process (1922),
on which modern weather prediction is based. Eventually, at age 47, he obtained a
PhD in mathematical psychology from London University, with a study of the psy-
chology of armed conflict between states, founding what is now called differential
game theory. Differential game theory led to the development of dynamic war games
studied inter alia by polemologists of my Dutch Alma Mater, Groningen University
in The Netherlands. He thereby made the Von Neuman and Morgenstern game the-
ory dynamic. Richardson numerous posthumous articles include an investigation (in
1961) of the length of coastlines, which inspired Mandelbrot (1982) to develop his
Fractal Geometry.

9 The Doppler effect is named after the Austrian Christian Johann Doppler (1803-1853).
The Doppler effect occurs when there is relative motion between the vortex source
(singularity) and an observer. The ratio of the observed frequency f, (¢) relative to the
source frequency f,(¢) is fu()/fm(t) = [x(t) £ x,(t)]1/[x(t) F x,,(t)], where x(t)
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is the common velocity of the inertial frame, x,, (¢) is the velocity of the source relative
to the frame and x,(¢) is the velocity of the observer relative to the frame. In this
expression, the upper signs (+x, (¢) and —x,, (¢)) refer to motion toward each other, and
the lower signs (—x, (¢) and +x,, (¢)) refer to motion away from each other. The word
toward is associated with f,(¢)/f,(t) > 1 and the word away with f,(¢)/fn(t) < 1.

10 That is equivalent to a Zolotarev stability azg = 1 /a9 = 3.

11 In Australia you can see daily examples of the current (almost real-time) computation of
dynamic 2D barometric pressure contours on ABC t.v., where the popular weatherman
(“Monty”) presents the changing 2D airflow fields, between high and low pressure areas
and points out where the airflow vortices develop. Weather derivatives, which hedge
against the damage costs caused by these vortices, provide a direct bridge between the
physical vortex risk valuation and the corresponding financial risk valuation (Banks,
2002). This suggests that derivatives can be used to hedge against financial vorticity
and occasional crises risks in the financial markets.

12 However, it should be emphasized that it still is difficult to distinguish genuine intrinsic
turbulent volatility from numerical solution volatility.

13 Frazier (1999, pp. 470-481) discusses the numerical wavelet solution for a class of
Ordinary Differential Equations (ODEs), known as Sturm-Louisville equations.

14 Boris Grigorievich Galerkin, 1871-1949, entered in 1893 the Petersburg Technological
Institute, where he studied mathematics and engineering. He became employed as a
design engineer and, in 1909, he began teaching at the Petersburg Technological Insti-
tute and he published an article on longitudinal curvature, relevant to the construction
of bridges and frames for buildings. Today Galerkin is best known for his finite ele-
ment method of approximate integration of differential equations known as the Galerkin
method, published in 1915. In 1920, Galerkin became Head of Structural Mechanics
at the Petersburg Technological Institute and held chairs in elasticity at the Leningrad
Institute of Communications Engineers and in structural mechanics at Leningrad Uni-
versity. From 1940 until his death, Galerkin was head of the Institute of Mechanics of
the Soviet Academy of Sciences. Galerkin investigated stress in dams and breast walls
with trapezoidal profile and was a consultant in the planning and building of many of
the Soviet Union’s largest hydrostations, like the Dnepr dam.

15 Coupon bonds show the largest convexity, while zero-coupon bonds have zero con-
vexity. This suggests that when coupon bonds, or bank loans become non-performing,
the convexity can suddenly change, thereby rapidly reshaping the term structure and,
perhaps, causing financial turbulences.

Bibliography

Amaratunga, K., and J. Williams (1994) “Wavelet—Galerkin Solutions for One-Dimensional
Partial Differential Equations,” International Journal of Numerical Methods in Engineer-
ing, 37(16), 2703-2716.

Anselmet, F., Y. Gagne, E. J. Hopfinger and R. A. Antonia (1984) “High-Order Veloc-
ity Structure Function in Turbulent Shear Flows,” Journal of Fluid Mechanics, 140,
63-89.

Argoul, F., A. Arnéodo, G. Grasseau, Y. Gagne, E. F. Hopfinger and U. Frisch (1989)
“Wavelet Analysis of Turbulence Reveals the Multifractal Nature of the Richardson
Cascade,” Nature, 338, 51-53.

Arnéodo, A., J. F. Muzy and D. Sornette (1998) “Direct’ Causal Cascade in the Stock
Market,” European Physics Journal, B, 2, 277-282.

Banks, Erik (Ed.) (2002) Weather Risk Management: Markets, Products and Applications,
Palgrave, New York, NY.



418 Term structure dynamics

Basdevant, C., B. Legras, R. Sadourny and I. Beland (1981) “A Study of Barotropic Model
Flows: Intermittency, Waves and Predictability,” Journal of Atmospheric Sciences, 38,
2305-2326.

Batchelor, G. K. (1969) “Computation of the Energy Spectrum in Homogeneous Two-
Dimensional Turbulence,” Physics of Fluids (Supplement II), 12, 233-239.

Bendjoya, Ph., and E. Slézak (1993) “Wavelet Analysis and Applications to Some
Dynamical Systems,” Celestial Mechanics and Dynamical Astronomy, 56, 231-262.
Beylkin, G. (1993) “On Wavelet-Based Algorithms for Solving Differential Equations,” in
Benedetto, J. and M. Frazier (Eds) Wavelets: Mathematics and Applications, CRC Press,

Boca Raton, FL, pp. 449-466.

Beylkin, G., and J. M. Keiser (1997) “On the Adaptive Numerical Solutions of Nonlinear
Partial Differential Equations in Wavelet Bases,” Journal of Computational Physics,
132(2), 233-259.

Charton, P. (1996) “Produits de Matrices Rapides en Bases Ondelettes: Application a la
Résolution Numérique d’ Equations aux Dérivées Partielles” (“Products of Fast Matri-
ces in Wavelet Bases: Application to the Numerical Solution of Partial Differential
Equations”), PhD dissertation, Université Paris 13.

Chorin (1988) “Spectrum, Dimension, and Polymer Analogies in Fluid Turbulence,”
Physical Review Letters, 60(19), 1947-1949.

Cooper, Jeffrey M. (2000) Introduction to Partial Differential Equations with MATLAB®,
Birkhéuser, Boston, MA.

Couder, Y., and C. Basdevant (1986) “Experimental and Numerical Study of Vortex Couples
in Two-Dimensional Flows,” Journal of Fluid Mechanics, 173, 225-251.

Dahlke, S., and I. Weinreich (1993) “Wavelet—Galerkin Methods: An Adapted Biorthogonal
Wavelet Basis,” Constructive Approximation, 9(2), 237-262.

Desnyansky, V. N., and E. A. Novikov (1974) “The Evolution of Turbulence Spectra to the
Similarity Regime,” Izvestia Akademii Nauk SSSR, Fizika Atmosfera i Okeana (News of
Academy of Sciences, USSR, Physics of Atmosphere and Ocean), 10(2), 127-136.

Everson, R., L. Sirovich and K. R. Sreenivasan (1990) “Wavelet Analysis on the Turbulent
Jet,” Physics Letters, A, 145(6/7), 314-324.

Farge, Marie (1988) “Vortex Motion in a Rotating Barotropic Fluid Layer,” Fluid Dynamics
Research, 3, 282-288.

Farge, Marie (1992a) “Wavelet Transforms and their Applications to Turbulence,” Annual
Review of Fluid Mechanics, 24, 395-407.

Farge, Marie (1992b) “The Continuous Wavelet Transform of Two-Dimensional Turbulent
Flows,” in Ruskai, M. B., G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer
and L. Raphael (Eds) Wavelets and Their Applications, Jones and Bartlett Publications,
Boston, MA, pp. 275-302.

Farge, M., and M. Holschneider (1990) “Interpretation of Two-Dimensional Turbu-
lence Spectrum in Terms of Singularity in the Vortex Cores,” Europhysics Letters,
15(7), 737-743.

Farge, Marie, Nicholas Kevlahan, Valérie Perrier and Eric Goirand (1996) “Wavelets and
Turbulence,” Proceedings of IEEE, 84(4), 639—669.

Farge, M., and R. Sadourney (1989) “Wave—Vortex Dynamics in Rotating Shallow Water,”
Journal of Fluid Mechanics, 206, 433-462.

Forbes, Kristin J., and Roberto Rigobon (2002) “No Contagion, Only Interdependence:
Measuring Stock Market Comovements,” The Journal of Finance, 57(5), 2223-2261.
Frazier, Michael W. (1999) An Introduction to Wavelets Through Linear Algebra, Springer

Verlag, New York, NY.



Simulation of financial turbulence 419

Frisch, Uriel (1995) Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University
Press, Cambridge, UK.

Frisch, U. and G. Parisi (1985) “Fully Developed Turbulence and Intermittency,” in Ghil, M.,
R. Benzi and G. Parisi (Eds) Turbulence and Predictability in Geophysical Fluid Dynam-
ics and Climate Dynamics, North-Holland Publishing Co., Amsterdam, pp. 71-88.

Frohlich, J., and K. Schneider (1995) “An Adaptive Wavelet Galerkin Algorithm for One
and Two-Dimensional Flame Computations,” European Journal of Mechanics, B, 13(4),
439-471.

Gagne, Y., and B. Castaing (1991) “A Universal Representation Without Global Scal-
ing Invariantce of Energy Spectra in Developed Turbulence,” Cahiers de Recherche
d’Academie des Science de Paris, Serie 11, 312, 441-445.

Ghasghaie, S., W. Breymann, J. Peinke, P. Talkner and Y. Dodge (1996) “Turbulent Cascades
in Foreign Exchange Markets,” Nature, 381, 767-770.

Grant, H. L., R. W. Stewart and A. Moiliett (1962) “Turbulent Spectra From A Tidal
Channel,” Journal of Fluid Mechanics, 12, 241-268.

Hentschel, H. G.E., (1994) “Stochastic Multifractality and Universal Scaling Distributions,”
Physics Review, E, 50, 243-261.

Hentschel, H. G. E., and I. Procaccia (1983) “The Infinite Number of Generalized
Dimensions of Fractals and Strange Attractors,” Physica, D, 8, 435-444.

1t6, K. (Ed.) (1980) “Methods Other Than Difference Methods,” in Encyclopedic Dictionary
of Mathematics, 2nd edn, Vol. 2, MIT Press, Cambridge, MA, p. 1139.

James, Jessica, and Nick Webber (2001) Interest Rate Modelling, John Wiley and Sons,
Chichester, NJ.

Karuppiah, Jeyanthi, and Cornelis A. Los (2000) “Wavelet Multiresolution Analysis of
High-Frequency FX Rates,” Quantitative Methods in Finance & Bernoulli Society
2000 Conference (Program, Abstracts and Papers), University of Technology, Sydney,
Australia , 5-8 December, pp. 171-198.

Kevlahan, N., and M. Farge (1997) “Vorticity Filaments in Two-Dimensional Turbulence:
Creation, Stability and Effect,” Journal of Fluid Mechanics, 346, 49-76.

Kida, S., and K. Okhitani (1992) “Spatio—Temporal Intermittency and Instability of a Forced
Turbulence,” Physics, Fluids A, 4, 1018-1027.

Kolmogorov, A. N. (1941a) “The Local Structure of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds Number,” Doklady Akademii Nauk SSSR, 30, 299-303
(reprinted in Proceedings of the Royal Society of London, A, 434, 1991, 9-13).

Kolmogorov, A. N. (1941b) “On Degeneration (Decay) of Isotropic Turbulence in an
Incompressible Viscous Liquid,” Doklady Akademii Nauk SSSR, 31, 538-540.

Kolmogorov, A. N. (1941c) “Dissipation of Energy in Locally Isotropic Turbulence,” Dok-
lady Akademii Nauk SSSR, 32, 299-303 (reprinted in Proceedings of the Royal Society
of London, A, 434, 1991, 15-17).

Kolmogorov, A. N. (1962) “A Refinement of Previous Hypotheses Concerning the Local
Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number,”
Journal of Fluid Mechanics, 13, 82-85.

Koster, F., K. Schneider, M. Griebel and M. Farge (2002) “Adaptive Wavelet Methods
for the Navier—Stokes Equations,” in E. H. Hirschel (Ed.) Notes on Numerical Fluid
Mechanics, Vieweg Verlag, Braunschweig.

Lipka, Joanna M., and Cornelis A. Los (2002) “Persistence Characteristics of European
Stock Indexes,” Working Paper, Department of Finance, Graduate School of Manage-
ment, Kent State University, January 2002 (Accepted at the Annual Meeting of the



420 Term structure dynamics

National Business and Economics Society, March 5-8, 2003, St Thomas, U.S. Virgin
Islands).

McWilliams, J. C. (1984) “The Emergence of Isolated Coherent Vortices in Turbulent Flow,”
Journal of Fluid Mechanics, 146, 21-43.

Mallat, Stéphane (1999) A Wavelet Tour of Signal Processing, 2nd edn, Academic Press,
Boston, MA.

Mandelbrot, Benoit B. (1975) “Intermittent Turbulence in Self-Similar Cascades. Diver-
gence of High Moments and Dimension of the Carrier,” Journal of Fluid Mechanics, 62,
331-358.

Mandelbrot, Benoit B. (1976) “Intermittent Turbulence & Fractal Dimension: Kurtosis and
the Spectral Exponent 5/3 + B,” in Teman, R. (Ed.) Turbulence and Navier Stokes
Equations, Lecture Notes in Mathematics, Springer Verlag, New York, NY.

Mandelbrot, Benoit B. (1982) The Fractal Geometry of Nature, W. H. Freeman, New York,
NY.

Mantegna, R. N. (1999) “Hierarchical Structure in Financial Markets,” European Physics
Journal, B, 11, 193-197.

Mantegna, Rosario N., and H. Eugene Stanley (1996) “Turbulence and Financial Markets,”
Nature, 383, 587-588.

Mantegna, Rosario N., and H. Eugene Stanley (1997) “Stock Market Dynamics and
Turbulence: Parallel Analysis of Fluctuation Phenomena,” Physica, A, 239, 255-266.
Mantegna, Rosario, N., and H. Eugene Stanley (2000) An Introduction to Econophysics:

Correlations and Complexity in Finance, Cambridge University Press, Cambridge, UK.

Meneveau, C. M., and K. R. Sreenivasan (1987a) “Simple Multifractal Cascade Model for
Fully Developed Turbulence,” Physical Review Letters, 59(13), 1424-1427.

Meneveau, C. M., and K. R. Sreenivasan (1987b) “The Multifractal Spectrum of the Dissipa-
tion Field in Turbulent Flows,” Nuclear Physics, B (Proceedings Supplement), 2, 49-76.

Meneveau, C. M., and K. R. Sreenivasan (1991) “The Multifractal Nature of Turbulent
Energy Dissipation,” Journal of Fluid Mechanics, 224, 429-484.

Meyer, Yves (1993) Wavelets: Algorithms & Applications (translated and revised by Robert
D. Ryan), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
Monin, A. S., and A. M. Yaglom (1975) Statistical Fluid Mechanics, The MIT Press,

Boston, MA.

Muzy, J. F, E. Bacry and A. Arnéodo (1991) “Wavelets and Multifractal Formalism
for Singular Signals: Application to Turbulent Data,” Physical Review Letters, 67(25),
3515-3518.

Navier, C. L. M. H. (1823) “Mémoire sur les Lois du Mouvement des Fluides,” (“Report on
the Dynamic Laws of Fluids”), Memoires d’Académie Royale des Sciences, 6, 389-440.

Nolan, John (1999a) “Basic Properties of Univariate Stable Distributions,” chapter 1 in
Stable Distributions, American University, April 19, 30 pages.

Nolan, John (1999b) “Fitting Data and Assessing Goodness-of-Fit with Stable Distribu-
tions,” Working Paper, American University, June, 52 pages.

Obukhov, A. N. (1941a) “On the Distribution of Energy in the Spectrum of Turbulent Flow,”
Dokladi Akademii Nauk SSSR, 32(1), 22-24.

Obukhov, A. M. (1941b) “Spectral Energy Distribution in a Turbulent Flow,” Izwestia
Akademii Nauk SSSR, Seri Geografii i Geofiziki, 5(4/5), 453-466.

Perrier, V. (1989) “Towards a Method for Solving Partial Differential Equations Using
Wavelet Basis,” in Combes, J. M., A. Grossman and Ph. Tchamitchian (Eds) Wavelets,
Time—Frequency Methods in Phase Space, Springer Verlag, New York, NY, pp. 269-283.

Peters, Edgar E. (1994) Fractal Market Analysis, John Wiley & Sons, Inc., New York, NY.



Simulation of financial turbulence 421

Qian, S., and J. Weiss (1993) “Wavelets and the Numerical Solution of Partial Differential
Equations,” Journal of Computational Physics, 106(1), 155-175.

Richardson, L. F. (1922) Weather Prediction by Numerical Process, Cambridge University
Press, Cambridge, UK.

Richardson, L. F. (1926) “Atmospheric Diffusion Shown on a Distance-Neighbour Graph,”
Proceedings of the Royal Society of London, A, 110, 709-737.

Schroeder, Manfred (1991) Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise, W. H. Freeman and Co., New York, NY.

Schmitt, F., D. Lavallée, D. Schertzer and S. Lovejoy (1992) “Empirical Determination of
Universal Multifractal Exponents in Turbulent Velocity Fields,” Physical Review Letters,
68(3), 305-308.

Serway, Raymond A. (1992) Physics: For Scientists & Engineers with Modern Physics,
3rd ed. (updated version), Harcourt Brace College Publisher, Philadelphia, PA.

Stevens, Peter S. (1974) Patterns in Nature, Atlantic Monthly Press—Little, Brown and Co.,
Boston, MA.

Taylor, G. I. (1935) “Statistical Theory of Turbulence,” Proceedings of the Royal Society
of London, A, 151, 421-478.

Taylor, G. I. (1938) “The Spectrum of Turbulence,” Proceedings of the Royal Society of
London, A, 164, 476-490.

Teng, Chuu-Lian, and Karen Uhlenbeck (2000) “Geometry of Solitons,” Notices of the
American Mathematical Society, 47(1), 17-25.

Thomee, V. (1984) Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes
in Mathematics, Springer Verlag, New York, NY.

Van Dyke, M. (1982) An Album of Fluid Motion, The Parabolic Press, Stanford, CA.

Vergassola, M., and U. Frisch (1991) “Wavelet Transforms of Self-Similar Processes,”
Physica, D, 54, 58-64.

Weng, H., and K.-M. Lau (1994) “Wavelets, Period Doubling, and Time-Frequency
Localization with Application to Organization of Convection over the Tropical Western
Pacific,” Journal of Atmospheric Science, 51, 2523-2541.

Wilmott, Paul, Sam Howison and Jeff Dewynne (1998) The Mathematics of Financial
Derivatives: A Student Introduction, Cambridge University Press, Cambridge, UK.

Xu, J.-C., and W.-C. Shann (1992) “Galerkin—Wavelet Methods for Two-Point Boundary
Value Problems,” Numerical Mathematics, 63(1), 123-142.

Zabusky, Norman (1984) “Computational Synergetics,” Physics Today, July, 2—11.

Zimin, V. (1981) “Hierarchical Model of Turbulence,” Izvestia Akademii Nauk SSSR, Fizika
Atmosfera i Okeana (News of Academy of Sciences, USSR, Physics of the Atmosphere
and the Ocean), 17, 941-949.






Part IV

Financial risk management






12 Managing VaR and extreme values

12.1 Introduction

In this chapter we will summarize some of the results and the consequences of the
empirical results of non-Gaussianity, irregularity and nonstationarity of rates of
return on cash investment, both for investment in individual assets and for invest-
ment in portfolios of assets. In particular, we will focus on the measurement and
management of the Value-at-Risk (VaR) of an investment. The VaR measure sum-
marizes the exposure of an investment to market risk as measured by the variance
or standard deviation of rates of return. This makes it a popular tool for conveying
the magnitude of the market risks of portfolios to senior fund management, direc-
tors, sponsors, shareholders and regulators (Hopper, 1996; Duffie and Pan, 1997;
Hua and Wilmott, 1997; Jorion, 1997; Dowd, 1998).

However, we’ve learned in the preceding chapters (cf. Chapter 1) that such a sim-
ple risk measure based on only the second moment of a rates of return distribution
is insufficient, since it ignores both the higher moments of the pricing distributions,
like skewness and kurtosis, and all fractional moments, measuring the long-term
or global dependencies of dynamic market pricing. The VaR methodology also
devotes insufficient attention to the truly extreme financial events, i.e., those events
that are catastrophic (Embrechts et al., 1997; Bassi et al., 1998). There exists con-
siderable anecdotal literature on such catastrophic financial events (Kindleberger,
1996), but relatively little rigorous measurement, analysis or theory, the exceptions
being the recent article and book by Sornette (1998, 2003).

12.2 Global dependence of financial returns

As we’ve observed in the preceding chapters, the pricing processes of financial
markets show global dependencies, i.e., they are long-term memory processes,
with slowly declining autocovariance functions and with scaling spectra. The rea-
son for this phenomenon is the aggregation in the markets of investment flows
of different time horizons and degrees of cash illiquidity. The pricing processes
of stocks, bonds and currencies are nonlinear dynamic processes, which show
short- and long-term aperiodic cyclicities, and intermittency, i.e., periods of lam-
inar flows interspersed with periods of turbulent cash flows. Financial turbulence
is characterized by successive velocity fluctuations and successive periods
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of condensation and rarefaction in the frequency of trading transactions. However,
there are major differences among these various financial pricing processes:

(1) Foreign exchange (FX) is traded, but FX does not consist of securities. The FX

appreciation rates are usually antipersistent with Hurst exponents of the order

0.2 < H < 0.5. The cash flows in the FX markets are potentially turbulent

and may show vortices, in particular when H ~ 1/3, as was the case with

the DEM/USD, now replaced by the Euro/USD, and as is the case with the

Yen/USD, when these cash flows are adjacent to much less liquid cash flows

in, for example, Asian FX markets with 0.33 < H < 0.5, as we discussed in
Chapter 8.

Long term investment in FX rates is dangerous, since the volatility

(= standard deviation) of their appreciation rates does not scale according

to the square root of the investment time horizon 705 as it does for a Geomet-

ric Brownian Motion (GBM). In the short term, FX rates are about as volatile

as stock prices. But Figure 12.1 shows that when the investment horizon

increases, the volatility of FX rates tends to increase more slowly than that

of a GBM. In popular opinion, FX markets are considered more risky than

stock markets in the long run, while the opposite is true. It depends on the

investment horizon. FX rates are less risky in the long term than stock prices.

(2) Stock and bonds are traded securities. Their rates of return are persistent, with

Hurst exponents 0.5 < H < 0.8, e.g., the S&P500 and Dow Jones stock

100
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Figure 12.1 Typical time dependence of financial price volatility, log o2. The volatility or
second moment risk of the persistent stock prices increases faster with the time
horizon 7 than the volatility of the conventional GBM, while the volatility of
FX rates increases more slowly.
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indices have H ~ 2/3. Their rates of return behave closer to that of black
noise, with occasional, and essentially unpredictable sharp discontinuities
up or down, called financial catastrophes. These discontinuous catastrophes
cause the frequency distributions of black noise processes to have fat tails
(Sornette, 2003). It occurs because the originators of such events are amplified
in the financial system. Stock and bond market prices are close to brown
noise, and their first differences are persistent pink noise: 0.5 < H < 1.
Thus, their rates of return (= velocity of the stock and bond prices) which
are first differences normalized on the lagged price, are also persistent pink
noise.

Long-term investments in stocks and bonds are potentially very risky. When
the investment horizon t increases, bond and stock return volatility tends to
increase faster than that of a GBM. Of course, the level of volatility of stock
prices is much higher than that of bond prices (cf. Chapter 1).

(3) Real estate investments have equity and bond characteristics, but their liquid-
ity is usually much lower than that of stocks or bonds. Consequently, their
prices are extremely persistent and their rates of return truly black noise.'
Financial catastrophes are a frequent occurrence in such consistently persis-
tent and illiquid markets, as the real estate events of the past two decades
testify.

Therefore, our advice regarding speculation in the FX, stock, bond and real
estate markets runs counter to that of both professional and popular investment
advice. It is based on the established relationship between financial market risk
and investment horizon. One cannot judge the riskiness of an investment on the
basis of a one-time picture of volatility, but needs to take account of long-term
dependence.

Remark 474 Considering the nature of the time dependencies in these three
separate sets of markets, we suggest that the Asian Financial Crisis in 1997,
which had the characteristics of a financial catastrophe and not that of financial
turbulence, originated in the local real estate and, perhaps, the stock markets;
then got amplified along the term structure of bank loans and bond markets, and
only then spilled over into the FX markets, where it caused continuous financial
turbulence, which then slowly dissipated its financial market risk in intermittent
periods of frantic trading and periods of relative calm in the FX markets in 1997—
1998.

International cash investments of investors with different time horizons simul-
taneously flow in and out of all these international financial markets. Our
understanding of these cash flow and pricing processes is still very limited, but,
as we argued in Chapter 9, it is improving now that more high frequency data are
accumulated and more research efforts are becoming directed towards the mea-
surement and analysis of the various dependence phenomena of financial market
risk.
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12.3 VaR for stable distributions

12.3.1 Subjectivity of VaR

Informally, the VaR measure summarizes the expected maximum loss (or worst
loss) over a limited investment horizon, within a given confidence interval (Wilson,
1998). Thus, measuring VaR involves the choice of two quantitative inputs: the
length of the investment horizon 7, and the confidence level. Both are arbitrary,
subjective choices. Therefore, by definition, VaR is not an objective, or scientific
measure of the exposure to market risk, but a subjective, game type measure,
according to some recent theoreticians (Shafer and Vovk, 2001).2

Example 475 The internal bank risk model approach of the 1992 and 1996
(amended) Basle Committee Accords takes as investment horizon 10 working days
and accepts a 99 percent confidence interval. The resulting VaR is then multiplied
by a subjective safety factor of 3 to compute the minimum level of capital for
regulatory purposes.

Of course, portfolio investors can determine the length of their own investment
horizon 7. Commercial banks in the United States currently report their trading
VaR over a daily horizon or a horizon of 10 days (= two working weeks of 5 days
each), because of the rapid turnover in their portfolios, in agreement with the
amended Basle Accords. In contrast, pension funds tend to report their risk over
one-month or one-quarter investment horizons. As Jorion (1997, p. 86) correctly
states:

As the holding period should correspond to the longest period needed for an
orderly portfolio liquidation, the horizon should be related to the liquidity
of the securities, defined in terms of the length of time needed for normal
transaction volumes.

There is much less consensus about the subjective choice of the confidence
level. There is a trade-off between the requirements set by the regulators to ensure
a safe and sound financial system, and the adverse effects of the requirement for
a minimum level of (expensive) capital on bank returns and thus on bank share
prices. For example, Bankers Trust sets a 99 percent confidence level, Chemical
and Chase use a 97.5 percent level, Citibank uses a 95.4 percent level, while Bank
of America and JP Morgan use a 95 percent confidence level. These differences are
allowed under the current Basle Accord guidelines, since the commercial banks
are allowed to construct their own internal financial risk management models.

Higher confidence levels imply higher VaR figures, which in turn imply higher
minimally required equity capital cushion for risk insurance. But higher confidence
levels imply also longer testing periods. For example, suppose our investment
horizon is 1 day and we accept a confidence level of 95 percent, we would expect
a loss worse than the VaR in 1 day out of 20. If we choose a 99 percent confidence
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level, we would have to wait on an average 100 days, or more than 3 months, to
confirm that our risk model conforms to reality! When our investment horizon is
1 month, then a 99 percent confidence level would force us to observe on average
100 months, or about eight years of data, before we can confirm our financial risk
model.

The VaR measure can be derived either from actual empirical distributions or
from an abstract formal distribution, like the Gaussian distribution, in which case
itis based on its second moment only. The Basle Committee, which recommended
VaR measures in 1988 and again in 1992 to summarize overall risk exposure, also
recommended “back-testing” and “stress-testing” as means to verify the accuracy
of VaR figures, as did the landmark G-30 study (cf. chapter 2 of Jorion, 1997,
pp- 23-39; Hanley, 1998; Grau, 1999).

12.3.2 VaR as a quantile risk measure
We will now first provide a formal definition of VaR, within the context of our
cash flow model of investments of Chapter 9.

Definition 476  For X (t — 1) as the initial investment and x (t) its rate of return,
the investment at the end of the investment horizon is

X(t) =[1+x(0)]X( —1) (12.1)

Assume that x.(t) is from a stable distribution. The lowest expected portfolio
level at the end of the investment horizon T at a given confidence level c is

X&) =[1+xI®OIX¢ —1) (12.2)
Then the VaR relative to the mean at time t for investment horizon t is
VaRmean (f, 7) = E{X (1)} — X" (1)}
=E{[1+x@®IX¢t -0} —[1+xF®OIXE —1)
=[n—x7(OIX (1 —1) (12.3)
and the absolute VaR, or VaR relative to zero at time t for investment horizon T is
VaR ,er0(t, 7)) =0 — X* ()
=—x}(X(@t —1) (12.4)
In both cases, finding the VaR is equivalent to determining the quantile cut-

off rate of return x(¢) from its available empirical distribution of x,(¢) and the
confidence level c(¢), such that

+0o0
c(t) = Plxc(t) > x7 (1), 1] = Slxc(0)ldx (12.5)

x; (1)
where f[x;(?)] is the empirical probability density function (p.d.f.). This assumes
that the p.d.f. f[x;(¢)] is continuously integrable, which may not be the case
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with (empirical) fractal distributions. Notice that, in general, the confidence
level c(t) can be time-varying, because the probability distribution P[..] may
be time-dependent.

This representation still allows for some kind of nonstationarity and long-term
time dependence, i.e., the kind of nonstationarity associated with stable scaling
distributions. But in the literature this distribution is usually assumed to be sta-
tionary in the strict sense, thus the confidence level ¢ is assumed to be constant
(= independent of time ¢):

+o0
¢ = Plx:(t) > x; ()] = Slxc()]dx (12.6)
x7
For example, ¢ = 95 percent for all 7. Or, equivalently, we can express everything
in terms of a constant significance level

l—c= Pl () <x; ()] = /Xr flx()]dx 12.7)

For example, the significance level 1 — ¢ = 5 percent for all ¢.

It’s important to emphasize that the quantile determination of the VaR is also
valid for any nonstationary stable distribution of the rates of return on assets
— discrete or continuous, skewed or symmetric, leptokurtic or platykurtic — as
long as we know how the distribution scales over time! See, for example, the
recent investigations by Hull and White (1998a,b) into the impact of non-Gaussian
distributions on the VaR, or the VaR bounds for portfolios with assets with non-
normal returns (Luciano and Marena, 2001).

Example 477 The annual report of 1994 of JP Morgan provides an empirical
example in the form of a histogram of its daily revenues X (t) (Figure 12.2). From
the graph, the average revenue ( = USD 5.1m = USD 5.1m. There are T = 254
daily observations. We try to find X (t), such that the number of observations to its
leftis T x (1 —c) =254 x5 percent = 12.7 days. Because of the coarseness of
the histogram we need to interpolate. There are 11 daily observations to the left
of —USD 10m, and 15 observations to the left of —USD 9m. Interpolation gives

12.7—-15

USD|—9 — ——— =
[9 11-15

:|m = —USD9.575m (12.8)

Thus the VaR of daily revenues measured relative to the mean is
VaRmean (t) = E{X (1)} — X" (1)
= USDS5.1m — (=USD9.575m)
= USD 14.57Tm (12.9)
and the VaR of daily revenues in absolute dollar loss is
VaRgero (1) = 0 — X*(1)
= USD9.575m (12.10)
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Figure 12.2 Empirical distribution of daily revenues of JP Morgan in 1994. Notice some
extreme daily losses in the left tail, as indicated by the grey area, left of the
$10m daily loss.

12.4 VaR for parametric distributions

12.4.1 Gaussian VaR

The VaR computation is simplified considerably when as theoretical paramet-
ric distribution the Gaussian distribution is assumed: x;(t) ~ N (u, o27). Then
the VaR can be derived directly from the portfolio volatility oz%>, using a
multiplicative factor depending on the confidence level.

First, we transform the general stationary density function f[x;(¢)] into a stan-
dardized normal distribution g[z(¢)], which has mean zero and a unitary standard
deviation: z(¢#) ~ N (0, 1), so that the standardized variable is defined by

() = )”:)—f;“ (12.11)

and its cut-off rate by

= Xe — K (12.12)
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so that the VaR can be expressed by

l—c=Px(t) <x¥) = / " e (01 1)

= / glz(Hldz(t) (12.13)

—00

Now we only have to examine the tables of the cumulative standard normal
distribution

*

Flz(0)] = / glz(1)ldz(t) (12.14)

—00

which provide the integrated area left of the value z(¢) = z*. We can always return
to the original parametrized Gaussian distribution, since x;(t) = z(t)o /T + u
and x} = z*0 /T + p.

12.4.2  Statistical problem: scarcity of extreme values

The main problem facing the statistical VaR practitioners is that the VaR is an
extreme quantile of a rate of return distribution (Bassi et al., 1998). Therefore, we
have relatively few historical observations with which to estimate it (Hendricks,
1996). This we had already observed in Figure 4.2. VaR estimates are usually
imprecise, and become even more so, the more we move further out onto the tail
of the distribution. Practitioners have responded by relying on assumptions to make
up for the lack of data. The common, but decidedly unrealistic, assumption is that
the empirical rates of return are from the parametric Gaussian distribution.

However, financial returns are usually fat-tailed and assuming Gaussianness can
lead to serious under-estimates of VaR (Hull and White, 1998a; Ju and Pearson,
1999). This has led to the suggestion of adaptive updating of a time-varying volatil-
ity (Hull and White, 1998b). A more satisfactory assumption is that the returns
follow a heavy-tailed stable distribution, as discussed in chapter 3 (Rachev and
Mittnik, 2000). Even then we still face the problem that most observations are cen-
tral ones. The estimated distribution fits the central observations best, and therefore
remains ill-suited to the extreme observations with which financial risk analysts
are mainly concerned. The estimation of low frequency events with finite data
remains highly problematic and therefore stress festing is often recommended
(Grau, 1999).

Market-makers are very much interested in large moves in the prices of stocks,
bonds or other traded assets, since the largest price moves cause market-makers to
lose money. Market-makers make money only for small price moves. The loss
from large price moves result from the option’s gamma. Market-makers are
delta-hedgers. If prices move sufficiently, their delta-hedged positions become
unhedged. For example, when a market-maker delta-hedges a stock position, he is
short a call option and a large move generates a loss. As the stock price rises,
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the delta of the call option increases and it loses value faster than the stock gains
value. Vice versa, as the stock price fall, the delta of the call option decreases and
it gains value more slowly than the fixed stock position loses value. In effect, the
market-maker becomes unhedged net long as the stock price falls and unhedged
net short as the stock price rises.

It can be shown that the market-maker’s profit depends on the squared change
in the stock price, i.e., on the magnitude and not the direction of the stock price
move. It can also be shown that a market-maker breaks even for a one standard
deviation move in the stock price € = o 71§ (measured on an annual basis), makes
money within that range and loses money outside that range. The market-maker’s
regular profit and occasional large loss can thus be explained by the preponderance
of small price movements in the financial market and the occasional large moves.
Differently stated, the leptokurtosis of the distribution of the financial market price
increments explains the leptokurtosis of the distribution of the market-maker’s
profits. When the distributions are close to normal, a market-maker expects to make
small profits about two-thirds of the time, and large losses about one-third of the
time and on average to break even (McDonald, 2002, Chapter 13, pp. 401-430).3

Extreme value problems are not unique to financial risk management, but occur
also in other scientific and engineering disciplines. They are particularly prominent
in hydrology, where statisticians and engineers, like “Father-of-the-Nile” hydrol-
ogist Hurst in the 1950s, have long struggled with the problem of how high dams
should be to contain flood probabilities within reasonable limits. These hydrol-
ogists have usually even less data than financial risk managers and often have
to estimate quantiles well out the range of their historical data. Let’s have a
closer look at an interesting contemporary example of such extreme risk measure-
ment and analysis, and what lessons it contains for the management of extreme
financial risks.

12.4.3 A Gargantuan example of extreme risk

A Gargantuan example of the measurement, analysis and dynamic management
of extreme risks is the determination of the required safety height of x* = 185 m
(607 feet) for the Three Gorges (Sanxia) Dam on the Yangtze, or Chiang Jiang
(= Long River), near the village of Sandouping, Yichang, in the Hubei Province
of the People’s Republic of China (Figure 12.3).*

The water level will eventually rise to an average Normal Pool Level, of
w =175 m (574 feet), thus the excess security is x* — p = 10 m. Since the flood
control storage capacity of this dam is said to reduce the frequency of big down-
stream floods from every 10 to every 100 years, the extreme value percentage is
1 —c = 1.0 percent (or ¢ = 99.0 percent) for all time ¢. Assuming the distribution
of the water level of the Yangtze to be approximately Gaussian sets the excess
security equal to x* — u = 2.33 x ¢ = 10 m. This provides us with an estimated
annual volatility of the water level of o = 4.3 m for all time 7.

However, it is well known that the Hurst exponent of such a long unregulated
river is closer to H = 0.9 than to the Gaussian H = 0.5 (Mandelbrot and Wallis,
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Figure 12.3 Potential large-scale catastrophic flow risk: the Yangtze River in Sandouping,
Yichang, Hubei Province of the People’s Republic of China.

1969; Whitcher et al., 2002) In other words, the Yangtze has a very persistent
water level distribution. Such a dependent volatile water level behaves more like
brown or even black noise and, therefore, requires extra risk-reducing height for
the dam.

Indeed, that’s the reason why the engineers opted for dynamic risk management
of the water storage level. The water level in the reservoir will be lowered during
the dry winter season between January and May to the minimum flood control
level of 145 m, creating an extreme risk hedge of 30 m &~ 7 x o m, ready for the
flood season from the end of May to the beginning of September. Notice that this
is considerably larger than the 6 x o, where the empirical distribution of outliers
starts to deviate drastically from that of a Lévy stable distribution, as discussed in
Chapter 3.

Why is the Yangtze River so persistent? The Yangtze flows from the 6,670 m
(20,000 feet) high Tibetan Plateau to the East China Sea and is, with its length of
6,300 km (3,900 miles) the longest river in Asia and the third longest in the world
(after the Nile and the Amazon). It is also the deepest river in the world. It is the
third largest river in terms of annual runoff, after the Amazon and Congo rivers.
Its drainage basin covers more than 1.8 million km? (705,400 miles®), accounting
for 18.8 percent of China’s territory. The Three Gorges Dam reservoir will be
615 km. (370 mile) long (comparable to Lake Superior) and 175 m (525 feet)
deep, storing 39.3 billion m? (51.4 billion cubic yards or 10.4 trillion gallons) of
water (Figure 12.4).
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Figure 12.4 1In this drawing of the completed Three Gorges Dam, the spillway to release
water and control flooding is in the center, with electric generating plants on
either side. On the right is a shiplift for comparatively small vessels, and on
the far right is the five-step shiplock, which will allow ocean-going vessels to
travel up the Yangtze to the western reaches of Chongqing.

The Three Gorges Dam is China’s largest infrastructure project since the building
of the 2,400 km (1,500 miles) long Great Wall in the third century BC and the
digging of its 1,600 km (1,000 miles) long Grand Canal in the sixth century AD. It
has alength of 2.3 km (1.4 miles) and is the largest hydroelectric dam in the world:
40 per cent larger than the Itaipu Dam on the border between Brazil and Paraguay,
which is 8 km, or 5 mile long, delivers 12.6 million kilowatt and was completed
in 1991 at a total cost of more than USD 20 billion. The Three Gorges Dam is
70 percent larger than the Aswan Dam in Egypt and will displace 1.2 million
people. The Aswan Dam was completed in 1970 for USD 1 billion, is 111 m (364
feet) high and 3.26 km (2.3 miles) long, has a capacity of 2.1 million kilowatt
(= 25 percent of Egypt’s electricity needs) and displaced “only” 100,000 people.
The hydrologist Hurst determined the safety height for this Aswan High Dam in
the 1950s using his Hurst exponent to correct the standard deviation approach,
frome; = 01%9S toe; = ot S with 0.5 < H < 1. Notice how crucial the 7
term is, when 7 represents a very long time horizon, e.g., of hundred years or more.

The Three Gorges Dam project, modelled on the Tennessee Valley Authority
multiple-use dam project of 1933, is designed for flood control, power generation
and improved navigation.
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During the 2,200 years from the beginning of the Han Dynasty in 202 BC to
the end of the Qing Dynasty in 1911, there have been 214 floods, an average of
one flood every 10 years. These floods have claimed 1 million lives in the past
100 years alone. In the twentieth century there have been five severe floods. In 1931
it drowned 145,000 people, in 1935 142,000 people and in 1954 30,000 people.
Most recently, major floods caused by the Yangtze River in 1996 killed 2,700
people and in 1998 more than 3,000. The economic cost of Yangtze’s flooding in
August 1998 was $30 billion. The 1998 flood completely destroyed no less than
10 percent of China’s grain supply.

The electricity generating capacity of the 26 generators in the Three Gorges
Dam will be 18.2 million kilowatts, enough power for a city ten times the size
of Los Angeles and equivalent to that generated by 18 nuclear power stations or
by 36 coal-burning plants, satisfying 10 percent of the electricity needs of China.
Per year it will generate 84.7 billion kilowatt hours, replacing the burning of 50
million tons of coal. The entire project started in 1994, after a final decision in
1992, and it is to be completed in 2009 (Figure 12.5). Thereby, after almost one
century it will realize the vision formulated in 1919 by Sun Yat-Sen, the founding
father of China’s Republic.

We discuss the Three Gorges Dam project not only as an example of extreme risk
management; it is also as a financially a very important project, since it is absorbing
a very substantial amount of global capital every year, which is diverted from many
alternative investment projects in the world. The original 1994 estimated cost

L]

R

Figure 12.5 Emergence of large-scale dynamic catastrophic flow risk management: the
Three Gorges Dam under construction.
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of the dam was US$25 billion, more than any other single construction project
in global history. However, unofficial estimates put its costs already closer to
$75 billion. For that reason, the World Bank, the US Export-Import Bank and the
Asian Development Bank have all three refused to finance this environmentally
controversial project.

However, ignoring the warnings of the many critics, and rather ironically, in
January 1997 and May 1999 the private American investment bank Morgan Stanley
underwrote $830 million in bonds for the China Development Bank (CDB) and
thereby became a 35 percent owner of China International Capital Corporation
(CICC), the project corporation’s advisor on overseas capital raising. Following
Morgan Stanley’s lead, in the year 2000, Salomon Smith Barney (a subsidiary
of the Citigroup) and Merrill Lynch and Co., together with Credit Suisse First
Boston, JP Morgan, Lehman Brothers, Goldman Sachs and Chase Manhattan
Bank became lead managers of this private financing consortium. It is the largest
privately underwritten capital investment project, with the longest maturity, in a
(still officially) Communist society. Thus, it is a global project highly exposed
to multi-dimensional, political, economic, financial and country risk, not unlike
many other global investment projects subject to extreme risks. It focuses the
attention of financial researchers in commercial banks and insurance companies
on how to measure and analyze extreme financial risks (Embrechts et al., 1997,
1998). Catastrophic reinsurance linked securities are already viewed as a new asset
class (Litzenberger et al., 1996).

12.5 Extreme value theory

A small group of theorists has recently discovered an extreme value (EV) theorem
based on the (strong) assumption of i.i.d. returns, which tells us that the limiting
distribution of extreme returns has always the same form, whatever the unknown
i.i.d. distribution from which the data are drawn.’

Theorem 478 (Extreme value) Subject to the i.i.d. condition, the density of
extreme returns converges asymptotically to

e(CI1+EG—)/a]17'%) if€ #£0

H(x;p,0,8) = —ye 12.15
(x; u,0,8) e(_e( )/ ife=0 ( )

The parameters u and o correspond to the mean and standard deviation, respec-
tively, and the third parameter, the fail index &, indicates the heaviness of the tails.
The bigger &, the heavier the tail (Longin, 1996; McNeil, 1996, 1998; Lauridsen,
2000). For some applications, cf. Koedijk et al., 1990, and, most recently, Blum
and Dacorogna, 2002. For a critique to use the £ measure of the fatness of the tails
of distributions to identify the stability exponent oz, cf. McCulloch (1997).

Remark 479 Notice the similarity of the EV Theorem to the Zolotarev
parametrization of stable distributions in Chapter 3. This EV Theorem is related
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to the classical CLT, but applies to the extremes of observations rather than
their means (= the concentrations). It allows for estimation of the asymptotic
distribution of extreme values, without making assumptions other than the i.i.d.
assumption, about the unknown empirical distribution. The first step is to estimate
these parameters. There is a choice between semi-parametric methods, like the
Hill estimator, which focus on the estimation of the tail index &, and parametric
methods, like the ML method, which estimate all three parameters u,oc and &
simultaneously. However; the estimation is complicated by nonlinearities and the
properties of these estimators are still not well understood.

EV theory faces, at least, two complications. First, the choice of the tail size
of the distribution of our rate of return observations affects the VaR estimates
through the effect on the estimate of the tail index £. Second, the EV theorem
assumes that the rates of return are i.i.d. But we know from the empirical research
reported in the preceding chapters that empirical financial rates of return show
forms of clustering, with periods of alternating high and low volatility, due to
global dependencies. These empirically observed global dependencies violate the
key assumption of EV theory!

12.5.1 Increased inter-correlation of financial exceedences

A paper by Dacorogna et al. (2001), presented at the University of Konstanz,
provides vivid evidence that the extreme values or so-called exceedences (i.e.,
the values exceeding certain confidence boundaries, like 95 percent of the distri-
bution) of international rate of return distributions tend to cluster and to highly
positively correlate at times of financial distress (cf. also Blum and Dacorogna,
2002)! Thus, in times of distress, portfolio diversification tends to be defeated by
increased positive inter-correlations between the extreme rates of return of the var-
ious portfolio investments. This severely diminishes the value of the VaR approach
to financial risk management, since it appears that portfolios behave very differ-
ently in times of distress compared with in times of normality. In other words,
portfolio variances and covariances are time-varying and they are varying in such
a way that they defeat conventional risk diversification rules. This a very important
area of financial portfolio research to which our time-frequency signal processing
approach expects to significantly contribute in the coming years.

12.5.2 Fractional Brownian Motion (FBM) and VaR

The VaR can be put in a dynamic context, with nonstationary distributions, as long
as the risk is measurable by the second moment only. Thus, for the GBM, which
has i.i.d. increments and a second-order risk measure dependent on the investment
horizon 7, since

or = 0,7 (12.16)
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the VaR relative to the mean for investment horizon t is
VaRmean (7, 7) = [0 — x:(t)]X(t - 1)
=70, 7" X(t — 1) (12.17)
since
[ —xX(®)] = —z"0; (12.18)
and the corresponding absolute loss VaR is thus
VaR e0(2, T) = _x;ﬁ(f)X(f — 1)
=—(ut + 250, X (1 — 1) (12.19)

This method generalizes to other cumulative distributions, as long as all the
uncertainty can be measured by the volatility o, . For example for the FBM (Elliott
and van der Hoek, 2000), the VaR relative to the mean for investment horizon 7 is
easily generalized to

VaRmean (7, T) = =20, T X (1 — 1) (12.20)
and the corresponding absolute loss VaR to
VaRero(t, T) = —(ut* + Z* o, T X (t — 1) (12.21)

Remark 480 The Black-Scholes option based on the FBM is as follows. The null
option value is:

C(t) = S(1)e 8 N(d)) — Ke "*N(d») (12.22)
with
In(S@t)/K - 1/20%)72H
di = n(S@)/K)+(r Hg+ [20°)T (12.23)
oT
d=d —ot, 0<H<1 (12.24)

where C(t) — call option value, S(t) — underlying asset value, K — strike price,
g — Yield (divident, etc.), T — expiration time, N (..) — cumulative standard normal
distribution

But the fundamental question we posed in Chapter 1 is: can we really measure
financial risk by only the second moment of a distribution, in particular in adynamic
portfolio situation with global time dependence. The next section will provide some
tentative, and, perhaps, discouraging, answers.
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12.6 VaR and fractal pricing processes

12.6.1 Concerns and doubts about VaR

In this section we will formulate why we have deep concerns and doubts about the
use of the VaR as an overall measure of the exposure to market risk, when VaR is
based on assumed simple parametric distributions, like the Gaussian, and why we
insist on measuring the stability of the empirical distributions of the rates of return
x(t), in addition to measuring their various forms of long-term time dependence
in the various financial markets. We have observed, and reasoned throughout this
book, that the Gaussian distribution is inadequate to describe financial market
returns, since empirical financial market returns show skewed, leptokurtic, non-
normal distributions and, most importantly, nonstationarity in the strict sense.
For example, from Chapter 3 we already know that some nonlinear market pricing
systems may produce nonstationary distributions without a definable (“existing”)
mean or variance!

The classical Modern Portfolio Theory (MPT) of Markowitz and Sharpe is the
basis for the VaR theory. It presupposes stationary (Gaussian) rates of return dis-
tributions. It will be the starting point for the following discussion. Gauss showed
about two hundred years ago that the limiting distribution of a set of independent,
identically distributed (i.i.d.) random variables is the normal distribution.” This
is the classical Central Limit Theorem or CLT. But in Chapter 3, we noticed that
there are instances where amplification occurs at extreme values and that may
lead to heavy, long-tailed distributions, such as the Pareto income distribution.
These long-tailed distributions led Lévy to formulate a generalized stable den-
sity function, of which the normal as well as the Gauchy distributions are special
cases.

In Chapter 3, we also mentioned the Generalized Central Limit Theorem
(GCLT) for stable distributions, properly parametrized by Zolotarev. We recall
that the stability exponent oz determines the kurtosis of the distribution, i.e., the
peakedness at its central location § and the fatness of the tails. When oz =2,
the distribution is normal with variance o2 = 2)/2. However, when a7 <2, the
second moment, or (population) variance, becomes infinite or undefined. When
1 < az <2, the first moment exists, but when 0 < az <1, the theoretical (pop-
ulation) average becomes infinite or undefined too. For example, the Cauchy
distribution has infinite, undefined mean and variance. This means that the Cauchy
distribution has no limiting mean or variance!

Remark 481 Of course, we can always compute the (sample) average over time
or the variance over time of a finite data set. Undefined theoretical (population)
averages and variances only mean that there is no convergence to fixed finite
moment values, when we enlarge the data set. The sequential mean and variance
of that data set, which calculate the mean and the variance respectively, as obser-
vations are added to the data set one at a time, will then never converge to a specific
mean and variance, but will continue to “wander.”
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Thus, if the distribution of rates of return is not Gaussian and @z < 2, the
variance of the finite data set can say nothing about the theoretical (population)
variance, because it does not even exist in the limit! This is, of course, what is
meant by a non-ergodic data set. The variances of our finite financial data sets
are potentially unstable and don’t tend to any value, even as the data set increases
in size.

For example, we found that the rate of return series x(¢) of the S&P500 stock
index shows 1 < az = 1/H = (1/0.6) = 1.67 < 2. In that case x(¢) is fractal
and globally dependent, and has infinite memory. It also has a stable mean, like a
stable Lévy distribution, but it has an undefined or “infinite” variance.8 This non-
convergence or “wandering path” of the variance of stock and stock index returns
has entered the finance literature under the scientific misnomer of “stochastic
volatility” (cf. Hull and White, 1987, 1988, 1998a,b). There is no stochasticity
involved in indefiniteness! Probability cannot be substituted for ignorance, as
we discussed in detail in Chapter 1. In such a case it may not be prudent to
base a risk measure, such as VaR on the computed standard deviation, since that
standard deviation remains undefined over time. That is, the sequential variance,
c.q., standard deviation will never converge! For some other distributions we may
find that 0 < az < 1, so that the average also does not converge, in addition to
the non-convergence of the variance.

12.6.2 Fama-Samuelson MPT proposition

We learned in Chapter 3 that if two distributions are stable with the same value of
oz, their sum also is stable with the same stability exponent «z. This mathematical
result has applications in MPT, which is, or at least should be, rather disturbing
for global portfolio managers (Lucas and Klaassen, 1998; Sornette, 1998).

Proposition 482 (Fama—Samuelson) If the securities in a portfolio have rates of
return x(t) with the same stability exponent az, then the portfolio itself has a rate
of return x(t) that is stable, with the same value of o7.

Proof From Chapter 3 we have the logarithm of the characteristic function of the
non-standardized stable distribution of the random variable X ~ S(«, 8, y, ; 0)

In[E{e/**}]
_ <_ 9wl [1 + jBtan %sign(a))(ﬂwﬂ_“ — 1)] + j(Sa)) ifa£l
= < —y|w| |:1 + jﬂ;sign(a))(ln |w| + In y)i| + j8a)> ifa=1
(12.25)

with the four parameters: (1) stability exponent az € (0, 2], (2) skewness para-
meter B € [—1, 1], (3) scale parameter y > 0, and (4) location parameter § € R.
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For simplicity, we’ll discuss the case of symmetric distributions when 8 = 0,
so that

In[E{e/**}] = jdw — y%|w|** (12.26)

For the stable distributions of two rates of return x; (t), i = 1, 2, the distribution of
the weighted portfolio sum x, () = wyx;(¢) + w2x2(¢), with wy + wy = 1, has
the characteristic function (cf. Chapter 1):

In E{e/*®} = In E{e/ "11Twax)oy
= In[E{e/VM 1} E{e/">"?}], i.e., stable distributions
= In E{e/Y"1®)} 4 In E{e/*%2?}
= [jS1wiw — y{ 7 lwio|*?] + [jSwiw — y5 7 |waw|*#]
= j(wid) + wad)w — [wi?y"” + wi? v, lw|*”
= jépo — v, o™ 12.27)
so that the location parameter, or mean, of the stable portfolio distribution
8p = wid1 + w2 (12.28)
and its scale parameter
vyt = wit v+ wyly,” (12.29)

It is easy to see that this bivariate return result generalizes, so that for stable
distributions with the same stability parameter in general, for a portfolio with

i =1,2,...,n assets, the portfolio location parameter or mean
n n
8p =Y wd, where » w;=1 (12.30)
i=1 i=1

and the portfolio scale parameter

n
vy =) wiy"” (12.31)
i=l1

or

- oz, Oz l/az
Yp = Z w; y; (12.32)
i=1

Fama (1965) and Samuelson (1967) used this proposition to adapt the portfolio
theory of Markowitz (1952) for infinite or undefined variance distributions of rates
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of return on investments. It is a peculiar fact of history that this Proposition of
Fama and Samuelson has disappeared from the standard textbooks on investments
and portfolio analysis and management, although it has considerable empirical
value! S&P500 stock index is often used as the market index in the Capital Asset
Pricing Model (CAPM). But, as we just saw, the S&P500 stock index has no finite
limiting variance, and this fact alone undermines most if not all of the stock and
bond pricing results from the CAPM.

Remark 483 For Gaussian distributions, when az = 2, we have the famil-
iar portfolio variance relationship from classical Markowitz mean — variance
analysis, except that Markowitz’ important diversifying correlation term is
missing!

vy = wivi +wiys (12.33)

For Gaussian distributions, the variance O’iz = 2)/1.2 (i.e., yiz = al.z /2), so that for
stable distributions with the same oz we have also

o) = wio} + w03 (12.34)

The Proposition implies that the distribution of the portfolio returns is self-affine
and scales with stability exponent 'z as scaling exponent. In other words, the shape
of the stable distribution of portfolio returns is the same as that of the underlying
asset returns, no matter what the scale of portfolio variance. Only the value of the
location parameter changes.

How does the existence of stable non-Gaussian rates of return distributions affect
portfolio diversification? For example, when we use uniform weights w; = 1/n,

1\% &
() B

i=1
we can discern three important cases:

(1) When 1 < az < 2, the portfolio risk, as measured by the scaling parameter

1 n (1/052)
= (Z J/,-“Z> (12.36)

i=1

decreases, as the number of assets in the portfolio, n, increases. In other words,
there is a diversification effect: including more assets in the portfolio reduces the
portfolio risk, despite the empirically established fact that there exists no finite
limiting variance.

Remark 484 Since most (but not all!) empirical stocks appear to have a stability
exponent of az = 1.67, diversification does reduce the non-market risk of an
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empirical stock investment portfolio, including that of the portfolio underlying the
S&P500 Index. But this risk reduction through diversification has nothing to do
with the covariances, as in Markowitz’ (1952) original theory.

(2) Whenaz =1

1 n
vp=- Z Vi (12.37)

i=l

there is no diversification effect: adding more assets to the portfolio does not reduce
the portfolio risk.

(3) When 0 < oz < 1, increasing the number of assets in the portfolio may
actually increase the portfolio risk.? In this case, neither the means nor the variances
of the rates of return of the assets in the portfolio exist. Neither their means nor
their variances converge. In other words, when asset return rates behave like black
noise, increasing the portfolio size only increases the portfolio risk!

Thus MPT-diversification to reduce non-market risk is still useful when the
asset returns are non-Gaussian, but they have stable distributions with the same
stability 1 <oz <2, despite the fact that these stable distributions have undefined
variances. However, when oz = 1, there is no diversification and when 0 < oz < 1,
the portfolio risk can actually increase when more assets are included in the portfo-
lio. Thus, it is very important for portfolio managers to compute the homogeneous
Zolotarev alpha oz = 1/« , to determine the degree of achievable diversification.
Portfolio risk managers should also compute the multifractal spectrum of hetero-
geneous stock return stability exponents oz; = 1/a;, which lie outside the range
of the usual measurement of the homogeneous Hurst exponent H, as we discussed
in Chapter 8.

It is also very important to realize that, since there is no correlation under
parametrized stable distributions, Markowitz-type portfolio diversification and
optimization, which exploits such correlation among the assets, simply does not
work. However, this does not necessarily mean that there does not exist a Tobin
liquidity preference theorem. As we will see, we can still reduce the risk in a portfo-
lio by including more risk-free cash, even when the distributions are nonstationary
but stable. In other words, it is dynamic liquidity management that ultimately
determines the investment portfolio risk exposure of a fund manager (Bawa et al.,
1979). That is, dynamic liquidity management should be similar to the dynamic
risk management of the extreme values of high risk dams!

12.6.3 Skewed-stable investment opportunity sets

The Fama—Samuelson Proposition is an example of Mandelbrot’s invariance of
scaling under weighted mixture (= weighted linear combination; cf. Chapter 3). It
shows why it is important to determine the stability parameters of the rates of return
x(t) for the assets in a portfolio and to see if they are the same. However, if the
stability parameters are different, heterogeneous, «z;, this simple generalization
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of Markowitz mean-variance analysis, or MPT and its derivatives, does no longer
hold true. Or, as Peters (1994, p. 208) states:

... different stocks can have different Hurst exponents and different values
of «z. Currently, there is no theory on combining distributions with different
alphas. The EMH, assuming normality for all distributions, assumedaz = 2.0
for all stocks, which we know [now] to be incorrect.!?

Huston McCulloch of Ohio State University has done some empirical work on
what happens when the stability parameters « 7, for the rates of return of the assets
in a portfolio are heterogeneous, i.e., they are different from each other. In par-
ticular, he has produced interesting 3-dimensional visualizations of the resulting
Markowitz efficiency frontiers, which are no longer 2-dimensional (McCulloch,
1986, 1996). In accordance with his findings, McCulloch (1996) also devel-
oped an alternative to the Black—Scholes option pricing formula, using stable
distributions.

12.7 Software

For the first exercise you need John Nolan’s program STABLE.EXE (900 kb),
obtained from his expert web site: http://www.cas.american.edu/jpnolan/
stable.html, which calculates stable densities, cumulative distribution functions
and quantiles. STABLE.TXT (16 kb) provides the description of the STABLE.EXE
program.

The other Exercises can be executed in Microsoft EXCEL spreadsheets or by
using the Statistics Toolbox available from The MathWorks, Inc., 24 Prime Park
Way Natick, MA 01760-1500, USA. Tel (508) 647-7000; Fax (508) 647-7001:
http://www.mathworks.com/products/wavelettbx.shtml.

For pictures of McCulloch’s skew—stable investment opportunity set see his web
site: http://www.econ.ohio-state.edu/jhm/ios.html.

12.8 Exercises

Exercise 485 Plot the cumulative density function (c.d.f.) of the S&P500 rates
of total return, using Nolan’s STABLE software. (Its instructions are in Nolan’s
User’s Guide for STABLE Version 2.11, available in the Online Teaching Aids. All
output generated by STABLE appears in the stable.out file).

Exercise 486 What would be your best VaR estimate at a 99 percent confidence
level for this empirical distribution?

Exercise 487 Did you use the Zolotarev, or any other parametrization? If yes,
how? If not, what did you do to derive a best VaR estimate?

Exercise 488 Would it have made a difference to your VaR estimate when
you would have used simple stationary Gaussian distribution approximations
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and based your VaR estimate on the assumed constant standard deviations?
Demonstrate your conclusion.

N
1

otes

At this moment there are not yet Hurst or Lipschitz exponent measurements of real estate
investment returns available in the financial literature, but they will soon be published.

2 I agree with their conclusion that probability theory relates only to (Las Vegas type

roulette, card, one-armed-bandit) game situations. But I disagree with their assumption
that probability theory has anything to do with the empirical world. Nobody has ever
proved that probability is an empirically observable real world phenomenon, in contrast
to randomness or uncertainty (cf. Chapter 1). Probability theory does not explain any
empirical phenomenon in the real world and is therefore not a scientific theory, but only
a philosophical theory.

3 Even very recently, McDonald of Northwestern University still assumes in his new text

book (McDonald, 2003) that the distribution is normal, so that the Hurst exponent is
H = 0.5, despite all the empirical evidence to the contrary. Different financial markets
exhibit different degrees of persistence, as I brought to his attention, when I reviewed
six chapters of his book a few months before its publication.

4 The three gorges are called Qutang, Wu and Xiling. Information for this example

was gathered from the Internet, in particular from http://21stcenturysciencetech.com/
articles/Three_Gorges.html, and from http://www.chinaonline.co...er/ministry_profiles/
threegorgesdam.asp.

5 EV theory, which was discovered by Stephan Resnick (1987), seems to have been first

applied to VaR by Francois Longin in 1996, followed by Jon Danielson, Casper de Vries
and their collaborators at the Tinbergen Institute in The Netherlands and at the London
School of Economics (LSE) in London, by Paul Embrechts and Alexander McNeil at
the ETH Zentrum in Ziirich, and by Francis Diebold and his associates at the Wharton
School in Pennsylvania, USA.

6 Because it is often implicitly assumed that the distributions are Gaussian, ‘“‘stationarity”

is often taken to mean “stationarity in the wide sense.” (cf. Chapter 1).

7 Carl Friedrich Gauss (1777-1855), German mathematician and scientist is acknow-

ledged to be one of the three leading scientists and mathematicians of all time (the
other two are Archimedes and Newton). He was a child prodigy, who taught himself
reading and arithmetic by the age of three. His outstanding works include the discovery
of the method of least squares in 1795, the discovery of non-Euclidean geometry, and
important contributions to the theory of numbers. During the 1820s, with the collabo-
ration of the physicist Wilhelm Weber, he explored many areas of physics, including
magnetism, mechanics, acoustics and optics.

Similarly, Fama (1965) and Peters (1994, pp. 210-212) compute an approximate value
of az = 1.66 for the Dow Jones Industrial Index. Peters clearly demonstrates the non-
convergence of the volatility of the DJIA, as we have done for the volatility of the
S&P500 Index in Chapter 3.

9 This range of @z = 1/« cannot be measured by the Hurst exponent H, but can be

measured by the Lipschitz oy .

10 EMH = Efficient Market Hypothesis (cf. Chapter 2).
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Appendix A: original scaling in
financial economics

Scale of a7, b~, ¢ = negative changes of logarithm of price
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Figure A.1 Mandelbrot’s original evidence for scaling in economic pricing processes.

Source: Reprinted from Mandelbrot 1963b by permission of The University of Chicago Press.
© 1963 by The University of Chicago Press.

The original evidence for scaling of the prices in the cotton market was produced
by Mandelbrot (1963) and reproduced as Plate 340 in Mandelbrot (1982, p. 340),
as in Figure A.1. Mandelbrot advanced the hypothesis of an underlying stable
distribution on the basis of the observed invariance of the return distribution across
different frequencies and the apparent heavy tails of the cotton price distributions.
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Appendix B: S&P500 daily closing
prices for 1988

The following time series of S&P500 daily closing prices are taken from table 2.7
in Sherry (1992), pp. 29-32. They form a test set of data to be used in some of the
Chapter Exercises.

The Asian and Latin American FX and stock market data for Chapter 8 are
available from the author on CD at cost.
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Accardi, Luigi 13

acoustic cash flow motions 368

acoustic spherical waves 411

adaptive wavelet methodology 411

adjustment vortices 262

affine models 294, 3526

algebra, or field 13; operator 73—4

Amin, K.I. 62

amplitude spectrum 149

aperiodic orbits 317-30

Anselmet, E. 394

arbitrage 337-8, 348

Arbitrage Pricing Theory 106

ARCH processes 111-12; statistical
properties of 112—15

ARFIMA models 107

ARIMA models 6

Arithmetric Brownian Motion 50

ARMA models 103

Arnéodo, A. 268, 275

Arnéodo et al. Theorem 270

arrhythmias: of financial markets 278; of
the human heart 253-5

Asian financial crisis 36, 231, 263, 326-7,
400, 427

asset return distribution 6, 62

Aswan Dam 435

asymptotic covariance matrix 94

“atom’s collision” effect 414

attracting points, detection of 327-8

attractor, fractal 323-5

autocorrelation functions (ACFs) 107-11,
122-3, 136, 381

autocovariance functions 163-5, 237

Available Cash Flow Risk 346-7

Babbs, S.H. 295
Bachelier, L. 8, 52

backwardation, normal 65-6

Bacry, E. 269, 275

bagpipe frequencies 150-2

Baillie, R.T. 115

Balduzzi, P.S.R. 352

Bank of America 428

Bankers Trust 428

bank risk model approach 428

basins of attraction 326

basis, sinusoidal 174, 190; dyadic 208;
orthonormal 205; Riesz 205; wavelet
208

Basle Accords 428-9

Batten, Jonathan 78, 224

Bayes theorem 38

Beaglehole, D.R. 295, 355

Belousov—Zhabotinsky reaction 327

Bendjoya, Ph. 403

Benoit 1.3 Fractal System Analysis 128,
186, 224, 281, 330-1

Bernoulli equation 344-5

bifurcation 11, 32, 293-6, 302, 307-9, 329

billiard balls, motion of 318-19

binomial cascade 276

binomial option pricing model 35

Birkhoft’s theorem 40

Black, Fischer 34

black noise 126, 128, 400, 427, 443

Black—Scholes pricing model 35, 59,
292-5, 347, 407

blue noise 168, 254, 427

Bollerslev, T. 112-17 passim

Box, G.E.P. 136

brown noise 110, 122-5, 168, 427

Burgers equation 404, 406-8

Burrus, Sidney 223

business cycles 102
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Capital Asset Pricing Model (CAPM) 80,
106, 341, 443

cascade models 389, 401

cash flow 337-9; continuous 342; laminar
and turbulent 339, 368, 370; perfect
liquidity of 366; rate 341; steady 342;
stress and strain in 363-7; theory of
340-7; see also discounted cash flows

Cash Flow Risk (CFR) 346-7

cash flow viscosity see illiquidity;
coefficient of 365

cash flow vortices 359

cash risk equation see Bernoulli equation

catastrophe, financial 337, 340, 425-7

Cauchy distribution 92-3, 440

Cauchy—Schwarz inequality 243

Central Limit Theorem, Generalized
(GCLT) 91-2,440

certainty, almost 15

Chang, E.C. 66

chaos 11-12, 32,272, 289-99, 319,
324-8; complete 312-17, 329

Chapman, David A. 338

characteristic functions 82-3, 86, 95, 173

Chemical and Chase Bank 428

Chichilnisky, G. 340

“chirps” 177, 181-2, 201-2, 209, 242

Chi-squared distribution 251-2

Citibank 428

Claerbout, Jon 281, 373

clarinet frequencies 150-2

closure 206

cobweb processes 301

Coifman, Ronald 192

color categorization of randomness 122-3

compact support property 222

complement, orthogonal 218

complexity, science of 289-92, 295

conditional probability 38-9

cone of influence 244-6, 259-60

confidence levels 428-9

conjugate mirror filter 215

Constantinides, G. 355

contagion 262, 380, 400

Continuous Wavelet Transform (CWT)
192, 195-6, 244-5

contour dynamics 401

convolution theorems 161-2

Cooley, J.W. 160

correlation dimensions 272

cotango 66

covariance functions 137-40, 163, 352

covariance as time convolution 141

Cowles, Alfred III 65

Cox, J. 35,352,354

“crash-o-phobia” 28

crises, financial 340; see also Asian
financial crisis

cross-covariance functions 138

cumulants 18-20, 37-8

cyclicity: aperiodic 105-6, 155, 231, 234,
253,292, 308, 314, 321, 325-8; of
financial markets 5; of time series from
economic models 102

Dacorogna, M.M. 438

Daubechies, Ingrid 180-1, 192, 209,
214-23 passim, 242

day traders 342, 392, 400

delta-hedging 432-3

dependence 41, 105-11, 164; see also
linear dependence; series dependence

derivatives 3, 12-13, 106, 356

Desnyanski, V.N. 401

Devil’s staircase 2734

diffusion models 352-6; wavelet solutions
of 402414

dilation 193

dilation equations 214

dimension, Euclidean 266; Hausdorff
266-7; information 272; correlation
272; skewness 278; kurtosis 273

discontinuous data 231-4

discounted cash flows 348

discount factors 350

Discrete Wavelet Transforms (DWTs)
207-11, 250

distribution, asset return 6; Cauchy 92;
functions 17; Gaussian 92; heavy tailed
88; kurtosis of 21; Lévy 93; location of
21; parametrized stable 82, 85-7; Pareto
88; scale of 26; scaling 76; skewness of
21; stable 81-2; symmetrically stable 81

diversification of portfolios 442—4

domain of attraction 92

Doppler effect 390

double-entry bookkeeping 348

Duffie, D. 355

Dusak, K. 66

dyadic nesting 214

dyadic scaling 213-14

dynamic inertia 32

Efficient Market Hypothesis 47, 51-2

Eidgenossische Technische Hochschule
(ETH) 230-1

eigenfunctions 173-4



eigenvalues 173, 367

Elliott, Robert J. 118

Ellis, Craig 224

Ellsberg paradox 16-17

El Nifio 326

end effects 78

Engle, Robert F. 111

environmental uncertainty 329-30

equivalent time duration 172

ergodicity 39-40, 51, 163, 371, 381-2

Euclidian geometry 57

Euler’s equation 412

Everson, R. 395

exceedences, financial 438

EXCEL 41, 330, 372, 414, 445

exogenous variables 36

expansion 205; wavelet 207

expansion sets 205-6

exponential distribution 20-2

exponential functions 174

extreme values: scarcity of 432-3; theory
of 437-9

extreme risk 433-7

Fama, Eugene F. 47, 49, 51, 94, 106

Fama—Samuelson proposition 441-4

familiar attractors 325

Farge, Marie 372, 383, 395-6, 400-1

Fast Fourier Transform 83, 160

Fast Wavelet Transform 209

Feigenbaum, M.J. 307-8

Feigenbaum diagram 295

Fickian scaling 76

“fig-tree” plots 295

filter banks 208; high-pass 208; low-pass
208

financial pressure, concept of 344-6, 400

financial risk spectrum 167

Flandrin, Patrick 237, 250-3, 272

foreign exchange rates, volatility of 426-7

Fourier, J.B.J. 145

Fourier resonance coefficients 143-9,
307-8, 404

Fourier series 142-3

Fourier spectra 1601

Fourier Transforms (FTs) 18,82, 111, 155,
238, 241, 381; algebraic properties of
158-9; for aperiodic variables 156—69;
see also Windowed Fourier Transforms

fractal attractors see strange attractors

fractal dimensions 266-71

Fractal Market Hypothesis 47, 56-64

fractal objects 57-8

Index 455

fractal pricing processes 440—4

Fractal System Analysis 128

Fractional Brownian Motion (FBM) 107,
110-11, 117-20, 124, 126, 135, 158-9,
167-8, 190, 236-8, 264, 268-9, 290;
average risk spectrum of 166-9; and
Value-at-Risk 438-9

fractional difference operators 74-5

fractionally differenced processes 107

frames of reference 147

frame theory 204-5; tight 205; redundant
205

frequency convolution 161-2

frequency spectra 135, 149-52

Frisch, Uriel 236, 268-9, 383, 393, 394

fundamental frequency and fundamental
angular frequency 143

function, characteristic 18; joint
characteristic 18; orthogonal 146;
orthonormal 147; of rapid decay 157,
regularly varying 110; of slow growth
157

Gabor, D. 155,175, 177, 179

Gabor atom 175-7

Gébor Transform 174, 180; see also
Windowed Fourier Transform

Gaébor wavelets 209

Galerkin finite elements methodology 338,
340, 348, 380, 403, 408-14; wavelet
solutions of 403-14

gamma function 88, 108-9, 139

(G)ARCH processes 111-17

Gaussian distributions 20-31 passim, 72,
440, 443

Geometric Brownian Motion (GBM) 47,
74, 135, 159, 236, 294, 338; timewarped
273,276-7

Gibbs partition function 269, 272, 394

Gibbs phenomenon 143-4, 403-8

Gilmore, R. 292, 328

global dependence and global
independence 105-11, 164

Goldstein, R. 355

Gongalves, Paulo 250, 269

Granger, C.W.J. 102

Grassberger, P. 308

Gray, R.V. 66

Gregg, Mike 359

Grossman, Alex 192

Haar, Alfréd 208, 215-16, 220, 223
harmonic amplitudes 143
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Hausdorff dimension 266-7, 308, 325,
390, 3934

Heal, G.M. 340

heartbeat 253-5

Heath, D. 352

Heaviside function 404-6

heavy-tailed distributions 88-9, 93, 96,
316, 432

hedge funds 337-8

hedging 3, 34, 65, 432-3; dynamic 174

Heisenberg, Werner 40, 171, 180

Heisenberg box 177, 179, 198, 200, 202,
250

H-exponent 120-8, 168-73, 203, 224,
238-9, 277-8, 292, 296-9, 314, 317,
433; homogeneous 268; of monofractal
time series 250-65

Hicks, John 65-6

high-pass filters 211

Hilbert space 204, 208, 212, 218, 243

holographs 175

Holton, Glyn A. 53, 56

Hong Yan 338

horizon analysis 56; see also investment
horizons

Hosking, JR.M. 107

hotbits 10

Houthakker, H.S. 65

Hull, J.C. 27, 295, 352

Hurst, Harold Edwin 106, 120-1, 433,
435; see also H-exponent

Hurst noise 121

Hwang, W.L. 246-7

hydrology 340, 433-5

Ibbotson, Roger G. 3—4

idealization theorem 83

IGARCH models 112, 117

illiquidity 337-8, 362-7; coefficient of
365

Ilmanen, A. 34

impulse functions 159-60

incompressible financial markets 343

inertial zone 381

infrared catastrophe 126

Ingersoll, J.E. 354

institutional investors 342, 392, 400

intermittency 106, 195, 203, 291-2,
309-13, 326, 329-30, 340, 346, 387; of
financial turbulence 396-7; see also
wavelet intermittency

investment horizons 6, 29-32, 53-8
passim, 106, 392, 427-8

irregularity 222; degrees of 8, 238;

measurement of 235; sequential 8
irregularity exponents 123-6
irrotational financial markets 343
1t6’s lemma 294, 353

Jaffard’s theorem 243-7
James, Jessica 295, 355, 358
Jenkins, G.M. 136

Jorion, Philippe 428

“Joseph effect” 106

JP Morgan (company) 428, 430
Julia set 57-8

Kalman filter 105

Kaplan, Lance M. 252,272

Karnosky, D.S. 339

Karuppiah, Jeyanthi 263, 290

K -distribution 20-2

Kennedy, D.P. 355

“kernels” 175, 412

Keynes, John Maynard 65-6

Koch snowflake 267

Kolmogorov, A.N. 13-15, 32-3, 236, 279,
340, 381-2, 388-92, 398-9

Kolmogorov distance 94

Korner, T.W. 158

Kuo, C.-C. Jay 252,272

kurtosis 23, 29, 84, 264-5, 398

kurtosis dimension 273

Kyaw, Nyonyo 256-7

laminar cash flow 339, 368

laughter 182-5

Legendre Transform 270-1, 275, 390,
394,399

lepto-kurtosis 23, 433

Lévy, Paul 31, 80, 440, 441

Lévy distribution 93

Li, T.-Y. 312

Likelihood Function 94

linear combinations of assets and liabilities
348

linear dependence and linear independence
50, 138, 164

linear systems 73

line spectrum 149

Lipschitz exponent 8, 235-43, 250, 268,
359

liquidity 358-61; perfect 366

liquidity management 444

liquidity preference theory 4-6

Lo, Andrew W. 121, 253, 290

logarithmic transformation of data 95



logistic parabola regimes 291-319,
324-30

lognormal distribution 26-8, 31

Longstaff, F.A. 352, 355

Long-Term Capital Management (LTCM)
291, 337-8, 400

long-term dependent random processes
110

Los, Cornelis A. 6-7, 13, 74, 263, 290,
339-40, 349

low-pass filters 210-11

Luenberger, David G. 355

Lui, David T.W. 60

McCulloch, Huston 94, 97, 445

MacKinlay, A. Craig 121, 253, 290

Mallat, Stéphane 192, 208-10, 213-15,
237-8, 243, 246-7, 269, 275

Mallat’s Theorem 243

Mallat and Meyer MRA design 215

Mandelbrot, Benoit 30, 47, 52, 64, 78, 80,
89, 106-7, 120-1, 155, 236, 265, 278,
290, 321, 337, 340, 391, 393, 398-9, 444

Mann, HB. 6

Mantegna, Rosario N. 116, 170-1, 292,
392

market efficiency, degree of 65-6

market-makers’ profits 432-3

Markov processes 39, 103-5, 242

Markowitz, Harry M. 72, 440-4

martingale theory 41, 47-52, 106

MATLAB® Higher-Order Spectral
Analysis (HOSA) Toolbox 152, 182,
186

MATLAB® Signal Processing Toolbox
152, 186

MATLAB® Statistics Toolbox 41

MATLAB® Wavelet Toolbox 224, 281,
373

maxima lines 246-7, 269

meso-kurtosis 23

meteorological processes 299, 326, 340

Meyer, Yves 191-2, 215, 394

Mindlin, G. 292, 328

Mittnik, Stefan 92

mixing processes 102-3

Modern Portfolio Theory 5-6, 440

modulus maximum 246-7, 269-70

moments: existence of 85; fractional
absolute 89; generation of 18-20;
higher-order 5; of parametric
distributions 20-31; vanishing 194,
221, 269-70

Index 457

monofractal time series 26

Monte Carlo methods 252

Morgan Stanley 437

Morgenstern, O. 102

Morlet, J. 191-2

Morlet wavelet 258

Morton, A.J. 62

mother wavelets 219

MRA design 215

MRA equations 213-17; for wavelets 219

MRA, Mallat’s 209-10, 214

Miiller, Ulrich A. 72,290

multifractality 64, 259, 265-73, 277-81

Multiresolution Analysis (MRA) 191-2,
207-20, 230-1, 236-8, 290-2, 317, 328,
340, 388-9, 394-6, 407; design
properties of systems 221-3; of
multifractal price series 265-80; of
turbulence 398-402

musical frequencies 150-2

Muzy, J.E. 275

Navier—Stokes equations 236, 291, 295,
300, 317-19, 330, 338, 340, 347, 381,
383, 388-9, 397, 401-2, 407, 411-14

Nelson, C.R. 357-8

net present value 65

Newtonian cash flows 367

Newton’s equation of state 383—4

Newton’s second law of flows 363

Nicolis, Gregoire 292

“Noah effect” 106

noise, color categorization of 89, 122-8§,
167-8, 278, 299, 426-7

Nolan, John 80, 94-7, 445

normal distribution 4

norm of time series 204-5

Novikov, E.A. 401

October 19th, 1987 (stock market crash)
289

odds 17

oil reserves, geographical distribution of
278-80

Olsen and Associates 230

operator 73-4; affine 75; first difference
74; fractional difference 74; linear 73;
time-invariant 173

Ornstein—Uhlenbeck process 353

orthogonality 146-9, 193-5, 205-7, 214,
218-23

Osborne, A. 272

oscillation sequences 301-6
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PanAgora Asset Management 290

parabolic deterministic processes 291

parametric and nonparametric distributions
17-31, 431-7

Pareto—Lévy scaling distributions 76—80

Parisi, G. 236, 268-9, 393, 394

Parseval’s theorem 148-9, 162, 197, 218,
2234, 381; formula 179; tiling 223

partition functions 269-72

Pawelzik, K. 290

Pearson, Neil D. 338

perfectly efficient markets 343

period-doubling 301-7

periodicity 142

periodic orbits 307-8

Perrier, V. 403

persistence and antipersistence 109-11,
121-2, 126, 262, 268, 289, 297, 337,
392, 397; in Asian markets 263-5; in
Latin American markets 256-63;

persistence regimes 295-300, 4267

Peters, Edgar E. 5, 16, 77, 85, 89, 121,
290, 337, 392, 396-7, 400, 444

phase angles 143

phase spectrum 149

Philippine pesos 361

Pincus, Steve 8

pink noise 89, 125, 262, 427

platy-kurtosis 23, 316

portfolio theory 72

power laws 76-8

power spectral density (PSD) 142, 162,
164-5, 237

predictability of financial series 32, 290-1,
324,330

Prigogine, Ilya 292

principal component analysis 352

probabilistic risk 17

probability: chaotic 326-7; concept of
7-8, 12—-13; conditional 38-9;
definition of 13-15; fractionally
differenced 107; (G)ARCH 111;
long-term dependent 110

process, first- and second-order Markov
103; stochastic 32; strong-mixing 103

Provenzale, A. 272

pseudorandom numbers 10-12

put-call parity 61

quadratic map see logistic parabola regimes

Rachev, Svetlozar 92
radiation monitors 10

Ramsey, James B. 193

“random field” models 355

randomness: color categorization of
122-3; concept of 7-8, 15; degrees of
238; genuine and pseudo 8-12

random variable, axiomatic definition 15;
independent 49; uncorrelated 50

Random Walk process 50-6, 74, 76, 255,
399, 400

Range/Scale analysis 120-2

rate of return, total 53

Rayleigh distribution 20-2

recurrence plots 327

red noise 124, 168

regular time series 238

regularity conditions 241

Reproducible Research 224, 281, 373

Reynolds number 346, 381, 388-9, 399;
financial 369; wavelet 371

Richardson, L.F. 339, 389

Riesz basis 205, 214

risk: average 164; definition of 59;
dependence on asset class 3-4, 55;
extreme 71; local measures of 174,
179, 200, 237-50, 265-9, 317, 344, 371;
long-term 135-6; market price of
352-3; spectrum 164, 269;
systematic 3

risk contents 149, 162-5, 174, 204-5

“risk-free” assets 5

risk spectra 165-9, 203, 269; examples of
273-8

Roll, R. 94

Ross, S.A. 354

R/S measure 106

o-additive 14

o-algebra(s) 43; current of 32

Sadourney, R. 395

Samuelson, Paul A. 51; see also
Fama—Samuelson proposition

Santa-Clara, P. 355

scalar product 137

scaling functions 210-23 passim;
coefficients of 214—17, 270; in relation
to wavelets 217-20

scalegram 202, 250; of heart arrhythmias
253-5; of stock prices 255-6

scalograms 136, 181, 186, 192, 196-204,
252, 258-66 passim, 316-17, 328,
3712

Schroeder, Manfred 7, 126, 293, 396

Schwartz, E.S. 352



Schwert, G.W. 6

self-organization 301-7

self-similarity 237-8, 265-6, 307-8, 325,
389, 397

semi-logarithmic plots 170

series dependence 102-5

set function 14

Sharkovskii, A.N. 313

Sharkovskii Theorem 313

shearing 3634

Short-Term Fourier Transforms 199

Shuster, H. 290

Siegel, A.F. 357-8

Singer, B. 8§, 339

“single-index” models 35

singularities 15, 52, 185, 196-7, 233-8,
247, 265, 269-72, 326, 398;
measurement of 246-50

singularity spectra 127

Sinquefield, Rex A. 34

skewness 23, 31, 273

Slézak, E. 403

Sgrensen, C. 352

Sornette, D. 355

span of a basis set 206, 212

space, complete 14; measurable 13;
probability 14

spectral analysis 102, 105, 307-8, 367

spectral bandwidth, equivalent 172

spectral density and spectral exponent 111

spectrograms 136, 142, 155, 179-86, 192,
201-2

spectrum, amplitude and phase of 149,
160; multifractal 268; risk 164; support
of 268

speculation 3, 65, 427

speech 182-3

splines 357

spot rate curve see term structure of
interest rates

stability spectra 126-8

stable distributions 31, 71-2, 80-3, 96;
closed form 92-3; examples of 86;
general properties of 83-5;
Value-at-Risk for 428-31

STABLE.EXE software 445

Stanley, H. Eugene 116, 170-1, 292, 392

stationarity, concept of 33, 76; in the strict
sense 33; in the wide sense 34

stationary processes 33-8

steady states 298-306, 311, 314-16, 320,
325

steady-state equilibria 328-30

Index 459

Stevens, Peter S. 385

“stochastic string” models 355

strange attractors 12, 279, 292-3, 323-6

stress testing 432

summary statistics 18

symmetric scaling functions and wavelets
222-3

system, definition of 73; dynamic 32;
invertible 73; linear 73; MRA 221;
nonlinear 316-323; time-invariant 73

tail properties of distributions 88

Tang, Gordon Y.N. 60

tangent bifurcation 306, 309

tapers 157

Taylor expansion 23840

Telser, L.G. 66

Tenney, M.S. 295, 355

tensor algebra 339, 349

term structure gradient (TSG) 364

term structure of interest rates 349-51;
parametrized models of 351-8

Three Gorges Dam 433-7

Tice, J. 294, 355

time convolution 140-1, 161

time dependence 32-3, 56

time duration, equivalent 172

time-invariant systems 73

time warping 230, 273, 276-8

Tobin, James 4, 6, 444

Toon scripts 224, 281, 373

total rate of return on investment 53

trading time 77

transient chaos 203

translation 193

Tukey, J.W. 160

turbulence 195, 236, 289-92, 326,
33740, 346, 368-70, 380-3; advanced
research of 400-2; definition of 358-9;
financial, informal theory of 387-8;
homogeneous or monofractal 389-93;
heterogeneous or multifractal 393-6;
measurement and simulation of 388-95;
multifractals in modeling of 278-81;
Multiresolution Analysis of 398-402;
physical, informal theory of 383-7;
simulation of 396-8; wavelet
representation of 402

ultra-unstable distributions 128

uncertainty 7, 17

Uncertainty Principle 7, 171-7, 180, 192,
198

universal order of period lengths 313-14
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Value-at-Risk (VaR) of investment 425;
definition of 429; and fractal pricing
processes 440—4; and Fractional
Brownian Motion 438-9; for parametric
distributions 431-7; for stable
distributions 428-31

van den Hoek, John 118

Van Ness, John W. 107

Vasicek, O.A. 294-5, 352-3

velocity fields 389

Venturi cash flow channel 345

Verhulst, Pierre-Frangois 293

violin frequencies 150-2

viscosity of cash flow 362-5

visualization plots 196

volatility matrices 60; definition of 53;
Normalized Random Walk 55; portfolio
return 3; smile 24-7; stochastic 441;
swaps 64; time dependence of 6

vortices 298, 317, 359, 380, 385-93, 400

Wald, A. 6

Wallis, J.R. 121

Wavelab 224,281, 373

wavelet, Daubechies 217, 220; Géabor
209; Gaussian 219; Haar 208;
orthogonal 195; orthonormal 195
triangle 209, 220

wavelet analysis 190-2, 325, 338; atom
193; regularity conditions 241-2; in
relation to scaling functions 217-20;
resonance coefficients 212; of transient
pricing 192-209; usefulness of 223

wavelet decomposition tree 210

wavelet expansions 206-7

wavelet filters 210

wavelet financial Reynolds number 371

wavelet generation coefficients 219-20

wavelet intermittency 371-2; financial
371

wavelet Multiresolution Analysis see
Multiresolution Analysis

wavelet resonance coefficients 219-21,
243,250-8

wavelet spectrum, financial 371

Wavelet Transforms 157, 174-5, 238,
242-7, 265-9, 383

Webber, Nick 294-5, 355, 358

weighted mixtures 78-80

White, A. 27, 295, 352

white noise 166-8, 186

Wickerhauser, Victor 192

Wiener—Khinchin Theorem 142, 162-3,
167

Windowed Fourier Transforms (WFTs)
155-6, 173-86, 199, 328; see also
Gabor Transform

Yangtze River 433-6
Yorke, J.LA. 312

Zabusky, Norman 395

zero coupon bonds 350-5 passim

Zhang, Zhifeng 193

Zimin, V. 401

Zolotarev parameterization 80-2, 85-7,
91, 123, 437, 440
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