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Purpose
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Using This Book

Stock Market Analysis Using the SAS System: Portfolio Selection and Evaluation provides a
set of example analyses using SAS software to analyze the return and risk of stocks, singly
and in portfolios. This book is a task-oriented applications guide that shows how to use the
SAS System to analyze risk and return of stocks, create and maintain portfolios, and value
stock options. The guide explains how to use features of base SAS software, the REG and
CLUSTER procedures from SAS/STAT software, and the LP procedure from SAS/OR
software for stock market analysis. Several theoretical approaches are presented: Discounted
Cash Flow (DCF) Analysis, the Capital Asset Pricing Model (CAPM), Linear Programming
Models, and the Markowitz Model. This book does not include technical analysis, which
will be presented in a second volume of techniques for stock market analysis.

“Using This Book” contains important information to assist you as you read this book.
This information describes the intended audience, prerequisites, and the book’s organization
and conventions. “Using This Book” also has an “Additional Documentation” section that
provides references to other books containing information on related topics.

Audience

Prerequisites

Stock Market Analysis Using the SAS System: Portfolio Selection and Evaluation is intended
for those with interest in analyzing the risk and return of stocks, including finance
professionals and the interested nonspecialist, as well as university students at the master’s
level and upper-level undergraduates. Minimal knowledge of computing, statistics, and
mathematical programming is required to work through the examples. Knowledge of finance
at the level of Modern Portfolio Theory and Investment Analysis, by Elton and Gruber, is
suggested but not required.

Little or no experience with the SAS System is required to use Stock Market Analysis Using
the SAS System: Portfolio Selection and Evaluation. The following table summarizes the
SAS System concepts you need to use this book:

You need to know how to ... . Refer to. ..

invoke the SAS System at instructions provided by the SAS Software Consultant
your site at your site.

have a basic understanding of SAS Language and Procedures: Introduction, Version
SAS System concepts, such as 6, First Edition for a brief introduction, or SAS

the DATA step Language and Procedures: Usage, Version 6, First

Edition and SAS Language and Procedures, Usage 2,
Version 6, First Edition for a more thorough
introduction.
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Readers of Stock Market Analysis Using the SAS System: Portfolio Selection and
Evaluation are assumed to be familiar with the computer platform they use, but no formal
computing background or graduate level statistical training is assumed. Readers are assumed
to be familiar with basic statistical concepts of mean and variance, and have been exposed to
regression analysis and hypothesis testing at an introductory level.

What You Should Read

The following table lists some of the stock market analysis tasks you may want to perform
and the appropriate chapters to read to accomplish those tasks:

If you want to ...

Read...

calculate risk and return
measures

value stocks

sort and cluster stocks

perform Capital Asset
Pricing Model analysis of
stocks

calculate portfolio weights

evaluate portfolio
performance

value stock options

Chapter 1, “Background Topics” and
Chapter 7, “Evaluating Portfolios”

Chapter 2, “Discounted Cash Flow
(DCF) Analysis”

Chapter 3, “Sorting and Clustering
Stocks”

Chapter 4, “The Capital Asset Pricing
Model (CAPM)”

Chapter 5 “Portfolio Creation with
Linear Programming” and Chapter 6,
“The Markowitz Model, Portfolio
Creation with Nonlinear
Programming”

Chapter 7, “Evaluating Portfolios”

Chapter 8, ““Valuing Stock Options”

Conventions

This section explains the various conventions used to present text and examples in this book.

Typographical Conventions

Stock Market Analysis Using the SAS System: Portfolio Selection and Evaluation uses
several type styles for presenting information. The following list explains the meaning of the

typographical conventions used in this book.

roman is the standard type style used for most text in this book.

UPPERCASE ROMAN is used for SAS language elements.
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bold is used for headings, matrices, and vectors.

bold italics is used for italicized words when they appear in headings.

italic is used for terms that are defined in text, for emphasis, for
user-supplied values (in text or syntax), and for references to
publications.

code is used to show example code and SAS System messages that

are set off from the text. In most cases, this book uses
lowercase type for SAS code, with the exception of some title
characters. SAS System messages appear in mixed case.

Example Conventions

Most examples in Stock Market Analysis Using the SAS System: Portfolio Selection and
Evaluation build upon previous examples. Except where it would be redundant, each

example contains

O  an explanation of the nature of the example

0 an explanation of the SAS statements and options

0 the SAS program for you to submit during your interactive SAS session
0 asample of the output you should see on your display

O  adescription or an interpretation of the results.

Feedback

If you have comments or suggestions about this book, any other SAS software manual, or
the software, we would like to hear from you. You may write us at the Institute or contact us
by using one of our electronic mail addresses. Refer to the Your Turn page at the end of this
book for information on how to forward your comments to the appropriate division.

Additional Documentation

SAS Institute provides many publications about products of the SAS System and how to use
them on specific hosts. For a complete list of SAS publications, you should refer to the
current Publications Catalog. The catalog is produced twice a year. You can order a free
copy of the catalog by writing, calling, or faxing the Institute:

SAS Institute Inc.

Book Sales Department
SAS Campus Drive

Cary, NC 27513
Telephone: 919-677-8000
Fax: 919-677-8166
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SAS Software Documentation

In addition to Stock Market Analysis Using the SAS System.: Portfolio Selection and
Evaluation , you will find these other documents helpful when using SAS/STAT and
SAS/OR software for stock market analysis:

O

SAS/STAT User’s Guide, Version 6, Fourth Edition, Volume I and Volume 2 (order
#A56045) documents all procedures in Release 6.06 SAS/STAT software.

SAS/OR User’s Guide, Version 6, First Edition (order #A5850) documents all
procedures in Release 6.06 SAS/OR software.

Documentation for Other SAS Software
Products

The SAS System includes many software products in addition to SAS/STAT software and
SAS/OR software. Several books about other software products that may be of particular
interest to you are listed here:

O

SAS Language and Procedures: Introduction, Version 6, First Edition (order #A56074)
gets you started if you are unfamiliar with the SAS System.

SAS Language and Procedures: Usage, Version 6, First Edition (order #A56075)
provides task-oriented examples of the major features of base SAS software.

SAS Language and Procedures: Usage 2, Version 6, First Edition (order #A56078)
provides additional task-oriented examples of the major features of base SAS software.

SAS Language: Reference, Version 6, First Edition (order #A56076) provides detailed
reference information about all elements of base SAS software except procedures.

SAS Procedures Guide, Version 6, Third Edition (order #A56080) provides detailed
reference information about the procedures in base SAS software.
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Introduction

This chapter introduces basic concepts of stock market analysis and discusses stock markets,
stock market data, and measures of risk and return.

Typically, the process of stock market analysis follows these general steps:

collecting data

creating a SAS data set containing your data

calculating measures of stock return and risk

sorting and clustering stocks by desired financial characteristics

assessing the stock’s performance in relation to the market portfolio and to other stocks
calculating solution values for portfolio weights

deciding in which portfolio to invest

® N R WD -

evaluating the performance of your portfolio.

This chapter shows you how to use the SAS System to perform the first three steps of
this analysis. Other chapters discuss the remaining steps.
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Hardcopy Data Sets

You can collect stock data and financial information and then create data sets from any
source of financial data, including newspapers and magazines, corporate reports, brokerage
firm research reports, investment services reports and newsletters, and government
publications.

Depending on the intended purpose for your analysis, you may want to create
time-series data sets (consisting of observations on a single stock across time),
cross-sectional data sets (consisting of observations at one point in time across many
stocks), and time-series cross-sectional data sets, also known as panel data sets (consisting
of observations on multiple stocks across time).

A typical financial page of a major newspaper contains a variety of financial
information, including

O quotations for stocks, stock options, and mutual funds
o bond yields

o yields of U.S. Treasury Securities

O interest rates

O exchange rates.

Stocks are listed on a variety of exchanges. The exchange on which a stock or mutual
fund is listed depends on the dollar value of the firm, its history of earnings, and the number
of shares held publicly as well as their market value. The largest firms (in terms of dollar
value) are listed on the New York Stock Exchange (NYSE); medium-sized firms are listed
on the American Stock Exchange (AMEX); and small firms traded over-the-counter (OTC)
are listed by the National Association of Securities Dealers Automated Quotations
(NASDAQ). Transactions are regulated by the Securities and Exchange Commission (SEC).

Stock and mutual fund quotations listed in the financial pages of major newspapers
often have the following form:

Stock  High Low Close Change
XyZ 50 1/8 48 49 1/2 +5/8

The quotation is interpreted as follows:

XYZ is the exchange abbreviation for the XYZ company.

50 1/8 is the daily high price for stock of firm XYZ.

48 is the daily low price for stock of firm XYZ.

49 172 is the daily closing price for stock of firm XYZ.

+5/8 indicates that the stock of firm XYZ closed +5/8 higher today than the previous
trading day.

Some newspapers and daily journals also list additional information, including the
number of shares traded (volume), the 52-week high and low, and the rankings based on
earnings per share, relative price volatility measures, and relative price-earnings measures.

Data sets in hardcopy form can be typed into or electronically scanned into SAS data
sets.
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Electronically Stored Data Sets

Data sets created by a variety of software products can be converted to SAS data sets in a
SAS DATA step. For examples and discussion, see SAS Language and Procedures, Usage,
Version 6, First Edition and SAS Language and Procedures, Usage 2, Version 6, First
Edition.

Economic and financial data files can be read and stored as SAS data sets by the
SAS/ETS CITIBASE and DATASOURCE procedures. Data files supported by PROC
DATASOURCE include
J  U.S. Bureau of Economic Analysis data files
0 U.S. Bureau of Labor Statistics data files
0 Standard & Poor’s Compustat Services Financial Database Files

0 FAME Software Corporation’s CITIBASE data files (tape format, old format, and PC
diskette format)

o  Center for Research in Security Prices (CRSP) data files

0 Haver Analytics data files

O International Monetary Fund data files

0 Organization for Economic Cooperation and Development data files.

PROC CITIBASE reads time series from the CITIBASE files and converts them into a
SAS data set. Note that the capabilities of PROC CITIBASE are a subset of PROC
DATASOURCE. PROC CITIBASE can read
o tape-format CITIBASE data files
0O  diskette-format CITIBASE databases
0 Haver Analytics data files

For more information on the CITIBASE and DATASOURCE procedures, see SAS/ETS
User’s Guide, Version 6, Second Edition.

Single-Period Return Measure

Single-period return measures consist of two parts: income derived from dividends and
capital gains (or losses) derived from selling the stock at a greater (lesser) price than the
purchase price. When you buy shares of stock (at time ¢ — ), hold them, then sell them (at
time £), you earn the difference between the buying price (P,_;) and the selling price (P,) plus
any dividends (D,) issued for that stock. Returns can be measured as dollar earnings or as a
percentage of the amount invested.

Thus, the stock return for the ith stock for the ¢th period (R; ) is measured as follows
(ignoring commission and other brokerage firm charges):

p - P + D

R —- it ir—1 it

iLt—1
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When you expect a stock price to fall, you can sell it, even though you do not own it.
Sales of this type are known as short sales. Typically, stockbrokers provide the stock
required for the short sale, and they request collateral for the period the stock remains short.
When you believe the stock price has reached its lowest point, you purchase shares at the
lower price. The return on your short sale is calculated as shown in the previous equation.

Introducing the SP1 Data Set

The SP1 data set consists of the Standard and Poor’s (S&P) 500 Composite Stock Index for
the years 1970 through 1989, where the period 1941 through 1943 is equal to 10 and the
stock dividends are in index form. Note that indexes of stocks are typically weighted by
dollar value of outstanding shares.

The following DATA step creates the SP1 data set and labels the variables.

Explanation of Syntax

DATA data-set-name
begins the DATA step and creates a SAS data set named by the specified
data-set-name. For this example, the data set is named SP1.

INPUT
reads the input data, then creates and names the SAS variables. For this example, the
INPUT statement reads the values of the S&P index and creates the variables V and D.
The double trailing at symbol (@@ ) indicates that each line of data contains more than
one observation.

LABEL
labels the variables.

CARDS
indicates that data lines follow. The semicolon that follows the data lines causes the
DATA-step statements to execute.

Example code

data spl;
input year v d @g;
label v='End-of-Year Index Value’
d='Dividends’;

cards;

1970 92.15 3.14 1971 102.09 3.07 1972 118.05 3.15
1973 97.55 3.38 1974 68.56 3.60 1975 90.19 3.68
1976 107.46 4.05 1977 95.10 4.67 1978 96.11 5.07
1979 107.94 5.70 1980 135.76 6.16 1981 122.55 6.63
1982 140.64 6.87 1983 164.93 7.0% 1984 167.24 7.53
1985 211.28 7.90 1986 242.17 8.28 1987 247.08 8.81
1988 277.72 9.73 1989 353.40 11.05

run;

You print variables in the SP1 data set with the PRINT procedure. The following
statements print the first five observations. The results are shown in Output 1.1.



Output 1.1

First Five
Observations of the
SPI Data Set
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Explanation of syntax

PROC PRINT
invokes the PRINT procedure. The following options of the PROC PRINT statement

are specified:

DATA= specifies the data set to be printed. This example specifies the SP1 data
set. The OBS=r option specifies that the first n observations be printed.
In this example, the OBS= option specifies that the first five observations
be printed.

LABEL specifies that the variable labels be printed.

VAR
specifies the variables to be printed.

TITLE
titles the output. In this example, three title statements are used; however, you can use
up to ten title statements. In interactive SAS sessions, TITLE statements remain in
effect until they are changed or until the SAS session ends.

Example code

proc print data=spl(obs=5) label;
var year v d;
title 'Background Topics’;
title2 'Printing the SP1 Data Set';
title3 'First Five Observations’;
run;

Background Topics
Printing the SP1 Data Set
First Five Observations

End-of-Year
0BS YEAR Index Value Dividends

1 1970 92.15 3.14
2 1971 102.09 3.07
3 1972 118.05 3.15
4 1973 97.55 3.38
5 1974 68.56 3.60

Interpretation of output

In Output 1.1, the values of the first five observations of the variables YEAR, V, and D are
printed. By printing data sets, you can check for coding errors in the input values and for the
appropriate number of observations.
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Plotting the SP1 Data Set

Plotting the data versus time is often the first step in analyzing a time-series data set. You
use the PLOT procedure to create scatter plots. The following PROC PLOT statements plot
the Standard and Poor’s Index values and the dividend values versus time in years. The
results are printed in Output 1.2.

Explanation of syntax

PROC PLOT
invokes the PLOT procedure. The following options of the PROC PLOT statement are
specified.

DATA=  specifies the data set to be used.

VPCT=  specifies the percentage of the SAS output page for the vertical height of
the plot.

PLOT
specifies the vertical axis variable to be plotted versus the horizontal axis variable. In
this example, two PLOT statements are used to request one plot each.

Example Code

proc plot data=spl vpct=150;
plot v*year;
plot d*year;
title2 'Plotting Data Values versus Year';

title3;
run;
Outp _ut 1.2 Background Topics
Plotting Index and Plotting Data Values versus Year
DIWdend. Val_ues Plot of V*YEAR. Legend: A = 1 obs, B = 2 obs, etc.
versus Time in Years
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Background Topics
Plotting Data Values versus Year

Plot of D*YEAR. Legend: A = 1 obs, B = 2 obs, etc.
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Interpretation of output

The two plots in Output 1.2 indicate that both the Index values and the dividend values are
following an overall upward trend. In general, plotting data can reveal trends and seasonal
variation, which may be important for later analysis.

Calculating Single-Period Returns

You calculate the single-period returns in a DATA step. The SET statement reads
observations from the specified data set. In the following example, observations are read
from the SP1 data set. The assignment statements create new variables using the previously
created variables and DATA-step functions. In this example, three new variables are
created: V_1, R, and R_PER. V_1 is the lagged value of V; R is the returns; and R_PER is R
in percentage terms. The input data, the variables used for intermediate calculations, and the
returns are printed in Output 1.3.

/* Calculating the Single Period Returns */
data sp2;
set spl;
v_l=lag(v);
r=(v-v_1+d) /v_1;
r_per=r*100;
label v_1='Lagged Index Value’
r='Returns’
r_per='Percentage Returns’;
run;

/* Printing Single Period Returns */
proc print data=sp2 label;

var year v v_1 d r r_per;

title2 'Printing the Single Period Returns’;
run;
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Output 1.3

Raw Data,
Intermediate Steps,
and Single-Period
Returns

Background Topics
Printing the Single Period Returns
Lagged

BEnd-of-Year Index Percentage
0BS YEAR Index Value Value Dividends Returns Returns

1 1970 92.15 . 3.14 . .
2 1971 102.09 92.15 3.07 0.14118 14.1183
3 1972 118.05 102.09 3.15 0.18719 18.7188
4 1973 97.55 118.05 3.38 -0.14502 -14.5023
5 1974 68.56 97.55 3.60 -0.26028 -26.0277
6 1975 90.19 68.56 3.68 0.36917 36.9166
7 1976 107.46 90.19 4.05 0.23639 23.6390
8 1977 95.10 107.46 4.67 -0.07156 -7.1562
9 1978 96.11 95.10 5.07 0.06393 6.3933
10 1979 107.94 96.11 5.70 0.18240 18.2395
11 1980 135.76 107.94 6.16 0.31480 31.4805
12 1981 122.55 135.76 6.63 -0.04847 -4.8468
13 1982 140.64 122.55 6.87 0.20367 20.3672
14 1983 164.93 140.64 7.09 0.22312 22,3123
15 1984 167.24 164.93 7.53 0.05966 5.9662
16 1985 211.28 167.24 7.90 0.31057 31,0572
17 1986 242,17 211.28 8.28 0.18539 18,5394
18 1987 247.08 242.17 8.81 0.05665 5.6654
19 1988 277.72 247.08 9.73 0.16339 16.3388
20 1989 353.40 277.72 11.05 0.31229 31,2293

Interpretation of output

In Output 1.3, the values of the input data and the annual returns are printed. Note that
missing values are represented by a period (““.”). Missing values appear for the 1970 values
of the return and percentage return because those values depend on the lagged index value,
which is also missing.

Also note that the Standard and Poor’s 500 Composite Index has annual returns that
range from a low of -.26028 (in 1974) to a high of .36917 (in 1975). Holding stocks (or a
portfolio of stocks) over time raises questions such as “What is the average return over
multiple periods?” and “How does compounding affect the average return over multiple
periods?” The section ‘“Multiple-Period Return Measures,” later in this chapter, presents

multiple-period return measures.

Plotting Returns

After calculating returns, you may want to use PROC PLOT to plot them versus time to
visually assess trends across time. The following PROC PLOT statements plot the returns
versus time in years. The VREF= option specifies that a vertical reference line be drawn
perpendicular to the vertical axis at the specified value, which for this example is zero. The
results are shown in Output 1.4.

proc plot data=sp2 vpct=150;

plot r*year / vref=0;

title2 ’Plotting Returns versus Year';
run;
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Output 1.4
Plotting Returns
versus Time in Years

Background Topics
Plotting Returns versus Year

Plot of R*YEAR. Legend: A = 1 obs, B = 2 obs, etc.
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Interpretation of output

In Output 1.4, the plot of the returns versus time shows that there are more positive returns
than negative returns and that there are no obvious trends across time. The plot also suggests
the possibility of greater dispersion in the data in the 1970s than in the 1980s, and further
analysis would be required to corroborate the visual assessment.

Multiple-Period Return Measures

Multiple-period return measures involve calculating arithmetic and geometric averages from
the single-period returns. Thus, in assessing stock returns over several periods, the following
measures are of interest.

O

The arithmetic mean (AM) is simply the sum of the returns over several time periods
divided by the number of individual returns (T). The arithmetic mean measures the
average (or typical) return over individual periods.

AM = R
1

I M._]

1
T i
The wealth index (WEALTH) indicates the wealth generated (or lost) by investing. For
example, if you invest $1 in shares of a stock at the beginning of the year, the wealth
index (over the 12 monthly returns or 52 weekly returns) indicates the value at the end
of the year. If the wealth index is greater than unity, the value of the portfolio increased.
If the wealth index is less than unity, the value of the portfolio decreased. The wealth
index for T periods is calculated by the following equation:

WEALTH=(1+R[)><(1+R2)><...><(1+RT)
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Note that the wealth index is also equal to the ending-period value of the
investment (W) divided by the initial investment (W)):

WEALTH = w1
W,

0

o The geometric mean reflects compound, cumulative returns over time and, over T
periods, is defined as follows:

GeometricMean = [(1 + R ) x (1 + R} x ... x (1 + RT)]m

T
Geometric Mean = (WEALTH)

You use the geometric mean of the returns to calculate the average rate of return
over multiple periods. The average compound return (GM) measure for T periods is
calculated as follows:

GM=[(1+R)x (1+R)x...x(1+R)] -1

1/T
GM = (WEALTH) = — 1

Calculating Multiple-Period Return
Measures

You can calculate multiple-period return measures for the SP2 data set. For example,
suppose you want to calculate the wealth index, the arithmetic and geometric mean
measures, and the percentage values of the mean measures for the period 1985 through 1989
for the data in the SP2 data set. To perform this task,

1. use a DATA step to create a new data set containing the proper subset of the data

2. use the TRANSPOSE procedure to transpose the data for ease in calculation

3. use a second DATA step to calculate the return measures.

Subsetting a Data Set

The following DATA step creates a new data set containing the data for the years 1985
through 1989.

Explanation of syntax

DATA
begins the DATA STEP and creates a new data set named SP3.

SET
reads observations from the specified data set. In this example, observations are read
from the SP2 data set.

WHERE
specifies a condition that the data must satisfy before the observations are processed.
Using the WHERE statement improves the efficiency of your SAS programs because
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only the qualifying observations are read from the input data set. In this example, the
where condition for reading observations is that the value for the variable YEAR be
greater than or equal to 1985.

Example code

data sp3;

set sp2;

where year ge 1985;
run;

These statements produce no printed output.

Transposing a Data Set

You use PROC TRANSPOSE to transpose data sets. When a data set is transposed, its rows
become columns and its columns become rows. In terms of SAS data sets, the observations

become variables and the variables become observations.The following statements transpose
the SP3 data set.

Explanation of syntax

PROC TRANSPOSE
invokes the TRANSPOSE procedure.

DATA=  specifies the data set to be transposed.

OUT= creates and names the output data set.

VAR
specifies the variables to be transposed.

Example code
proc transpose data=sp3 out=spd;
var r;

run;

You print the SP4 data set with the following PROC PRINT statements. Output 1.5
shows the results of this example.

proc print data=sp4;
title2 'Printing the SP4 Data Set’;
run;

Output 1.5 ,

P Background Topics
Printing the SP4 Printing the SP4 Data Set
Data Set

_LABEL_ coLl CoL2 CoL3 COoL4 COL5

Returns  0.31057 0.18539 0.056654 0.16339  0.31229
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Interpretation of output

In Output 1.5, the values of the SP4 data set are printed. PROC TRANSPOSE labels the
columns (that is, the variables) of the transposed data set, COL1 through COLx. For this
example, the variables labeled COL1 through COLS represent the index returns from 1985
through 1989.

Calculating Return Measures

You can calculate the following multiple-period measures of return using a DATA step and
the SP4 data set:

o  wealth index (WEALTH)

0  arithmetic mean in level form (AM)

O arithmetic mean in percentage form (AM_PCT)

O average compound rate of return in level form (GM)

0O  average compound rate of return in percentage form (GM_PCT)

The following DATA step performs these calculations. The variables C1 through CS5 are
created for ease in calculating the wealth index and the average compound rate of return.

data spb5;
set spd;
t=5;
cl=coll+l;
c2=c0l2+1;
c3=col3+1;
cd=cold+1;
c5=col5+1;
wealth=(cl*c2*c3*cd*c5);
gm=( (wealth)**(1/t))-1;
gm_pct=gm*100;
am=mean (of coll-col5);
am_pct=am*100;

run;

For larger numbers of variables, array processing is a more efficient way of coding. The
following DATA step performs the same tasks using array processing in an iterative DO
loop. The variables C1 through CS5 are created from the variables COL1 through COLS5.

Explanation of syntax

ARRAY
creates a temporary grouping of variables. Arrays enable you to efficiently apply the
same process to each of the variables in the group. A simple ARRAY statement has the
following form:

ARRAY array-name {number-of-elements} list-of-variables,

In this example, two arrays are created (COL and C); each consists of five
variables.
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DO ... END
specifies that the same action be performed several times. An iterative DO loop begins
with an iterative DO statement, contains other SAS statements, and ends with an END
statement, as shown in the following syntax:

DO index-variable=1TO number-of-variables-in-array,
more SAS statements
END;

Example code

data spba;
set spé;
t=5;
array col(5) coll-col5;
array c(5) cl-c5;
do i=1 to 5;

c{i) = col(i) + 1;
end;
wealth=(cl*c2*c3*cd*c5);
gm= (wealth**(1/t))-1;
gm_pct=gm*100;
am=mean (of coll-col5);
am_pct=am*100;

run;

For more information on ARRAY processing in iterative DO loops, see SAS Language,
Reference, Version 6, First Edition (pages 160-171) and SAS Language and Procedures,
Usage (pages 178-182), and SAS Language and Procedures, Usage 2 (pages 143 and 144).

The following PROC PRINT statements print the multiple-period return measures.

proc print data=sp5;

var wealth gm gm_pct am am_pct;

title2 'Multiple Period Return Measures’;
run;

t1.6

Outpy . Background Topics
Multiple-Period Multiple Period Return Measures
Return Measures

WEALTH GM GM_PCT AM AM_PCT

2.50618 0.20172 20.1717 0.20566 20.5660

Interpretation of output
In Output 1.6, the return measures are printed. The wealth index value (WEALTH) of
2.50618 indicates that $1 invested in the Standard & Poor’s 500 Composite Stock Index in
1985 would have grown to about $2.51 by 1989. So for example, if you had invested
$25,000 in the S&P Index in 1985, your investment would have grown to $62,654.50 in
1989.

Both the arithmetic mean (AM) and the average compound growth rate (GM) are over
.20, while the percentage values (AM_PCT and GM_PCT) are over 20 percent. These
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values indicate that the average growth rate for an investment in the S&P Index was over 20
percent per year.

Calculating Expected Returns

Stock analysts calculate past stock returns to evaluate the historical performance of stocks,
which provides a benchmark measure for future returns. But for the purpose of investment,
stock analysts need to estimate future returns.

You can pursue many approaches for estimating the level of future returns, including
those in the following table:

Table 1.1 Approaches for Calculating Expected Returns

To follow this approach,

Approach Appropriate if research indicates... use...
Use the mean value of distribution of returns is constant and future returns PROC MEANS
past returns. are expected to be quite similar to the average of past
returns.
Calculate the mean a set of particular values and probabilities for their DATA step and PROC
value from a discrete occurrence. MEANS
distribution.
Calculate a growth rate past growth trends are stable and will continue in the DATA step

and extrapolate into the
future.

Fit a regression model
and use the forecasted
values.

Fit a time series model
to the past values and
forecast future values.

future.

PROC REG, PROC MODEL,
or PROC SYSLIN

returns are correlated with one or more variables so
that as these variables change, the returns also change.

PROC ARIMA, PROC
AUTOREG, or PROC
FORECAST

returns have seasonal patterns or identifiable trends
over time.

This section discusses the first three approaches, while the fourth approach is discussed
in Chapter 4, “The Capital Asset Pricing Model (CAPM).” (The last approach is beyond the
scope of this text.)

Calculating Mean Return Values

You can use the MEANS procedure to calculate the mean and other statistical summary
measures. The following statements calculate the mean values for the variables R and
R_PER from the SP3 data set. The results are shown in Output 1.7.



Output 1.7
Arithmetic Mean
Return in Level and
Percentage Form
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Explanation of syntax

PROC MEANS
invokes the MEANS procedure. The following options of the PROC MEANS statement

are specified.

DATA=  specfies the data set to be used in the analysis.

MEAN specifies that the mean values be calculated for the listed variables.

VAR
specifies the variables to be used in the analysis.

Example code

proc means data=sp3 mean;

var r r_per;
title2 ’Mean Returns’;
run;
Background Topics
Mean Returns

Variable Label Mean
R Returns 0.2056602
R_PER Return Percentage 20.5660235

Interpretation of output
In Output 1.7, the return measures are printed. These are the same values calculated in

Output 1.6 for the variables AM and AM_PCT. However, in Output 1.6 additional values
were calculated (GM, GM_PCT, and WEALTH). For larger data sets, and for the
calculation of summary statistics, PROC MEANS is more efficient.

Calculating the Mean of a Discrete

Distribution

Your research may indicate that a stock has returns that follow a discrete distribution. That
is, you expect the stock to have returns of various amounts with specified probabilities (and
the probabilities are nonnegative and sum to unity). For example, you may expect returns of

a stock to be .02 with a 20 percent chance, .015 with a 40 percent chance, and .01 with a 40
percent chance. The mean of this discrete distribution is

Mean Return = (.02 X .2) + (.015 x .4) + (.01 x .4)

.004 + .006 + .004 = 0l40r 1.4%

Mean Return
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The calculations for one stock are trivial; however, your analysis may involve hundreds
or even thousands of stocks. The following table shows multiple stocks, where the returns
are expected to follow the listed values with the specified probabilities:

Table 1.2
Discrete Probabilities
Distribution of Stock Return Stock 1  Stock2  Stock3  Stock 4
Returns and To 5 05 P 5
Specified - :
Probabilities
-.05 .05 .10 0 .10
0 25 .20 .20 .10
.05 40 .30 .30 .20
.10 .20 .20 .30 .30
.15 .10 .10 .20 .20
20 0 .05 0 10

Each stock has its own discrete distribution of returns. The expected return for each
stock is the mean of its discrete distribution, which is the sum of a linear combination of the
returns (R; ;) and their respective probabilities (P; ;). Thus, the mean return of a discrete
distribution of expected returns for the ith stock is

J

Mean Return, = 3, P, S ¥R

j=1v " ’

To calculate the mean of a discrete distribution, use the DATA step and PROC
MEANS. The following DATA step creates the D1 data set and uses array processing to
calculate linear combinations (LC1 through LC4) of the returns (R) and the probabilities (P1
through P4). The results are not shown.

data di;
input r pl p2 p3 p4;
array p(4) pl-p4;
array lc(4) lcl-1c4;

do i=1 to 4;
le{l)=r*p(i);
end;
cards;

-.10 0 .05 0 0
-.05 .05 .10 0 .10
0 .25 .20 .20 .10
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Discrete
Distribution Mean
Returns

Background Topics 0 Calculating Expected Returns 17

.05 .40 .30 .30 .20
2100 .20 .20 .30 .30
.15 .10 .10 .20 .20
.20 0 .05 0 .10

1

The following PROC MEANS statements calculate the mean values. The results are
shown in Output 1.8.

Explanation of syntax

PROC MEANS
invokes the MEANS procedure. The following options of the PROC MEANS statement

are specified:

SUM sums the observations of the listed variables. For this example, the
variables LC1-LC4 are summed. They are the product of the returns
and probabilities.

NOPRINT suppresses the printed output.

OUTPUT
creates the output data set OUT_D1, which is named in the OUT= option. OUT_D1
contains the mean values for the variables MEAN1_MEAN4.

Example code

proc means data=dl sum noprint;

var lcl-1c4;

output out=out_dl sum=meanl-meand;
run;

proc print data=out_dl;

var meanl-meand;

title2 'Discrete Distribution Mean Returns’;
run;

Background Topics
Discrete Distribution Mean Returns

MEAN1 MEAN2 MEAN3 MEAN4

0.05 0.075 0.085

Using a Growth Rate to Caiculate
Expected Returns

Y our research may indicate that the returns of a stock have grown at a constant rate and
appear to be continuing at that rate. This growth rate can be used to calculate values for
future returns. For example, you can use the last return value in the series and multiply it by
the sum of the growth rate plus 1 to calculate the next value in the series.
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Output 1.9

1989 Return (COLS)
and 1990 Returns
Calculated from
Constant Growth
Rate

There are several growth rates that may be appropriate, including the following:

O arithmetic mean in level form (AM, as discussed previously)
o average compound rate of return in level form (GM, as discussed previously)
O linear or higher-order polynomial functions of time

O nonlinear functions of time; for example, logistic curves.

The first two growth rates listed are calculated in the statements producing Output 1.6;
the third approach is discussed in Chapter 2 for dividend growth rates; while the fourth
approach is beyond the scope of this book.

This example uses the first two growth rates listed. The SP5 data set is used for
illustrative purposes. Note that the returns in the SP5 data set have not grown at a constant
rate, as shown previously in the plot of Output 1.4.

Use the following DATA step to calculate these growth rates and to calculate returns for
the next year. Note that the variable COLS contains the return for the last period in the
series, 1989. The future return values are printed using PROC PRINT in Output 1.9.

/* Calculating Next Period’'s Return */
data spb;

set spb;

r_am = col5* (am+l);

r_gm = col5*(gm+l);
run;

/* Printing Calculated Returns */
proc print data=spé6;

var col5 r_am r_gm;

title2 'Future Returns';

title3 'Calculating with Past Growth Rates’;
run;

Background Topics
Future Returns
Calculating with Past Growth Rates

0BS CoL5 R_AM R_GM

1 0.31229 0.37652 0.37529

Interpretation of output

In Output 1.9, the 1989 return value (labeled COLS) and the calculated return values for
1990 (R_AM and R_GM) are printed. By either growth rate (arithmetic average or annually
compounded), the future value is the largest in the series over the period 1970-1990, as
shown previously in Output 1.3.

This approach should be used with constant-growth return series and for calculating the
next-period return value. This approach should not be used with return series that grow at
different rates, nor for calculating expected returns far into the future. For example, if this
approach were used (with this data set) to calculate the return values for the year 2000, the
expected returns are well over 225 percent.
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Risk Measures

Knowing the past returns and the expected return for financially investing in a stock is rarely
sufficient. Stock analysts realize that risk accompanies investments. Investors weigh the
expected returns and risk in making investment decisions.

Investment literature classifies risk into categories, including

0 systematic or market risk, which is risk associated with the movements of the market
portfolio (for example, the Standard & Poor’s 500 or the Dow Jones Industrials).
Systematic risk is also known as nondiversifiable risk because owning additional assets
cannot reduce this risk; that is, it cannot be diversified away.

O nonsystematic or nonmarket risk, which is risk associated with factors other than the
movement of the market (for example, industry and firm-specific factors that affect
stock returns). Nonsystematic risk is also known as diversifiable risk because owning
additional assets reduces this risk; that is, it can be diversified away.

O additional risk catagories:

Interest Rate Risk
is fluctuations of interest rates that affect the present values of future returns. As
interest rates increase (decrease), the present value of a future return decreases
(increases). Interest rate fluctuations affect a firm’s decision to finance operations
by stock issues or bond issues and the mix of the two. In general, the larger and
more rapid the shifts in interest rates, the greater the effect on investors’
calculations.

Inflation Risk
is fluctuations of inflation rates that affect the purchasing power of currencies. The
larger and more unexpected the change in the inflation rate, the greater the impact
on investors’ decisions and their evaluation of previous investments.

Currency Risk ‘
is fluctuations of relative currency values (through changes in exchange rates) that
affect international investing decisions. Currency appreciation and depreciation can
greatly affect the returns received by the investor.

Total risk includes all the components of risk and is typically measured by the standard
deviation of the distribution of returns. Often, investors use past returns as a representative
sampling of the distribution of returns. Alternatively, you may want to use a d'iscrete
distribution of future returns (that is, specific returns with specified probabilities). The
following sections present an example of each.

Calculating Risk from Historical Data

For stock analysts, risk is most often measured by the standard deviation of a stock’s returns.
The standard deviation is the square root of the variance, and the sample variance is defined

as follows:
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Output 1.10
Mean, Variance,
and Standard
Deviation

You can calculate the standard deviation of the returns in the SP3 data set using PROC
MEANS. The following PROC MEANS statements calculate the mean, variance, and
standard deviation with the MEAN, VAR, and STD options, respectively. The results are
printed in Output 1.10.

proc means data=sp3 mean var std;
var r;
title2 'Mean, Variance, and Standard Deviation’;
title3;

run;

Background Topics
Mean, Variance, and Standard Deviation

Analysis Variable : R Returns

Mean Variance Std Dev

Calculating Risk from Discrete
Distribution

A measure of expected risk can be obtained by listing the expected returns (R; ;) and the
probabilities (P) of achieving them and then calculating the standard deviation of the
distribution. For example, you calculate the risk (standard deviation) of the stock returns
listed in the D1 data set with the following formula:

. J —_ 2
Risk =0 = 3 P, x (R, - )

You use the DATA step and PROC MEANS in the following steps to calculate the risk
level (standard deviation) of a discrete distribution of expected returns. For this example,
you use the returns and probabilities of the four stocks in the D1 data set and the distribution
mean values contained in the OUT_D1 data set:

Tasks performed by the Program

1. Use a DATA step to create additional observations of the OUT_D1 data, which contains
the mean values. For this example, there are seven observations in the D1 data set;
therefore, you need seven observations in the OUT_D1 data set.

2. Use another DATA step to merge the D1 and OUT_D2 data sets, and use array
processing in an iterative DO LOOP to create the intermediate-step variables VV 1
through VV4.

3. Use PROC MEANS to sum the intermediate-step variables for calculating the variances
and to store them in an output data set, OUT_D3.
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4. Use array processing in a third DATA step to calculate the square root of the variances,
which are the standard deviations.

5. Use PROC PRINT to print the variances and standard deviations.
Example code

/* Creating Additional Observations of Mean Values */
data out_d2;
set out_dl;
do i=1 to 7;
output;
end;
run;

/* Merging Data Sets */
data d2;
merge dl out_d2;
array p(4) pl-p4;
array m(4) meanl-meand;
array vv(4) vvl-vvd;
do i=1 to 4;
vv(i)=p(i)*(r-m(i))**2;
end;
run;

/* Calculating Variances */
proc means data=d2 sum noprint;

var vvl-vvd;

output out=out_d3 sum=varl-vard;
run;

/* Printing the Variances */
proc print data=out_d3;

var varl-vard;

title2 'Discrete Distribution Variance’;
run;

Output 1.11
i tp Background Topics
Discrete Discrete Distribution Variance
Distribution

s' VAR2 VAR3 VAR4
Variances

.0026188 .00525 .002625 .005025

/* Calculating Standard Deviations */
data d3;
set out_d3;
array vv(4) varl-vard;
array stt(4) stdl-std4;
do i=1 to 4;
stt(i)=sqrt(vv(i));
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end;
run;

/* Printing Standard Deviations */
proc print data=d3;

var stdl-std4;

title2 'Discrete Distribution Standard Deviation’;
run;

Output 1.12
. P Background Topics
Discrete Discrete Distribution Standard Deviation
Distribution
. OBS STD1 STD2 STD3 STD4
Standard Deviations

0.051174 0.072457 0.051235 0.070887

Interpretation of output

In Outputs 1.11 and 1.12, the variances and standard deviations for the discrete distributions
of the D1 data set are printed. The variances are the square of the standard deviations. You
can use the expected stock returns and the risk level to analyze investment decisions,
compare stocks, and create portfolios. These tasks are discussed in later chapters.

Learning More

o For more information on the DATA step, see SAS Language, Reference, Version 6,
First Edition; SAS Language and Procedures, Usage, Version 6, First Edition; and SAS
Language and Procedures, Usage 2, Version 6, First Edition.

0 For more information on the MEANS, PLOT, PRINT, and TRANSPOSE procedures,
see SAS Procedures Guide, Version 6, Third Edition and SAS Language and
Procedures, Usage 2.

0 For more information on PROC REG, see SAS/STAT User’s Guide, Version 6, Fourth
Edition, Volume I and Volume 2.

o For more information on the ARIMA, AUTOREG, CITIBASE, DATASOURCE,
FORECAST, MODEL, and SYSLIN procedures, see SAS/ETS User’s Guide, Version 6,
Second Edition; SAS/ETS Software: Applications Guide 1; and SAS/ETS Software:
Applications Guide 2.
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Introduction

This chapter discusses discounted cash flow (DCF) analysis of stocks and shows you how to
use SAS software to perform DCF analysis. The chapter also shows a technique for
identifying undervalued and overvalued stocks.

Discounted cash flow analysis is based on the present value of the company’s expected
future earnings. Dividends represent the portion of cash flows (earnings) that are distributed
to stock holders. The value (or price) of stock reflects the market’s expectation of future
dividends. In general, the price of a stock is expressed in the following present value (DCF)
equation.
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D D D D

2 3

V=(1+IK)+(1+K)2+(1+K)3+”‘+(1+K)w

o

The variables are defined as follows:

A% represents the value (or price) per share of stock.

D; represents the dividends for the ith period. (Dividends may be constant for all time
periods or they may vary.)

K represents the appropriate discount rate in decimal form. Commonly used discount

rates are expected or realized bond yields and the prime interest rate (the interest
rate banks offer their largest and best customers).

Note that the general DCF equation is an infinite series. However, if you believe there is
a date when the firm will cease to exist, then the series would end at that period. Formulated
as an infinite series the DCF equation is difficult to use. But by making assumptions about
the firm, its dividend policy, and the future of the firm and the market, the DCF equation can
be simplified and used to value securities. The following sections show you how to use the
SAS System to value stocks with DCF methodology under the following assumptions:

o fixed-dollar dividends
O constant-growth dividends
O two periods of different dividend growth.

This chapter also shows you how to use calculated dividend growth rates to identify
underpriced and overpriced stocks.

Fixed-Dollar Dividends

Table 2.1

Common Stocks with
Fixed-Dollar
Dividends

Some firms have a policy of paying fixed-dollar dividends over time. This policy may be
followed to demonstrate financial stability under changing market conditions.

If a firm pays a fixed-dollar dividend, all of the numerator terms of the DCF equation
are the same, and summing the infinite series yields

=D
V=K

Examples of firms paying a fixed-dollar dividend on their common stock are listed in
the following table, along with the dividend amount and the time period (ending in 1990):

Annual Time
Firm Dividend Period

Public Service Colorado 2.00 1986-1990
Puget Sound Power 1.76 1982-1990
WA Water Power 2.48 1983-1990

(continued)
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(continued)
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Annual Time

Firm Dividend Period

Wendy’s International 0.24 1987-1990
Westcoast Energy 0.80 1987-1990
Whirlpool 1.10 1987-1990
Williams Companies 1.40 1985-1990
Wyle Laboratories 0.28 1988-1990
Xerox 3.00 1982-1990

DCF analysis can be used to calculate the value of these stocks at the end of 1990.

25

Calculating DCF Values from

Fixed-Dollar Dividends

You can use a DATA step, the PRINT procedure, and the realized yield (.0932) of AAA
grade bonds in 1990 as the appropriate discount rate to perform the DCF analysis. The
ROUND function rounds the calculated value to the nearest specified amount; for this
example, the specified amount is thousandths.

data dcfl;

input firm $20. d hi lo;

k=.0932;
v=round(d/k, .001)
label d='Dividend’
v="Value’

i

hi="High Price 1990’
lo="Low Price 1990';

cards;
Pub Service Colorado 2
Puget Sound Power 1
WA Water Power 2
Wendy's 0
Westcoast Energy 0.
Whirlpool 1
Williams Companies 1
Wyle Laboratories 0
Xerox 3

!

proc print data=dcfl label;

var firm d hi v lo;
title 'DCF Analysis’;

.00
.76
.48
.24

80

.10
.40
.28
.00

26.

22
31

33

500

.500
.000

7.
19.
.500
40.
15.
58.

500
625

625
125
875

20.
18.
26.
.875
750
17.

16

23

title2 'Fixed Dollar Dividends'’;

run;

000
625
875

500

125
L7150
29.

000
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Output 2.1

DCF Value of
Fixed-Dollar
Dividend Stocks

DCF Analysis
Fixed Dollar Dividends

High Low

Price Price
0BS FIRM Dividend 1990 Value 1990
1 Pub Service Colorado 2.00 26.500 21.459 20,000
2 Puget Sound Power 1.76 22,500 18.884 18.625
3 WA Water Power 2.48 31.000 26.609 26.875
4 Wendy's 0.24 7.500 2.575 3.875
5 Westcoast Energy 0.80 19.625 8.584 16.750
6 Whirlpool 1.10 33.500 11.803 17.500
7 Williams Companies 1.40 40.625 15.021 23,125
8 Wyle Laboratories 0.28 15.125 3.004 8.750
9 Xerox 3.00 58.875 32.189 29.000

Interpretation of output
Output 2.1 shows the value of the fixed-dollar dividend common stocks as well as a
comparison of the 1990 high and low values.

Notice that the DCF values of three firms (Public Service of Colorado, Puget Sound
Power, and Xerox) are between the 1990 high and low prices, and the DCF values of the
remaining six firms are below the 1990 low prices. These DCF values are based on the
assumption that dividends are a fixed-dollar amount while all DCF values are sensitive to
the discount rate used.

If you are satisfied with the DCF analysis and believe that these are the correct values,
you can draw conclusions about the prices of these stocks and formulate investment
strategies. For example, if you believe that Wyle Laboratories will again pay annual
dividends of $.28, and the appropriate discount rate is the realized yield .0932 on AAA
bonds, you can conclude that the stock’s intrinsic value is about $3.00 per share. Under
these assumptions, Wyle Laboratories stock is sold at prices higher than expected. If you
believe the stock is actually overpriced and a market correction is due, then you can profit
from selling it short.

Constant-Growth Dividends

Some firms maintain a policy of constant dividend growth over time. Each year, such a firm
increases dividends by a certain amount or by a certain percentage. If a firm tends to pay out
the same percentage of earnings as dividends and earns a stable return on new equity
investments over time, the DCF model can be simplified to the constant dividend growth
form.

Under these conditions, the general DCF equation can be summed to yield

In this equation, G is the constant growth rate of dividends, and the numerator is the
next-period dividend D,. If G is known, then D, is the product of the current dividend D,
times the sum of G plus one:

D, =D, x (G + 1)
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The DCF values generated by this methodology depend on the calculated dividend
growth rate and the discount rate. There are several approaches to calculating dividend
growth rates, including

o fitting a polynomial regression model of dividends (in levels) to time. The simplest
polynomial model is a linear model, in which the estimated slope parameter associated
with the independent variable is the growth rate. For higher-order polynomial models,
the derivative of dividends with respect to time is the growth rate. This method is
appropriate if your research shows that dividends grow over time by a constant dollar
amount or by an amount defined by a functional form of time.

o fitting a semi-log regression model of dividends to time, where the natural logarithm of
dividends is regressed against time in years. The estimated slope parameter is the
growth rate. This method is appropriate if your research shows that dividends grow over
time at a constant percentage.

O calculating the compound growth rate over the period. This approach is appropriate if
your research shows that dividends grow at a compound rate.

The next section explores which growth-rate approach is appropriate based on visual
and statistical evidence.

Plotting Dividends

Plotting the dividends in levels and in natural logarithms versus time provides visual
evidence as to the choice of approach for calculating dividend growth rates. This section
shows you how to use the PLOT procedure to create scatter plots.

Plotting Dividends in Levels

To begin the constant-dividend, growth rate DCF analysis, you use the DATA step to create
a data set, named DCF2, containing the dividends. Natural logarithms of the dividends are
created in the DATA step for use in the section, “Plotting Dividends in Semi-Log Form.”
Then you use the PLOT procedure to plot dividends versus time.

The following statements are used to create the DCF2 data set, which contains annual
stock dividends for 23 firms for the period 1981-1990.

Explanation of syntax

DATA
begins a DATA step and provides names for any output SAS data sets. In this example,
the SAS data set DCF2 is created.

INPUT
describes the arrangement of values in observations and assigns input values to the
corresponding SAS variables. In this example, the input variables are YEAR and
STOCK1-STOCK23.

ARRAY
defines the elements of an explicit array. You use array processing to apply the same
process to a group of variables. In this example, arrays are created for the variables
STOCK1-STOCK?23 and the natural logarithmic transformations
LSTOCKI1-LSTOCK?23.
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DO...END
The iterative DO statement causes the statements between DO and END statements to
be executed repetitively based on the value of the index variable. In the following
example, the index variable is [, and I ranges from 1 to 23. This example uses an
iterative DO loop, array processing, and the LOG function to transform the level
variables STOCK1-STOCK?23 to the natural logarithms variables
LSTOCKI1-LSTOCK?23.

assignment statement
appears between the iterative DO loop and the LABEL statement. This statement
creates a quadratic time trend for later use.

LABEL
labels the variables.

CARDS
indicates that data lines follow. In the program that follows, the 20 data lines in the
CARDS statement contain the annual dividends.

Example code

data dcf2;
input year stockl stock2 stock3 stockd stock5 stocké

stock7 stock8 stock9 stockl0 stockll stockl2
stockl3 stockl4d stockl5 stockl6 stockl7 stockl8
stockl9 stock20 stock2l stock22 stock23;

array stock(23) stockl-stock23;

array lstock(23) lstockl-lstock23;

do i=1 to 23;
lstock(i)=log(stock(i));

end;

year2=year*year;

label stockl='3M Company’

stock2='Allegheny Power’

stock3='Cincinnati G&E’

stock4='Detroit Edison’

stock5='Dominion Resources’

stock6="Duke Power’

stock7="Eli Lilly’

stock8='Green Mountain Power’

stock9='Towa-I1l Gas & Electric’

stockl0='Kansas Power & Light'

stockll='Kentucky Utilities’

stockl12='Minnesota Power & Light’

stockl3='Northern States Power’

stockl4="0Oklahoma Gas & Electric’

stockl5="0range & Rockland Utilities’

stockl6='Pennsylvania Power & Light’

stockl7='Piedmont Natural Gas’

stock18='Potomac Electric Power’

stock19='TECO Energy’

stock20='Texas Utilities’

stock2l="'Union Electric’

stock22="Wisconsin Energy’

stock23="Wicor’
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Allegheny Power, and Cincinnati Gas & Electric versus time in years. The results are shown
in Output 2.2,

For this example, only three firm’s dividends are plotted in separate scatter plots. You
may want to plot the dividends of all the firms. In that case, the PLOT statement would

become:

proc plot data=dcf2 vpct=110;
plot (stockl-stock3)*year;
title2;
run;

plot (stockl-stock23)*year;
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Output 2.2
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Interpretation of output
In Output 2.2, three scatter plots of dividends versus time are shown. In order, they are the
3M Company, Allegheny Power, and Cincinnati Gas & Electric. The scatter plot of the 3M
Company’s dividends appears to grow at an increasing rate, which indicates an exponential
growth rate or a compound growth rate. The scatter plot of Allegheny Power’s dividends
appears to follow a quadratic curve while the scatter plot of Cincinnati G&E dividends
appears to follow a cubic curve.

The visual evidence of scatter plots can assist you in selecting a growth model for
dividends.

Plotting Dividends in Semi-Log Form

For stocks that appear to grow at an increasing rate when plotted in level form, you may
want to transform the dividends by taking natural logarithms and then plotting the natural
logs versus time. This is a semi-log scatter plot, which provides visual evidence as to the
appropriateness of the semi-log dividend growth model.

You can use PROC PLOT and the DCF2 data set to plot the natural logs of the 3M
Company dividends versus time. The following PROC PLOT statements perform this task.
The results are not shown.

proc plot data=dcf2 vpct=110;
plot lstockl*year;
title2 'Semi-Log Plot';
title3 ’3M Company Dividends’;
run;

Fitting Quadratic Regression Models

As shown in the scatter plots in Output 2.2, dividends may grow over time at different rates.
Polynomial models can be used to approximate many functional forms. After the polynomial
model is estimated, the derivative with respect to time may be taken to estimate the growth
rate. This section explores a quadratic model of dividend growth.

Model theory
Applying the quadratic polynomial model to the dividends of DCF2 data set implies fitting
regression models of the form

STOCK =a + f X YEAR + & X YEAR2 + ¢

The variable YEAR is a linear time trend, and YEAR?2 is a quadratic time trend. The €
terms are the random errors and are assumed to conform to the usual ordinary least squares
(OLS) regression error term assumptions. There is one equation to be fit for each stock.

The derivative of dividends with respect to time is an estimate of the growth rate; that
is, the change in dividends over time:

9STOCK — f + 2 x h x YEAR

You can use the SAS/STAT REG procedure to fit polynomial regression models to the
DCF2 data set. From the estimated parameters, the growth rate of dividends at the end of
1990 can be calculated in a DATA step.
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Explanation of syntax

PROC REG

invokes the REG procedure. The following options of the PROC REG statement are
specified.
DATA= specifies the data set to be used.

OUTEST= creates a data set that contains parameter estimates. In this example,
the OUTEST= data set is named DCF_EST1. The RENAME-= option
is used to rename the slope parameters.

NOPRINT suppresses the printed output.

MODEL

specifies the model to be fit. The dependent variable is to the left of the equal sign; the
independent variables are to the right. In the polynomial models, each of the dependent
variables are the dividends, and the independent variables are YEAR (the linear time
trend) and YEAR?2 (the quadratic time trend). Note that each model is fit separately.
The option ADJRSQ specifies that the R-Square and Adjusted R-Square be calculated
and included in the OUTEST= data set.

Tasks performed by the program
The following SAS statements,

]

O

0

fit the quadratic models.

create an output data set named DCF_EST]1 containing the parameter estimates for the
models.

calculate the growth rate at the end of 1990 in a DATA step. Also, this DATA step
creates a caution variable, CAUTION1, which indicates if the dividend growth rate is
greater than or equal to the discount rate K.

Note that the SET statement reads all variables and observations from the specified
input data set. In this example, the DCF_EST]1 data set is read in, and the variable GQ is
added to create the DCF_EST?2 data set.

print the estimated parameters and the growth rates from the quadratic models.

Example code

/* Fitting the Quadratic Models */
proc reg data=dcf2 outest=dcf_estl (rename=(year=f year2=h))
noprint;
model stockl=year year2 / adjrsq;
model stock2=year year2 / adjrsq;
model stock3=year year2 / adjrsq;

more MODEL statements of same form, 23 in all

model stock22=year year2 / adjrsq;
model stock23=year year2 / adjrsq;
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run;

/* Calculation of Growth Rate at End of 1990 */
data dcf_est2;

set dcf_estl;

k=.0932;

/* Derivative of Quadratic Growth Model */

/* with respect to YEAR is Growth Rate */

/* GQ is Growth Rate at the End of 1990 */
ga=£f+2*h*90;

/* Caution Variable */
if gq ge k then cautionl = 'YES';
else cautionl = 'NO ‘;
run;

/* Printing Fitted Quadratic Models and Growth Rates */
proc print data=dcf_est2;
var _depvar_ _rsq_ _adjrsqg_ intercep f h gg cautionl;
title2 'Fitted Quadratic Models';
title3 ‘and Growth Rate of Dividends’;
run;

The output from PROC REG is not shown. You may want to print the fitted models (in
the DCF_EST1 data set with PROC PRINT) and further assess the fit by examining
F-statistics, t-statistics, and p-values.

Output 2‘.3 DCP Azalysis
Quadratic Fitted Quadratic Models
Regression Models and Growth Rate of Dividends
of Dividend Growth 0BS _DEPVAR_ _RSQ_ _ADJRSQ INTERCEP F H @  CAUTIONL
Rates
1 STOCRL  0.95613 0.94360 147.491 -3.54073 0.021477 0.32517  YES
2 STOCK2  0.99186 0.98953 -81.933 1.86227 -0.010189 0.02817 NO
3 STOCR3  0.89744 0.86813  26.619 -0.60017 0.003674 0.06119 NO
4 STOCRE  0.49398 0.34940  4.348 -0.07009 0.000455 0.01173 NO
5 STOCRS  0.99974 0.99967 -19.545 0.41235 -0.001894 0.07144 N
6 STOCK6  0.99636 0.99532  7.859 -0.21283 0.001591 0.07353 NO
7 STOCK7  0.98786 0.98440  87.888 -2.14186 0.013144 0.22405 YES
8 STOCRS  0.99693 0.99606 -17.816 0.39736 -0.001970 0.04282 MO
9 STOCR9  0.99680 0.99588 -13.303 0.27902 -0.001250 0.05402 NO
10 STOCK10 0.99749 0.99678 -31.236 0.68414 -0.003523 0.05005 NO
11 STOCKI1 0.99704 0.99619  6.156 -0.15795 0.001174 0.05342 NO
12 STOCK12 0.98826 0.98490 -6.050 0.08135 0.000076 0.09498  YES
13 STOCK13 0.99645 0.99543 -8.140 0.11249 0.000038 0.11931 YES
14 STOCK14 0.99974 0.99967  8.324 -0.23538 0.001894 0.10553 YES
15 STOCK15 0.99626 0.99519 -55.3345 1.26776 -.0069697 0.01321 NO
16 STOCK16 0.99168 0.98930  2.5465 -0.07758 0.0009091 0.08606 NO
17 STOCK17 0.99392 0.99218 29.3142 -0.74690 0.0048864 0.13264 YES
18 STOCK18 0.99143 0.98898  3.0574 -0.13265 0.0012879 0.09917  YES
19 STOCK19 0.99949 0.99935 1.8515 -0.09833 0.0010606 0.09258 NO
20 STOCK20 0.99614 0.99504 -66.3860 1.48327 -.0079167 0.05827 NO
21 STOCR21 0.99541 0.99409 -7.9942 0.16655 -.0006061 0.05745 NO
22 STOCK22 0.99974 0.99966  8.2305 -0.25958 0.0020833 0.11542  YES
23 STOCR23 0.96548 0.95561  4.0465 -0.11091 0.0009091 0.05273 NO
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Interpretation of output

Each observation in Output 2.3 corresponds to a fitted quadratic model. The columns labeled
_RSQ_ and _ADJRSQ_ contain the R-Square and Adjusted R-Square for each model.
Notice that only the R-Square values for the STOCK3 and STOCK4 models are below .9.
R-Square is interpreted as the percentage of the variation in the dependent variable that is
accounted for by the model. For this example, an R-Square of .99 implies that 99 percent of
the variation in dividends is accounted for by the quadratic model.

Notice that the caution variable (CAUTIONT1) indicates that the calculated growth rates
of stocks 1,7, 12, 13, 14, 17, 18, and 22 are greater than the realized return (K = .0932) on
AAA bonds in 1990, which has been used as the discount rate. If the calculated growth rate
is greater than the discount rate, then the denominator of the constant-growth DCF model is
negative, which in turn produces a negative DCF value. (See Output 2.9 for examples.) This
is a shortcoming of the DCF methodology. In this case, you should use another method to
analyze the value of this stock.

Although this example shows you how to fit quadratic models to estimate the dividend
growth rates, you may also want to explore fitting linear models.

Fitting the Semi-Log Models

Another functional form you may want to use to model dividend growth rate is the
semi-logarithmic form (which is derived from the exponential growth model). In Output 2.2,
the scatter plot of the 3M Company dividends appears to follow an exponential growth
curve, and if this the case, then the natural logarithmic transformation of the dividends
yields a linear growth rate.

An exponential growth curve applied to dividends of the DCF2 data set has the form

¢ X YEAR

STOCK =b X e

In this form, the exponential growth curve is nonlinear and can be fit using the
SAS/ETS MODEL procedure. However, you can also transform the nonlinear curve to a
linear model by taking natural logarithms of each side, where A is the natural log of B, and
G is the constant growth rate:

LSTOCK = a + g X YEAR

This semi-log model can be applied to the dividends in the DCF2 data set, yielding
linear regression models of the form

LSTOCK = a + g X YEAR + €

The slope parameters are the estimated growth rates of the dividends. This can be
observed from changes in the dependent variable stemming from changes in the independent
variable YEAR.

The ratio of the changes gives the change in dividends per year. This is also the first
derivative of the natural log of the dividends (LSTOCK) with respect to time in years
(YEAR), as shown in the following equation:

G = 2LSTOCK
9 YEAR




Discounted Cash Flow (DCF) Analysis 0 Constant-Growth Dividends 35

In discrete form, the previous equation becomes

_AD
G=%

Thus, the growth rate of semi-log models is a constant-percentage growth rate. Notice
that the semi-log model may be easier to fit than the quadratic polynomial model because it
has one less parameter to estimate.

You can use PROC REG to fit semi-log regression models to the DCF2 data set. The
following statements fit the semi-log models, create an output data set named DCF_EST3
containing the fitted models, and print the fitted models and R-Squares.

The estimated parameters and R-Squares are printed in Output 2.4.

/* Fitting the Semi-log Models */
proc reg data=dcf2 outest=dcf_est3(rename=(year=gl)) noprint;
model lstockl=year / adjrsqg;
model lstock2=year / adjrsq;
model lstock3=year / adjrsq;

more MODEL statements of same form, 23 in all

model lstock22=year / adjrsq;
model lstock23=year / adjrsq;
run;

/* Printing the Fitted Semi-log Models and Growth Rates */
proc print data=dcf_est3;

var _depvar_ _rsq__adjrsq_ intercep gl;

title2 'Fitted Semi-Log Models’;

title3 ‘and Growth Rate of Dividends’;

run;
Output 24 . DCF Analysis
Semi-log Regression Fitted Semi-Log Models
Models of Dividend and Growth Rate of Dividends
Growth Rates 0BS  DEPVAR_  _RSQ  _ADJRSQ_  INTERCEP 6L
1 LSTOCK1 0.86896 0.85258  -4.86705  0.06443
2 LSTOCK2 0.91515 0.90454  -2.92551  0.04581
3 LSTOCK3 0.82040 0.79795  -0.2974%  0.01266
4  LSTOCK4 0.48509 0.42072 0.13325  0.00452
5 LSTOCKS 0.98622 0.98450  -3.55973  0.04872
6  LSTOCKG 0.99600 0.99550  -3.63236  0.04550
7 LSTOCK? 0.96603 0.96179  -9.32024  0.10784
8  LSTOCKS 0.97963 0.97708  -2.46150  0.03523
9  LSTOCKY 0.98716 0.98556  -3.70474  0.04720
10 LSTOCKI0  0.96947 0.96566  -4.50118  0.05705
11 LSTOCKI1  0.99697 0.99659  -2.72774  0.03441
12 LSTOCK12  0.98569 0.98390  -5.26502  0.06580
13 LSTOCK13  0.99105 0.98994  -5.37978  0.06927
14 LSTOCK14  0.99975 0.99972  -2.96919  0.04309

N W '\—/\/ﬂ\/\/\/\/\/’f\//J
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W \/\//\//\

15 LSTOCK15 0.92603 0.91678 -2.54858 0.03814
16 LSTOCK16 0.99164 0.99059 -1.66147 0.03041
17 LSTOCK17 0.99183 0.99081 -6.06758 0.07298
18 LSTOCK18 0.98974 0.98845 -6.58797 0.07830
13 LSTOCK19 0.99583 0.99531 -5.82927 0.07014
20 LSTOCK20 0.95511 0.94950 -3.68526 0.05366
21 LSTOCK21 0.99094 0.98981 -2.40791 0.03504
22 LSTOCK22 0.99814 0.99791 -6.33036 0.07667
23 LSTOCK23 0.96230 0.95758 -2.94545 0.03668

Interpretation of output

Each observation in Output 2.4 corresponds to a fitted semi-log model. The columns labeled
_RSQ_and _ADJRSQ _ contain the R-Square and Adjusted R-Square for each model.
Notice that only three of the R-Squares are below .90. An R-Square of .90 implies 90
percent of the variation in the dependent variable is accounted for by the model.

The estimated parameters for the intercept are in the column labeled INTERCEP, and
the estimated parameters for the slope are in the column labeled GL.. The variable GL
contains the estimates of the dividend growth rates.

Only one of the estimated growth rates (for LSTOCK?7) is greater than the discount rate
(9.32 percent, the realized return on AAA bonds in 1990), which implies that the constant
dividend growth DCF methodology will produce a negative value for shares of this stock.

Calculating Compound Growth Rate

Another model of dividend growth is the compound growth rate model. The compound
growth rate over T periods, with D, as the first period dividend and D; as the last period
dividend, is calculated as follows:

D\
= | I —
G—(D) i

0

You can use the TRANSPOSE procedure and the DATA step to calculate the
compound growth rate for the stocks in the DCF2 data set. The TRANSPOSE procedure
transposes the data; that is, rows become columns and columns become rows. By
transposing the DCF?2 data set, you can form the ratio of the last-period dividends to the
first-period dividends and then proceed to calculating the compound growth rates.

Explanation of syntax

PROC TRANSPOSE
invokes the TRANSPOSE procedure. The following options of the PROC
TRANSPOSE statement are specified.

DATA= specifies the data set to be used. In the example that follows, the data set
to be transposed is the DCF2 data set.

OUT= creates and names the output data set. In the example that follows, the
data set to be created is named DCF_TR1. PROC TRANSPOSE creates
variables for the output data set as follows:

_LABEIL._ contains the name of the variable being transposed.
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COL1 contains the values in the first observation (that is, the
first row) of the variables being transposed.

COL2 contains the values in the second observation of the
variables being transposed. This process continues; one
column is created for each row of data.

VAR
specifies the variables to be transposed.

Example code

proc transpose data=dcf2 out=dcf_trl;
var stockl-stock23;
run;

In the DCF_TR1 data set, COL1 contains the 1981 dividends, COL2 contains the 1982
dividends, and so on through COL10, which contains the 1990 dividends. In Output 2.5, the
first five observations of the variables _LABEL_, COL1, and COL10 data set are printed.

proc print data=dcf_trl (obs=5});
var _label_ coll coll0;
title2 'First Five Observations’;
title3 'Transposed DCF2 Data Set’;
titled 'Firm, 1981 and 1990 Dividends’;
run;

DCF Analysis
First Five Observations
Transposed DCF2 Data Set
Firm, 1981 and 1990 Dividends

0BS _LABEL_ coLl COL10
1 3M Company 1.50 2.82
2 Allegheny Power 2,01 3.16
3 Cincinnati G&E 2.07 2.40
4 Detroit Edison 1.62 1.76
5 Dominion Resources 1.43 2,23

You are now ready to use a DATA step to calculate the annually compounded growth
rates over the ten-year period 1981-1990. The first ten growth rates are printed in Output
2.6.

data dcf_tr2;

set def_trl;

t=10;

gc=((coll0/coll)**(1/t))-1;

label gc='Annually Compounded Growth Rate’;
run;

proc print data=dcf_tr2 (obs=10);
var _label_ gc;
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Output 2.6
Annually
Compounded
Growth Rates

title2 ’Annually Compounded Growth Rate';

title3;
titled;
run;
DCF Analysis
Annually Compounded Growth Rate
OBS _LABEL_ GC
1 3M Company 0.06516
2 Allegheny Power 0.04628
3 Cincinnati G&E 0.01490
4 Detroit Edison 0.00832
5 Dominion Resources 0.04543
6 Duke Power 0.04402
7 Eli Lilly 0.10954
8 Green Mountain Power 0.03340
9 Iowa-Ill Gas & Electric 0.04264
10 Kansas Power & Light 0.05182

Calculating DCF Values for Stocks with
Constant-Growth Dividends

Thus far, this chapter has shown you how to calculate growth rates by three different
approaches. The next section shows you how to calculate DCF values using the

constant-growth methodology.
To use this methodology, you use a DATA step to

0 merge the DCF_TR2, DCF_EST2, and DCF_EST3 data sets to create the DCF_CALI

data set.

O calculate the next-period dividends for use in the DCF value calculations:

D, =D, % (G+1)

1991

0 calculate DCF values using the different growth rates and the corresponding next-period
dividends. For this example, the 1990 dividend is the current-period dividend, and the

1991 dividend is the next-period dividend.

Example code

/* Merging Data Sets */

data dcf_call;

merge dcf_tr2 dcf_est2 dcf_est3;

d0=col10;
k=.0932;

/* Calculating D1 and DCF Value */
/* from Quadratic Model */
dlg=round (d0* (1+gq), .001);
vg=round (dlq/ (k-gq), .001);
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/* Calculating DI and DCF Value */

/* from Semi-Log Model */
d1l=round(d0* (1+gl), .001);
vl=round(dll/(k-gl), .001);

/* Calculating D1 and DCF Value X/
/* from Compound Growth Rate Model */
dlc=round (d0* (1+gc), .001);
ve=round (dlc/ (k-gc), .001);

/* Labeling the Variables */
label k='Discount Rate’

d0="1990 Dividend’

gg='Quadratic Model Growth Rate’

dlg='Quadratic Model 1991 Dividend’

vg='Quadratic Model DCF Value’

gl='Semi-Log Model Growth Rate’

dll="8emi-Log Model 1991 Dividend’

vl='Semi-Log Model DCF Value’

dlc='Compound Growth Rate 1991 Dividend’

vc='Compound Growth DCF Value’;
run;

For ease in presentation and comparison, the growth rates and corresponding
next-period dividends are presented in three separate outputs. Growth rates and the discount
rate are printed in Output 2.7.

proc print data=dcf_call label;
var _label_ gg gl gc k;
title2 ’Growth Rates’;

run;
put 2.7 DCF Analysis
Growth Rates for Growth Rates
DCF Analy sis Quadratic Semi-Log
Model Model Annually
Growth Growth Compounded Discount
OBS LABEL OF FORMER VARIABLE Rate Rate Growth Rate Rate

1 3M Company 0.32517 0.06443 0.06516 0.0932
2 Allegheny Power 0.02817 0.04581 0.04628 0.0932
3 Cincinnati G&E 0.06119 0.01266 0.01490 0.0932
4 Detroit Edison 0.01173 0.00452 0.00832 0.0932
5 Dominion Resources 0.07144 0.04872 0.04543 0.0932
6 Duke Power 0.07353 0.04550 0.04402 0.0932
7 Eli Lilly 0.22405 0.10784 0.10954 0.0932
8 Green Mountain Power 0.04282 0.03523 0.03340 0.0932
9 Iowa-Ill Gas & Electric 0.05402 0.04720 0.04264 0.0932
10 FKansas Power & Light 0.05005 0.05705 0.05182 0.0932
11 Kentucky Utilities 0.05342 0.03441 0.03253 0.0932
12 Minnesota Power & Light 0.09498 0.06580 0.05784 0.0932
13 Northern States Power 0.11931 0.06927 0.06148 0.0932
14 oklahoma Gas & Electric 0.10553 0.04309 0.03972 0.0932
15 Orange & Rockland Utilities 0.01321 0.03814 0.03530 0.0932
16 Pennsylvania Power & Light 0.08606 0.03041 0.02930 0.0932
17 Piedmont Natural Gas 0.13264 0.07298 0.06674 0.0932
18 Potomac Electric Power 0.09917 0.07830 0.06763 0.0932
19 TECO Energy 0.09258 0.07014 0.06656 0.0932

\W\/\/\/\\/
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Texas Utilities 0.05827 0.05366 0.04812
Union Electric 0.05745 0.03504 0.03285

Wisconsin Energy 0.11542 0.07667 0.07055
Wicor 0.05273 0.03668 0.03065

The following PROC PRINT statements print the next-period (1991) dividends
generated from the 1990 dividends and the growth rates, as shown in Output 2.8.

proc print data=dcf_call label;
var _label_ d0 dlg dll dlc;
title2 'Next Period (1991) Dividends';

run;
Output 2.8 .
.. DCF Analysis
Dividends Next Period (1991) Dividends
Generated from
. Compound
Different Growth Quadratic  Semi-Log  Growth Rate
Rates Model Next Model Next Next
OBS LABEL OF FORMER VARIABLE DO Dividend Dividend Dividend
1 3M Company 2.82 3.737 3.002 3.004
2 Allegheny Power 3.16 3.249 3.305 3.306
3 Cincinnati G&E 2.40 2.547 2.430 2.436
4 Detroit Edison 1.76 1.781 1.768 1.775
5 Dominion Resources 2.23 2.389 2.339 2.331
6 Duke Power 1.60 1.718 1.673 1.670
7 Eli Lilly 1.64 2.007 1.817 1.820
8 Green Mountain Power 2.00 2.086 2.070 2.067
9 TIowa-Ill Gas & Electric 1.67 1.760 1.749 1.741
10 KRansas Power & Light 1.79 1.880 1.892 1.883
11 FRentucky Utilities 1.46 1.538 1.510 1.508
12 Minnesota Power & Light 1.86 2.037 1.982 1.968
13 Northern States Power 2.27 2.541 2.427 2.410
14 oOklahoma Gas & Electric 2.48 2.742 2.587 2.578
15 Orange & Rockland Utilities 2.32 2.351 2.408 2.402
16 Pennsylvania Power & Light 2.95 3.204 3.040 3.036
17 Piedmont Natural Gas 1.66 1.880 1.781 1.771
18 Potomac Electric Power 1.52 1.671 1.639 1.623
19 TECO Energy 1.60 1.748 1.712 1.706
20 Texas Utilities 2.96 3.132 3.119 3.102
21 Union Electric 2.10 2,221 2,174 2,169
22 Wisconsin Energy 1.74 1.941 1.873 1.863
23 Wicor 1.42 1.495 1.472 1.464

You may want to compare and contrast the calculated dividends for 1991 with the
actual 1990 dividends labeled DO. Previous research about the particular firm and other
forecasts of dividends may help you in assessing the usefulness of these values.

The following PROC PRINT statements print the DCF values, as shown in Output 2.9.

proc print data=dcf_call label;
var _label_ vq vl vc;
title2 'DCF Values’;

run;
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Output 2.9 DCF Analysis
DCF Values DCF Values
Generated from ) )

Rk L. Quadratic Semi-Log Compound
Different Dividend Model DCF  Model DCF  Growth DCF
Growth Rates 0BS  LABEL OF FORMER VARIABLE Value Value Value

1 3M Company -16.11 104.351 107.141
2 Allegheny Power 49.97 69.745 70.465
3 Cincinnati G&E 79.57 30.171 31.112
4 Detroit Edison 21.86 19.937 20.913
5 Dominion Resources 109.79 52.580 48.801
6 Duke Power 87.34 35.071 33.957
7 Eli Lilly -15.34 -124.100 -111.407
8 Green Mountain Power 41.40 35.707 34.563
9 Iowa-Ill Gas & Electric 44.92 38.022 34.431
10 Kansas Power & Light 43,57 52.336 45.509
11 Kentucky Utilities 38.66 25.684 24.858
12 Minnesota Power & Light -1141.27 72.326 55.659
13 Northern States Power -97.32 101.422 75.976
14 Oklahoma Gas & Electric -222.38 51.627 48.200
15 Orange & Rockland Utilities 29.39 43,731 41.482
16 Pennsylvania Power & Light 448.78 48.418 47,514
17 Piedmont Natural Gas -47.66 88.095 66.933
18 Potomac Electric Power -280.06 110.001 63.478
19 TECO Energy 2800.19 74.224 64.032
20 Texas Utilities 89.65 78.871 68.815
21 Union Electric 62.13 37.381 35.941
22 Wisconsin Energy -87.37 113.332 82.249
23 Wicor 36.94 26.044 23.404

Interpretation of Output 2.9
Output 2.9 shows the constant growth DCF values. You can assess the quality of these
values as follows:

O Negative values are nonsense. They occur because calculated growth rates are greater
than the discount rate. For example, the quadratic dividend growth model generates a
value of -$1141.27 per share of Minnesota Power & Light stock. Obviously, no investor
would be willing to pay over $1100 per share for others to accept the stock. This is a
limitation of the constant growth DCF approach.

In this case, you may want to use a different DCF methodology or reconsider which
discount rate is appropriate, or both. For example, the realized 1990 yield on AAA
bonds is used as the discount rate in this example. If a firm has a BBB bond rating, then
the AAA bond yield might be inappropriate.

o Extremely high values are probably inaccurate. For example, the quadratic dividend
growth model yields a DCF value of $2800.19 per share for TECO Energy stock. In
1990, the price of TECO stock fluctuated between $26.25 and $33.875 per share. Thus,
the value of $2800.19 per share is unlikely to be accurate.

0 The observed price range of each stock for the previous year can be used as
benchmarks. You may expect a stock value close to this range. Many other investors are
actively searching for overpriced and underpriced stocks. Studies have shown that stock
markets are efficient; typically, price discrepancies are quickly arbitraged.

0 Verify your assumptions about the economy, the industry, the firm, and its dividend
policy. Changes or adjustments to your assumptions of the appropriate discount rate,
growth model for dividends, and your expectations for future dividends can yield a
different DCF value.
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p Caution

Use DCF Value Calculations with Care
Only when you are fully satisfied with DCF stock-value calculations should you consider
basing your investment strategies upon them. A

Multiperiod DCF Methodology

The DCF methodology presented thus far enables you to apply the general DCF equation to
stocks paying fixed-dollar dividends or to stocks paying dividends that grow at a constant

rate over time. Your research may indicate that these approaches are too restrictive for some

stocks.
More flexible models of growth patterns for future dividends include

two-period models of fixed-dollar dividends. Perhaps the fixed-dollar dividends are set
at a low level, but may soon rise to a higher-fixed level. Alternatively, the fixed-dollar
dividends may be currently set at a higher level, and future dividends are expected to be

set at a lower fixed level.

o three or more periods of different fixed-dollar dividends.

O two periods of fixed-dollar dividends with a transition period in between. The transition

period may follow a constant growth rate model or some other function.

O many distinct periods that characterize expected future dividends. For example,
dividends may be fixed at an initially low level, and you expect a transition period to a
higher-fixed level, followed by a transition period back to a lower level.

This section shows you how to use the SAS System to perform DCF multiperiod
methodology.

Two-Period DCF Analysis, Fixed-Dollar
Dividends

Suppose it is the end of 1987, and you are analyzing the dividends of the Detroit Edison
Company, an electric utility. You know that Detroit Edison has followed a fixed-dollar
dividend policy, having paid $1.68 per share of common stock in annual dividends since
1982. You also know that the firm is working to reduce indebtedness, has little need for
immediate additions to generating capacity, and expects continued growth in electricity
sales.

Your research might lead you to conclude that in 1990 Detroit Edison will increase the
fixed dividend of its common stock to $1.76, and this higher level of fixed dividends will
continue in the future. Under these assumptions, what is the DCF value of Detroit Edison
common stock at the end of 19877

The following sections show you how to perform this analysis.

Plotting Dividends Over Two Periods

By creating the DCF3 data set in a DATA step, you can plot the dividends over time with
PROC PLOT and identify the two periods. The HREF= option of the PLOT statement in
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PROC PLOT creates a horizontal reference line at the value of 90 on the horizontal axis
(YEAR). The following statements perform these tasks, and the results are printed in Output
2.10.

data dcf3;
input year d @@;
label d='Detroit Edison Dividends’;
cards;
82 1.68 83 1.68 84 1.68 85 1.68 86 1.68
87 1.68 88 1.68 89 1.68 90 1.76 91 1.76
92 1.76 93 1.76

!

proc plot data=dcf3 vpct=110;
plot d*year="*' / href=90;
title2 'Dividends Versus Time’;
run;

Output 2.10 .

DCF Analysis
Scatter Plot of Dividends Versus Time
Dividends Versus
Time

Plot of D*YEAR. Symbol used is '*’.

Calculating the DCF Value

To calculate the DCF value of the common stock, you can use expectations about the future
and the general DCF equation described in the introduction of this chapter to calculate the
DCEF value of the common stock.

For this example, the realized yield of AAA bonds in 1987 is used as the appropriate
discount rate. In 1987, AAA bonds yielded 9.38 percent, or .0938.

Using the above expectations about Detroit Edison at the end of 1987 implies the DCF
equation has the form:

$1.68 $1.68 $1.76 $1.76 $1.76
(1 + .0938) 2 s st T o)
- (1+.0038)  (1+.0038) (I +.0938) (1 + .0038)

V =

In this equation, the first term represents the discounted (or present) value of the
expected dividends in 1988; the second term represents the discounted value of the expected
dividends in 1989; the third term represents the discounted value of the expected higher
dividends in 1990; and so on to infinity.
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The DCF equation for Detroit Edison can be summed as two parts. The first part to be
summed is the 1988 and 1989 terms, which represent the period of lower fixed dividends.
The second part is the infinite series starting in 1990, which represents the period of higher
fixed dividends. The second part can be summed as an infinite series then discounted back
to the present.

The calculations are as follows:

$1.68 . _ $1.68 $1.76
2
(1+.0938) * (1 4+ .0938)° .0938 x (1 + .0938)°

V =

The first two terms are the discounted values of the expected 1988 and 1989 dividends;
the third term is the summation of the infinite series discounted back two years. The
equation becomes

V = $1.54 + $1.40 + $15.68 = $18.62

This model can be generalized for any length first and second periods with dividends
D1 and D2, respectively. In general form, the two-period DCF approach becomes

N D D
=2 — + —
=1(1+K) K x (1 +K)

In this equation, the first period is from 1 to N, and the second period is from N + 1
onward. Further generalizations can also be made to 3, 4, 5, or more periods of fixed-dollar
dividends.

You can calculate the two-period DCF value for Detroit Edison in the following DATA
step. The results are printed in Output 2.11.

data dcf_call;
k=.0938;
di=1.68;
d2=1.76;
v0=round(dl/k, .01);
vl=round(dl/(1+k), .01);
v2=round(dl/((1+k)**2), .01);
v3=round(d2/ (k* (1+k)**2), .01);
v=v1+v2+v3;
label v0='DCF Value for $1.68 Dividend Series’
vl='Discounted Value for 1988’
v2='Discounted Value for 1989’
v3='DCF Value for $1.76 Dividend Series’
v='DCF Value for Two Periods’;
run;

proc print data=dcf_call label;

var v0 vl v2 v3 v;

title2 'Discounted Cash Flow Values';
run;
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DCF Values for
Series and
Individual Periods
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DCF Analysis
Discounted Cash Flow Values

DCF Value DCF Value

for $1.68 Discounted Discounted for $1.76 DCF Value
Dividend Value for Value for Dividend for Two

0BS Series 1988 1989 Series Periods
1 17.91 1.54 1.4 15.68 18.62

s

Interpretation of output

Output 2.11 shows the following DCF values, discounted back to the end of 1987:
o for the case where dividends remain fixed at $1.68

0O the individual discounted (or present) values for 1988 and 1989

0 the DCF value for the fixed $1.76 dividends

0 the DCF value, $18.62 per share of Detroit Edison common stock, for the two-period
approach. This value is the sum of the 1988 and 1989 values and the new higher level of
fixed dividends from 1990 onward.

Two-Period DCF Analysis, Growing
Dividends and Fixed-Dollar Dividends

DCEF analysis can be performed on common stocks that are in transition from one level of
fixed dividends to another. For example, at the end of 1989, you might have been analyzing
the common stock dividends of AT&T.

In 1983, AT&T paid $5.85 in dividends. After divestiture of regional telephone
companies in 1984, AT&T’s common stock dividends fell to $1.20 in 1985 and remained at
$1.20 through 1989. Suppose now at the end of 1990, AT&T has paid $1.29 in annual
dividends. Your research into the fundamentals of AT&T leads you to believe that AT&T
will continue to increase its dividends over the next five years and then will become fixed at
the predivestiture level of $5.85. What is the DCF value of a share of AT&T common stock
given these expectations?

Before you can perform the DCF valuation analysis, you want to model the growth
process of dividends from the end of 1990-1995. The rate at which dividends grow affects
the DCF value.

There are several growth models that may be appropriate for this stock. You may want
to fit one or more of the following growth models:

O annually compounded growth:

YEAR, - 1990

D =D, X gl

1990

In this equation, the annually compounded growth rate (plus one) over the five-year
period is

D 1/5
— 1995
GCl1 = (_D )

1990



46 Multiperiod DCF Methodology o Chapter 2

O linear growth model:

D =a+ b x YEAR

O  quadratic growth model:

D =a+ b X YEAR + ¢ X YEAR'

In this equation, the first derivative with respect to time (in years) is expected to be
positive, and the second derivative can be positive or negative, depending on your
expectations of dividend growth.

After fitting the model, you can use the predicted values as the expected dividends.

Fitting Linear and Compound Growth Models

In this example, the fundamental analysis provides a level of dividends for a beginning year
and an ending year, as shown in this table:

End of
Point D YEAR

Begin 129 1990
End 585 1995

These two points can be used to calculate an annually compounded growth rate and to
fit a linear growth model. To calculate the dividends for the compound growth rate and the
linear model you follow these steps.

1. InaDATA step,

o create the DCF4 data set containing the beginning and ending dividend values
O calculate the compound growth rate
O use the compound growth rate to calculate the first growth pattern of dividends.

2. Use PROC REG to

o fit the linear model
O calculate predicted values
O create an output data set

O store the predicted values in the output data set.
3. Use PROC PRINT to print the calculated values.

The dividend values are printed in Output 2.12.



Output 2.12
Expected Dividends
from Linear and
Compound Growth
Rates
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Example code

/* Creating DCF4 Data Set */

/* Calculating Compound Growth Rate and Dividends, D1 */
data dcf4;

input year d @@;

t=5;

d1990=1.29;

d1995=5.85;

gcl=(d1995/d1990) **(1/t);

dl=round(d1990* (gcl** (year-90)), .001);

cards;
1990 1.29 1991 . 1992 . 1993 . 1994 . 1995 5.85

1

/* Fitting the Linear Growth Rate Model */
/* Creating Output Data Set, DCF_OUT1 */
/* Calculating Dividends, D2 */

proc reg data=dcfd noprint;
model d=year;
output out=dcf_outl p=d2;

run;

/* Printing Predicted Dividends */
proc print data=dcf_outl;

var year d dl d2;

title2 'Predicted Dividends Over Time’;

title3 'Compound Growth Rate and Linear Trend’;
run;

DCF Analysis
Predicted Dividends Over Time
Compound Growth Rate and Linear Trend

OBS YEAR D D1 D2
1 1990 1.29 1.290 1.290
2 1991 . 1.745 2.202
3 1992 . 2.362 3.114
4 1993 . 3.195 4.026
5 1994 . 4.324 4,938
6 1995 5.85 5.850 5.850

Interpretation of output
In Output 2.12, the dividend values are printed for the following cases:

O beginning and ending dividend growth values based on fundamental analysis, contained
in the variable labeled D

o expected dividends based on annually compounded growth, labeled D1

0 expected dividends based on linear growth, labeled D2.
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Fitting Quadratic Growth Models

To fit the quadratic dividend growth models, you must have one further expectation about
the path the dividends follow over time. That is, you must provide an intermediate dividend
level in addition to the first-year dividends and the new level of fixed-dollar dividends. The
intermediate dividend level provided affects the shape of the growth curve, the remaining
dividend values, and ultimately the calculated DCF value for the stock.

In this example, two data sets are created, DCF5 and DCF6, in two DATA steps. The
two data sets have different intermediate values. The DCF5 data set includes the value $4.24
for 1992, implying rapid initial growth of dividends and then growth tapering off to the
higher fixed level of $5.85. The DCF6 data set includes the $4.76 for 1994, implying slower
initial growth and then more rapid growth until the higher fixed dividend level is reached.

You fit the two quadratic dividend growth models with PROC REG and create output
data sets containing the predicted dividends. The predicted values are printed with PROC
PRINT. The results are shown in Output 2.13.

/* Creating DCF5 Data Set */
data dcfb;
set dcfd;
1f year=1992 then d=4.24;
year2=year*year;
run;

/* Creating DCF6 Data Set */
data dcf6;
set dcfd;
if year=1994 then d=4.76;
year2=year*year;
run;

/* Fitting lst Quadratic Dividend Growth Model */
/* Rapid Initial Growth Rate */
/* Creating Output Data Set DCF_QOUT2 */
/* Calculating Dividends, D3 */
proc reg data=dcf5 noprint;
model d=year yearZ;
output out=dcf_out2 p=d3;
run;

/* Fitting 2nd Quadratic Dividend Growth Model */
/* Slower Initial Growth Rate */
/* Creating Output Data Set DCF_OUT3 */
/* Calculating Dividends, D4 */
proc reg data=dcf6 noprint;
model d=year year2;
output out=dcf_out3 p=d4;
run;

proc print data=dcf_out?;

var year d d3;

title2 ‘Predicted Dividends Over Time’;

title3 ‘Rapid Initial Growth Quadratic Model’;
run;




Output 2.13
Expected Dividends
from Quadratic
Growth Rates
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proc print data=dcf_out3;

var year d d4;

title3 ’Slow Initial Growth Quadratic Model’;
run;

DCF Analysis
Predicted Dividends Over Time
Rapid Initial Growth Quadratic Model

0BS YEAR D D3
1 1930 1.29 1.73447
2 1991 . 2.61684
3 1992 4.24 3.49921
4 1993 . 4,38158
5 1994 . 5.26395
6 1995 5.85 6.14632

DCF Analysis
Predicted Dividends Over Time
Slow Initial Growth Quadratic Model

0BS YEAR D D4
1 1990 1.29 1.26881
2 1991 . 2.16810
3 1992 . 3.06738
4 1993 . 3.96667
5 1994 4.76 4.86595
6 1995 5.85 5.76524

Calculating DCF Values from Dividend Growth
Models

You can calculate the DCF Values for AT&T common stock in a DATA step, using the
dividends generated by the different growth models. First, the data sets containing the
dividend values are merged; then, the DCF values are calculated. The PROC TRANSPOSE
statements are interpreted in the example code producing Output 2.5. The results from this
example code are printed in Output 2.14.

/* Merging Data Sets */

data dcf7;
merge dcf_outl dcf_out2 dcf_out3;
by year;

run;

/* Transposing Data for Ease in DCF Calculations */
proc transpose data=dcf7 out=dcf_tr3;

var dl-d4;
run;

/* Calculating Present Value of Future Dividends */

/* Calculating DCF Values for Different Growth Rate Models */
data dcfs;

set dcf_tr3;

k=.0932; /* actual AAA bond yield at end of 1990 */

yr9l=col2/(1+k); /* 1990 Present Value of 1991 Dividend */
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Output 2.14
Calculated DCF
Values from
Different Dividend
Growth Models

yr92=col3/ ((1+k)**2}; /* 1990 Present Value of 1992 Dividend */
yr93=cold/ (({1+k)**3); /* 1990 Present Value of 1993 Dividend */
yr94=colb/ {(1+k)**4); /* 1990 Present Value of 1994 Dividend */

yr95=col6/ (k* ((1+k)**4)); /* 1990 PV of Fixed Dividends */
/* Starting in 1995 */
v=sum({of yr91-yr95);
run;

/* Printing Present Values of Predicted Dividends */
/* Printing Calculated DCF Values */
proc print data=dcf8;
var yr9l-yr95 v;
title2 ‘Calculated DCF Values';
title3 'and Predicted Dividends Over Time’;

run;
DCF Analysis
Predicted Dividends Over Time
OBS YRI1 YR92 YRI93 YR94 YRI5 v
1 1.59623 1.97643 2.44552 3.02752 43,9482 52.9939
2 2.01427 2.60567 3.08159 3.45742 43,9482 55.1072
3 2.70094 3.54786 3.94346 3.98302 43,9482 58.1235
4 1.85145 2.38225 2.87722 3.33279 43,9482 54.3920

_-— Y
= —————————————————— — — ———— ———————3

Interpretation of output

In Output 2.14, the columns (YR91-YR95) contain the discounted (or present) value of the
dividends and the DCF values (labeled V). The values in columns YR91-YR94 contain the
discounted values of the dividends in the transition period, and the variable YR9S5 is the
discounted value of the summed infinite series for the higher fixed dividend level. Lastly,
each DCF value (V) is the sum of the values from YR91-YR95.

The rows in Output 2.14 contain the discounted dividend values and the DCF values for
each of the dividend growth rate models. The first row (or observation) contains the values
for the compound growth model. The second through fourth rows contain values for the
linear trend model, the rapid initial-growth quadratic model, and the slower initial-growth
quadratic models, respectively.

Prior to making investment decisions based on these values, you may want to further
assess the quality of these values by comparing them with other forecasts and your own
intuitive expectations of the future.

Only after you are fully satisfied with your analysis should you use the calculated DCF
values for making investment decisions.
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Searching For Overpriced and Underpriced Stocks

You can use the DCF calculated growth rates along with other data to identify overpriced
and underpriced stocks.

Whitbeck and Kisor (1963) developed a cross-sectional multiple regression model to
identify overpriced and underpriced stocks. Their dependent variable was the price earnings
ratio, and their independent variables were growth rate, dividend payout rate, and standard
deviation of growth rate. This section shows you how to use PROC REG to perform similar
analysis on the 23 common stocks listed in the DCF2 data set. You proceed, as follows,
using a DATA step and the procedures listed here:

1. Use a DATA step to create the DCF9 data set containing the price earnings ratio (PE)
and the 1990 dividend payout ratio (PR).
2. Use PROC MEANS to calculate the standard deviations of the dividend growth rates.

3. Use a DATA step to merge the DCF9 data set, the data set containing the dividend
growth rates (DCF_CALL1), and the data set containing the standard deviations of the
dividend growth rates (DCF_STD2). This new data set can be used to fit the multiple
regression model.

4. Use PROC REG to fit the cross-sectional multiple regression model.

5. Use PROC PLOT to plot the predicted and residual values to identify overpriced and
underpriced stocks.

Creating the Data Set for Regression
Analysis

The following statements create the DCF9 data set. Note that the dividend payout ratio for
Wicor is not meaningful for 1990 and is listed as a missing value.

data dcf9;
input firm $32. pe pr;
label pe='Price Earnings Ratio 1990’
pr='Dividend Payout Ratio 1990°;

cards;
3M Company 14.0 48
Allegheny Power 10.5 88
Cincinnati G&E 7.3 58
Detroit Edison 8.2 54
Dominion Resources 10.3 76
Duke Power 12.1 67
Eli Lilly 19.1 42
Green Mountain Power 10.8 87
Iowa-I11 Gas & Electric 10.6 84
Kansas Power & Light 10.0 80
Kentucky Utilities 9.9 74
Minnesota Power & Light 10.5 78
Northern States Power 12.3 81
Oklahoma Gas & Electric 10.7 73
Orange & Rockland Utilities 9.8 78
Pennsylvania Power & Light 10.6 75
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Piedmont Natural Gas 11.3 68
Potomac Electric Power 13.0 94
TECO Energy 12.3 65
Texas Utilities 8.1 67
Union Electric 10.0 7
Wisconsin Energy 10.7 63
Wicor 20.9

1

Calculating Standard Deviation of
Dividends

You use the MEANS procedure to calculate the standard deviation of dividends and create
an output data set containing these values. The STD= option in the OUTPUT statement
specifies that the standard deviations of the listed variables (STOCK [-STOCK23) be stored
in the output data set. The 23 standard deviations are to be named STD1-STD23.

/* Calculating the Standard Deviations of Dividend Growth Rates */
proc means data=dcf2 noprint;

var stockl-stock23;

output out=dcf_stdl std=stdl-std23;
run;

After calculating the standard deviations and storing them in the DCF_STD1 data set,
the DCF_STDI data set is transposed with PROC TRANSPOSE to facilitate merging with
the DCF9 data set.

Note that the OUT= option in the PROC TRANSPOSE statement names the output data
set. In this example, the output data set is named DCF_STD2. The RENAME option is used
to rename the variable COL1 (as named by PROC TRANSPOSE) to STD.

In this example, the variables STD1-STD23 are specified. Prior to transposing, these 23
values are stored in one observation (1 row) and 23 columns; after transposing, the values
are stored in 23 observations (23 rows) and 1 column. PROC TRANSPOSE creates a
variable _"NAME_ containing the names of the variables being transposed and, for this
example, a variable named COL1 containing the values of the transposed variables.

/* Transposing the Data Set Containing the Standard Deviations */
proc transpose data=dcf_stdl out=dcf_std2(rename=(coll=std));

var stdl-std23;
run;

Lastly, PROC PRINT is used to print the first five observations of the transposed data
set.

proc print data=dcf_std2 (obs=5);
var std;
title2 'Standard Deviations of Dividends’;
title3 'First Five Observations’;

run;



Output 2.15 .
.. DCF Analysis
Standard Deviations Standard Deviations of Dividends
ofDividends First Five Observations
0BS STD
1 0.44164
2 0.37277
3 0.09466
4 0.03327
5 0.26833
Merging Data Sets
Prior to performing the regression analysis, you use a DATA step to merge the DCF9,
DCF_STD2, and DCF_CALI data sets. Merging these data sets produces a single data set
containing the dependent and independent variables for the regression analysis. The
following statements merge the data sets, and PROC PRINT is used to print the first five
observations.
data dcf_cal2;
merge dcf9 def_std2 def_call;
run;
proc print data=dcf_cal2 (obs=5);
var pe gc pr std;
title2 'Cross-Sectional Multiple Regression Data’;
title3 'First Five Observations’;
run;
Output 2.16 ,
DCF Analysis
Data for Cross-Sectional Multiple Regression Data
Cross-Sectional First Five Observations
Multiple Regression 0BS  PE 6c PR STD

Analysis
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4.0 0.065162 48 0.44164
0.5 0.046283 88 0.37277
7.3 0.014902 58 0.09466
8.2 0.008323 54 0.03327
0.3 0.045435 76 0.26833

[5, I TR X

Performing Cross-Sectional Multiple
Regression Analysis

You use PROC REG to fit the cross-sectional multiple regression model. Cross-sectional

analysis is performed at a point in time across several variables. The cross-sectional

variables are collected for the end of 1990. Note that cross-sectional analysis is analogous to

a photograph, stopping the flow of time for an instant, whereas time series analysis is
analogous to a movie, a series of pictures, forming a moving picture.
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The model to be fit is of the form
PEi=a+b><GCi+c><PRi+d><STDi+ei

The PROC REG statements to fit this model and calculate the predicted and residuals
values are shown in the following example. The MODEL statement specifies the model to
be fit: the dependent variable (PE) on the left, and the independent variables on the right
(GG, PR, STD). The OUTPUT statement creates a new data set containing the specified
values and statistics. In this example, the predicted and residual values are included in the
output data set, DCF_REG1. The P= and R= options specify that the predicted and residual
values, respectively, are included in the output data set. In this example, the predicted values
are named P, and the residual values are named R.

proc reg data=dcf_cal?2;
model pe=gc pr std;
output out=dcf_regl p=p r=r;

run;
Output 2.17 ,
. DCF Analysis
Fitted Cross-Sectional Multiple Regression Data
ross-Sectional
C OS..S‘ S . Model: MODEL1
Multiple Regression Dependent Variable: PE Price Earnings Ratio 1990
Model \ ,
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 87.53104 29.17701 16.475 0.0001
Error 18 31.87851 1.77103
C Total 21 119.40955
Root MSE 1.33080 R-square 0.7330
Dep Mean 11.00455 Adj R-sq 0.6885
c.v. 12.09318

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 8.315850 1.93401309 4,300 0.0004
GC 1 102.156361  19.06432074 5.359 0.0001
PR 1 -0.017311 0.02332233 -0.742 0.4675
STD 1 -4.119472 4.14134928 -0.995 0.3331

Interpretation of output
In Output 2.17, the fitted model is as follows:

PE = 8.31585 + 102.15636 x GC, — 0.01731 X PR, — 4.11947 X STD,
The overall fit of this model is good, as the following statistics indicate:
o The F-Statistic is 16.475 with 3 and 18 degrees of freedom and is significantly different

from O at p-values (Prob>F) at or below .0001. This F-test is a joint test of the model
parameters being different from 0.
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Output 2.18

Plot of PE
Regression
Residuals versus
Compound Growth
Rate

o The R-Square is .7330, indicating that over 73 percent of the variation in the dependent
variable PE is accounted for by the model.

Only the intercept and GC slope parameter are significantly different from O at the .10
level. You may want to drop the variables PR and STD from the model or respecify the
model in some other form.

Plotting Residual Values

By plotting the residual values, you can visually assess the fit of the model, and you can
visually identify overvalued and undervalued stocks. Each residual value indicates the
deviation of the actual price-earnings ratio from the predicted price-earnings ratio.

Residual values are actual values minus predicted values. Positive residual values
indicate that the stock has a higher price-earnings ratio than would otherwise be expected.
You conclude, other things remaining equal, that these stocks are overvalued relative to the
other stocks used in the cross-section analysis. Negative residual values indicate that the
stock has a lower price-earnings ratio than would otherwise be expected, and these stocks
are undervalued relative to the other stocks used in the analysis.

You can plot the residual values using the DCF_REG] data set and the following PROC
PLOT statements:

proc plot data=dcf_regl vpct=125;
plot r*gc="*" / vref=0;
title2 'PE Regression Residuals’;
title3 ‘versus Compound Growth Rate’;
run;

DCF Analysis
PE Regression Residuals
versus Compound Growth Rate

Plot of R*GC. Symbol used is ’*’.
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Output 2.19
Printing Regression
Residuals

Printing Residual Values

You can print the residual values using PROC PRINT. Prior to printing the residual values,
you may want to use a DATA step to create a new variable that assigns an identifying value
to each stock, indicating if it is relatively overvalued or undervalued. The following
statements perform these tasks. The results are printed in Output 2.19.

data dcf_reg2;
set dcf_regl;
if r=. then hi_lo=".....";
else if r>0 then hi_lo='Over ’;
else if r=0 then hi_lo='0 Ly
else if r<0 then hi_lo='Under’;
run;

proc print data=dcf_reg2;

var firm r hi_lo;

title2 'Regression Residuals and’;

title3 'Over- and Undervalued Variable, HI_LO';
run;

DCF Analysis
Regression Residuals and
Over- and Undervalued Variable, HI_LO
0BS FIRM R HI_LO
1 3M Company 1.67767 Over
2 Allegheny Power 0.51508 Over
3 Cincinnati G&E -1,14418 Under
4 Detroit Edison 0.10574 Over
5 Dominion Resources -0.23625 Under
6 Duke Power 1.18870 Over
7 Eli Lilly 1.71255 Over
8 Green Mountain Power 1.33750 Over
] Iowa-Ill Gas & Electric 0.19922 Over
10 Kansas Power & Light -1.19801 Under
11 Rentucky Utilities 0.07806 Over
12 Minnesota Power & Light -1.19131 Under
13 Northern States Power 0.59233 Over
14 Oklahoma Gas & Electric 0.69613 Over
15 Orange & Rockland Utilities 0.20292 Over
16 Pennsylvania Power & Light 1.56491 Over
17 Pledmont Natural Gas -1,53668 Under
18 Potomac Electric Power 0.50012 Over
19 TECO Energy -0.65344 Under
20 Texas Utilities -2.33427 Under
21 Union Electric 0.44788 Over
22 Wisconsin Energy -2.52468 Under
23 Wicor o aeaes

Interpretation of output
In Output 2.19, the regression residuals and the overvalue and undervalue indicating the
variable, HI_L.O, are printed. There are 14 stocks that are relatively overvalued in this
cross-section and 8 stocks that are undervalued, while the WICOR stock has a missing PE
ratio.

When you are fully satisfied with your cross-sectional analysis for identifying
overvalued and undervalued stocks, only then do you want to make investment decisions
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based upon your analysis. An investment strategy you may want to consider is buying and
holding stocks that are undervalued, while selling stocks that are overvalued.

Chapter Summary

This chapter presents methods of using SAS software to perform discounted cash flow
(DCF) analyses. Examples presented are DCF analyses for various assumptions of dividend
growth over time and a cross-sectional multiple regression approach to identifying
overvalued and undervalued stocks.

Learning More

O

For more information on the DATA step, see SAS Language, Reference, Version 6,
First Edition; SAS Language and Procedures, Usage; and SAS Language and
Procedures, Usage 2, Version 6, First Edition.

For more information on PROC REG, see SAS/STAT User’s Guide, Version 6, Fourth
Edition, Volume I and Volume 2.

For more information on PROC MODEL, see SAS/ETS User’s Guide, Version 6,
Second Edition and SAS/ETS Software: Applications Guide 2, Econometric Modeling,
Simulation, and Forecasting, Version 6, First Edition.

For more information on PROC MEANS, PROC PLOT, PROC PRINT, and PROC
TRANSPOSE, see SAS Procedures Guide, Version 6, Third Edition, SAS Language and
Procedures, Usage, and SAS Language and Procedures, Usage 2.

For more information about regression models, see SAS System for Regression, Second
Edition by R. Freund and R. Littell.
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Introduction

This chapter describes approaches to sorting and clustering stocks. Sorting and clustering
techniques assist investors with the difficult task of selecting stocks of interest. Consider the
magnitude of the selection task given that there are thousands of stocks listed on the major
U.S. exchanges: NYSE, AMEX, and NASDAQ (not to mention the stocks and futures
traded on local exchanges, plus stock options, international securities, and so on).

Sorting and clustering stocks into groups is intuitively appealing. For example, given
expectations of the future, some stocks will generate greater returns per unit of risk and will
be preferred by investors. Investment houses often use sorting and clustering techniques to
select stocks of interest. Then investors can create portfolios from the resulting set of stocks.

You can sort and cluster stocks by any measurable criteria based on industry type,
geographic location, expected future returns, price-earnings ratios, dividend yields, risk
level, or any other factors that can be measured or estimated. Which criteria you choose
depends on your purpose and use for the analysis.
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Sorting Stocks by Financial Characteristics

A wide variety of sorting tasks can be performed with the SORT procedure. For example,
you can sort stocks by one or more characteristics and in ascending or descending order.
Many financial characteristics can be used to sort stocks into clusters. For example, you may
want to sort stocks by price-earnings (PE) ratio, dividend yield, dividend pay-out ratio (PR),
trading volume, and so on. As an example of the many sort analyses you may want to
perform, this section shows you how to sort stocks by PE ratio and by average dividend
yields in ascending and descending orders.

Sorting Stocks by Price-Earnings Ratio

Studies conducted by Basu (1977 and 1983) show that stocks with low PE ratios yielded
higher returns, even when adjusted for risk and other characteristics. Thus, as an example of
sorting stocks, you can use PROC SORT to sort stocks by PE ratios then narrow the stocks
of interest to those with lower PE ratios. This example uses the 23 common stocks
introduced in the DCF9 data set of Chapter 2, “Discounted Cash Flow (DCF) Analysis.”
The following statements sort the stocks by their 1990 PE ratio. Note that ascending
order (lowest to highest) is the default method of sorting in PROC SORT. The first five
observations of the sorted data are printed with PROC PRINT and shown in Output 3.1.

proc sort data=dcf9 out=dcf9a;

by pe;
run;

/* Printing the First Five Observations */
proc print data=dcf9a (obs=5) label;

title 'Sorting and Clustering Stocks’;

title2 ’'Sorting Stocks by PE Ratios’;

run;
Out[.’ ut3.1 Sorting and Clustering Stocks
Sorting Stocks by Sorting Stocks by PE Ratios
PE Ratios Price Dividend
Earnings Payout
0BS FIRM Ratio Ratio

58
67

Cincinnati G&E
Texas Utilities

Orange & Rockland Utilities
Rentucky Utilities

78
74

U1 W

7.3
8.1
Detroit Edison 8.2 54
9.8
9.9




Output 3.2

Printing Stocks with
the Lowest PE
Ratios
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Subsetting a Data Set

After an initial sorting, you may want to create a data set containing a subset of the sorted
observations. You can use a DATA step to create subsets of the sorted observations, For this
example, you use a SET statement and the OBS= option in a DATA step to create a data set
containing the 15 stocks with the lowest PE ratios. Then, you use PROC PRINT to print the
new data set, as shown in Output 3.2.

/* Keeping Stocks with Low PE Ratios */
data dcf9b;

set dcf9a (obs=15);
run;

/* Printing Stocks with Low PE Ratios */
proc print data=dcf9b label;

title2 ‘Stocks with Lowest PE Ratios';
run;

Sorting and Clustering Stocks
Stocks with Lowest PE Ratios

Price Dividend

Earnings Payout

OBS FIRM Ratio Ratio
1 Cincinnati G&E 7.3 58
2 Texas Utilities 8.1 67
3 Detroit Edison 8.2 54
4 Orange & Rockland Utilities 9.8 78
5 Rentucky Utilities 9.9 74
6 Kansas Power & Light 10.0 80
7 Union Electric 10.0 77
8 Dominion Resources 10.3 76
9 Allegheny Power 10.5 88
10 Minnesota Power & Light 10.5 78
11 Iowa-Ill Gas & Electric 10.6 84
12 Penngylvania Power & Light 10.6 75
13 Oklahoma Gas & Electric 10.7 73
14 Wisconsin Energy 10.7 63
15 Green Mountain Power 10.8 87

Interpretation of output

Output 3.2 lists the 15 stocks with the lowest PE ratios and their dividend pay-out ratio.
These 15 stocks are used in later examples for cluster analysis, based on their average
dividend yields over the previous five years (1986-1990).

Sorting by More Than One Variable

You can also use PROC SORT to sort stocks by more than one variable. For example, with a
large number of stocks, you may want to sort first by price-earnings ratio (PE), then by
dividend pay-out ratio (PR). You can perform this sort with the following PROC SORT
statements. The output from these statements is not shown.
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proc sort data=dcf9 out=dcf9al;

by pe pr;
run;

The previous statements sort first by price-earnings ratio (from low to high); then, the
stocks within each level of price-earnings ratio are sorted by dividend pay-out ratio (from
low to high). You may want to sort by price-earnings ratio (from low to high), then, within
each level of price-earnings ratio, by dividend pay-out ratio (from high to low). You can
perform a sort from the highest value to the lowest value with the DESCENDING option of
the BY statement in PROC SORT.

The following PROC SORT statements sort first by PE (low to high), then within each
PE level by PR (high to low). The output from these statements is not shown.

proc sort data=dcf9 out=dcf9a2;
by pe descending pr;
run;

For more information on sorting data with PROC SORT, see the SAS Procedures
Guide, Version 6, Third Edition, SAS Language and Procedures, Usage, Version 6, First
Edition, and SAS Language and Procedures, Usage 2, Version 6, First Edition.

Clustering Stocks by Financial Characteristics

Intuitively, you can think of cluster analysis as an advanced form of sorting, and, like
sorting, any measurable criteria of similarity can be utilized. The goal is to group similar
stocks into clusters. This section uses the 15 stocks with the lower price-earnings ratios for
cluster analysis based on dividend yields over the period 1986-1990. This section proceeds
by

o creating the DCF10 data set
O  plotting analysis with PROC PLOT
0 performing preliminary analysis with PROC CORR and the DATA step
0 performing cluster analysis with PROC CLUSTER.
After performing cluster analysis, you can use the SAS/STAT TREE procedure (and the

output from PROC CLUSTER) to draw tree diagrams (also known as dendrograms) to
graphically represent the distance between clusters.

Creating the DCF10 Data Set

You use a DATA step to create the DCF10 data set containing the average dividend yields
over the period 1986-1990. The variable names are the NYSE symbols. The 15 stocks with
the low PE ratios from Output 3.2 are included in the DCF10 data set. These statements
produce no output.
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data dcfl0;

input year cin txu dte oru ku kan uep d ayp mpl
iwg ppl oge wse gmp;

label cin='Cincinnati G&E'
txu='Texas Utilities’
dte='Detroit Edison’
oru='Orange & Rockland Utilities’
ku='Kentucky Utilities’
kan='Kansas Power & Light’
uep='Union Electric’
d='Dominion Resources’
ayp='Allegheny Power’
mpl='Minnesota Power & Light’
iwg='TIowa-I11 Gas & Electric’
ppl='Pennsylvania Power & Light’
oge='0Oklahoma Gas & Electric’
wse='Wisconsin Energy’
gmp='Green Mountain Power’;

cards;
1986 8.4 7.9 9.76.56.55.97.16.76.75.67.17.26.15.17.1
1987 8.2 8.9 10.7 7.2 6.9 6.4 7.56.97.36.17.57.66.75.77.4
1988 8.4 10.4 11.4 7.3 7.0 6.9 8.4 7.07.87.28.57.77.46.07.8
1989 8.1 8.9 7.87.77.27.47.87.07.97.07.87.4¢6.75.77.8
8.0 8.3 6.57.97.58.07.77.48.37.58.07.16.85.98.3

1990

1

For the purposes of the examples in this chapter, no additional sorting of the data is
performed. For example, you may want to form a subset of the data containing only the
1990 values, sort the data by dividend yields in descending order, and then perform cluster
analysis on the stocks with the highest dividend yields.

Plotting Analysis

Prior to performing cluster analysis, you may want to visually examine the data for clusters
and patterns. For this example, you are searching for stocks whose dividend yields tend to
move together over time. The following PROC PLOT statements plot the dividend yields
over time (for the first five stocks), and the results are shown in Output 3.3.

proc plot data=dcfl0 vpct=200;
plot cin * year ='c’
txu * year ='t’
dte * year ='d’
oru * year ='0’'
ku * year ="k’ / overlay;
title2 'Plotting Dividend Yields 1986-1990';
run;
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Output 3.3
Plotting Dividend
Yields Over Time

Sorting and Clustering Stocks
Plotting Dividend Yields 1986-1990
Plot of CIN*YEAR. Symbol used is 'c’.
Plot of TXU*YEAR. Symbol used is 't’.
Plot of DTE*YEAR. Symbol used is 'd’.
Plot of ORU*YEAR. Symbol used is 'o’.
Plot of KU*YEAR. Symbol used is 'k’,
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Interpretation of output

Output 3.3 shows that the dividend yields for the stocks over the period 1986-1988 tend to
rise (all except CIN). For the period 1989-1990, the output shows less dispersion but no
clear pattern of increases and decreases emerges.

From a visual inspection of this plot, no obvious clusters of stocks appear. Note that all
of these stocks are already similar in that they are all utility stocks and have lower
price-earnings ratios. However, the correlations between the stock dividend yields can reveal
which stocks are more similar (in terms of dividend yields), as shown in the next section.

Preliminary Analysis

Cluster analysis is based on the distance between the observations of the variables. Distance
matrices are calculated by transforming correlation matrices or by some other method to
generate decreasing scale Euclidean distance measures.

Prior to using PROC CLUSTER to perform cluster analysis, you need to either create a
matrix of Euclidean coordinates or a matrix of distance dissimilarities as an input data set for
PROC CLUSTER. This section takes you through the following steps to create one type of
distance dissimilarity input data sets.

1. Use the CORR PROCEDURE to calculate the matrix of Pearson correlation coefficients
for each pairwise combination of stocks.

2. Use a DATA step to tailor the matrix of correlation coefficients.
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3. Usea DATA step to convert the tailored matrix of correlations to decreasing scale
Euclidean distances (also called dissimilarities).

If you have already calculated a matrix of dissimilarities between the stock returns, you
can proceed to the section, “Performing Cluster Analysis” and perform the cluster analysis
using PROC CLUSTER.

Creating a Correlation Matrix

You use PROC CORR and the DCF10 data set to create a matrix of Pearson correlation
coefficients. The Pearson correlation coefficient between the average dividend yields of
stocks x and y (with means X and ) is calculated in the following formula:
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These PROC CORR statements calculate the pairwise correlations between the average
dividend yields of the 15 stocks. In all, 225 (15 X 15) pairwise correlations are calculated.

Explanation of syntax

PROC CORR
invokes the CORR PROCEDURE. The following options of the PROC CORR

statement are specified:

DATA= specifies the input data set for analysis. In this example, the input
data set is the DCF10 data set.

OUTP= creates an output data set containing the Pearson correlation
coefficients. In this example, the output data set is DCF10A.

NOSIMPLE suppresses the printing of simple descriptive statistics for each
variable used in the analysis.

VAR
lists the variables for analysis.

Example code

proc corr data=dcfl0 outp=dcflla nosimple;
var cin txu dte oru ku kan uep d ayp mpl
iwg ppl oge wse gmp;
title2 'Part of the Correlation Matrix’;
run;

A partial listing of the results from these statements is shown in Output 3.4.
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Output 3.4

Partial Listing of the
Pearson Correlation
Matrix

Sorting and Clustering Stocks
Part of the Correlation Matrix

Correlation Analysis

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 5

CIN TXU DTE ORU KU
CIN 1.00000 0.32667 0.83588 -0.83278 -0.83822
Cincinnati G&E 0.0 0.5916 0.0778 0.0800 0.0762
TXU 0.32667 1.00000 0.57160 0.21531  0.14366
Texas Utilities 0.5916 0.0 0.3141 0.7280 0.8177
DTE 0.83588  0.57160  1.00000 -0.62067 -0.67396
Detroit Edison 0.0778 0.3141 0.0 0.2639 0.2122
ORU -0.83278  0,21531 -0.62067 1.00000 0.98495
Orange & Rockland Utilities 0.0800 0.7280 0.2639 0.0 0.0022

Interpretation of output

Output 3.4 is a partial listing of the symmetric pairwise correlation matrix between the
average dividend yields of the 15 firms. Correlation coefficients range from -1 to +1. The
larger the correlations, the greater the tendency for the average dividend yields to move
together over time.

For example, the average dividend yields of Cincinnati Gas & Electric (CIN) and
Detroit Edison (DTE) have a correlation coefficent of .83588, which is higher than the
correlation coefficient of .32667 between Cincinnati Gas and Electric and Texas Utilities
(TXU). You can conclude that the average dividend yields of Cincinnati G&E and Detroit
Edison move together more closely than the average dividend yields of Cincinnati Gas and
Electric and Texas Utilities.

Note that PROC CORR also performs a test that shows the correlation coefficients are
equal to 0. The p-value of the test (listed under the correlation coefficients) indicates the
level of significance. The tests indicate that the correlation between CIN and TXU is not
different from 0, while the correlation between CIN and DTE is different from 0 at the .10
level of significance.

Positively signed correlations indicate that the average dividend yields move in the
same direction. Negatively signed correlations indicate that the average dividend yields
move in opposite directions. Intuitively, you expect that stocks with negatively correlated
average dividend yields are farther apart (in distance) than stocks with positively correlated
average dividend yields.

Printing a PROC CORR Output Data Set

You use the following PROC PRINT statements to print the PROC CORR output data set
DCF10A. Only the first ten observations of the _"TYPE_, NAME _, CIN, TXU, and DTE
variables are shown in Output 3.5.

proc print data=dcfl0a (obs=10) label;

var _type_ _name_ cin txu dte;

title2 'PROC CORR Output Data Set, DCF10A';
run;
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Partial Listing of the

PROC CORR
Output Data Set
DCFI10A
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Sorting and Clustering Stocks
PROC CORR Output Data Set, DCF10a

Cincinnati Texas Detroit

0BS _TYPE_ _NAME_ G&E Utilities Edison
1 MEAN 8.22000 8.88000 9.22000
2 STD 0.17889 0.94974 2,03642
3 N 5.00000 5.00000 5.00000
4 CORR CIN 1.00000 0.32667 0.83588
5 CORR TXU 0.32667 1.00000 0.57160
6 CORR DTE 0.83588 0.57160 1.00000
7 CORR ORU -0.83278 0.21531 -0.62067
8 CORR KU -0.83822 0.14366 -0.67396
9 CORR KAN -0.80170 0.10941 -0.73438
10 CORR UEP 0.02946 0.91565 0.20705

Interpretation of output

The first three data set observations in Qutput 3.5 are the mean, the standard deviation, and
the number of values used to calculate the listed statistics. The remaining observations are
the Pearson correlations which can be used to create a distance matrix for PROC CLUSTER.
The section “Creating a Distance Matrix for PROC CLUSTER” shows you how to tailor the
PROC CORR output data set to create a distance matrix.

Sorting a PROC CORR Output Data Set

You can use the correlation coefficients as a measure of the “closeness” of one stock to
another, as noted in the interpretation of Output 3.4. You may want to sort the PROC CORR
output data set by a stock to discover with which stocks it is most and least correlated. You
sort the DCF10A data set by the variable CIN and print the results with the following
statements. Note that the DATA step deletes unneeded observations. The results are shown
in Output 3.6.

/* Deleting Unneeded Observations */
data dcfl0b (drop=_type_);

set dcflla;

if _type_='CORR’;
run;

/* Sorting by CIN */

proc sort data=dcflOb out=dcfl0bl;
by cin;

run;

/* Printing Sorted Data Set */
proc print data=dcfl0bl;

var _name_ cin;

title2 'Sorted Correlation Matrix’;
run; '
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Output 3.6

Sorting the DCF10B
Data Set by the
Variable CIN

Sorting and Clustering Stocks
Sorted Correlation Matrix

0BS _NAME_ CIN
1 KU -0.83822
2 ORU -0.83278
3 KAN -0.80170
4 D -0.76743
5 AYP -0.70281
6 GMP -0.70035
7 MPL -0.53932
8 WSE -0.39211
9 WG -0.10090
10 OGE -0.01211
11 UEP 0.02946
12 TXU 0.32667
13 PPL 0.43853
1 DTE 0.83588
15 CIN 1.00000

Interpretation of output

The correlation coefficients of CIN are listed in ascending order in Output 3.6. The
correlation coefficients corresponds to the “closeness” of dividend yield movements
between CIN and the dividend yields of the other stocks. This order indicates that KU
(Kentucky Utilities), ORU (Orange and Rockland Utilities), and KAN (Kansas Power and
Light) are “farthest away from” CIN while DTE (Detroit Edison) and CIN, itself are
“closest to” CIN.

The practical use for the information from this example output is that if you want to
include a stock with similar dividend yields to CIN in your portfolio, select DTE. If you
want to include a stock with dissimilar dividend yields to CIN in your portfolio, select KU,
ORU, or KAN.

Creating a Distance Matrix for PROC CLUSTER

Although PROC CLUSTER can perform cluster analysis on coordinate data, for this
example, it is more appropriate to create a distance matrix as input for PROC CLUSTER.
The DCF10B data set (created in the code producing Output 3.6) can be transformed to a
dissimilarities matrix in a DATA step by

Tasks performed by the program

1. converting the correlations (r) to dissimilarities (d) by computing the following (or by
using some other decreasing function):

d=1 —r
d=Vl — r

2
d=1 —r

Note that your choice of conversion can affect the cluster analysis results. For this
example, each correlation is transformed to a dissimilarity by the formula

2. setting the data set TYPE=to DISTANCE.
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Example code

/* Setting TYPE=DISTANCE and */

/* Converting Correlations to Dissimilarities */
data distl(type=distance);

set dcfllb;

cin_d=1-cin;

txu_d=1-txu;

dte_d=1-dte;

oru_d=1-oru;

ku_d =1-ku;

kan_d=1-kan;

uep_d=1-uep;

d_d =1-d;

ayp_d=1-ayp;

mpl_d=1-mpl;

iwg_d=1-1wg;

ppl_d=1-ppl;

oge_d=1-oge;

wse_d=1-wse;

gmp_d=1-gmp;
run;

You use PROC PRINT to print the dissimilarity matrix. Output 3.7 shows only the first
eight variables of the first eight observations.

proc print data=distl (obs=8} label;
title2 'Dissimilarity Distance Matrix’;

run;
Output 3.7 . .
. .. Sorting and Clustering Stocks
Partial Listing of the Dissimilarity Distance Matrix
Dissimilarity
. . OBS CIND TXU_D DTE D ORU_D KU_D KAN_D UEP_D DD

Distance Matrix
1 0.00000 0.67333 0.16412 1.83278 1.83822 1.80170 0.97054 1.76743
2 0.67333 0.00000 0.42840 0.78469 0.85634 0.89059 0.08435 0.93805
3 0.16412 0.42840 0.00000 1.62067 1.67396 1.73438 0.79295 1.66450
4 1.83278 0.78469 1.62067 0.00000 0.01505 0.03962 0.47331 0.11082
5 1.83822 0.85634 1.67396 0.01505 0.00000 0.01657 0.51586 0.04627
6 1.80170 0.89059 1.73438 0.03962 0.01657 0.00000 0.51959 0.05851
7 0.97054 0.08435 0.79295 0.47331 0.51586 0.51959 0.00000 0.58655
8 1,76743 0.93805 1.66450 0.11082 0.04627 0.05851 0.58655 0.00000

Interpretation of output
Output 3.7 prints the dissimilarity matrix to be used as input for PROC CLUSTER. Note the
following items about the dissimilarity matrix:

@ There are no negative values. This particular transformation has a range from 0 to 2.
O The dissimilarity distance matrix is square and symmetric.

0 All elements of the main diagonal are 0. Intuitively, you expect a stock to have 0
distance from itself.
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O Elements that were negative in the correlation matrix are greater than 1 as transformed.

o Correlations that were relatively larger positive values are transformed to relatively
smaller dissimilarities.

These are general characteristics required of dissimilarity matrices of distances used as
input for PROC CLUSTER. Note that these characteristics indicate a decreasing scale of
dissimilarities. Intuitively, you expect stocks to be closest to other stocks with which they
are highly positively correlated and farthest from other stocks with which they are highly
negatively correlated.

Note: An excellent example of distance matrices can be found on most road maps,
that is, the matrix of distances between cities.

After creating a dissimilarity distance matrix, you are ready to perform cluster analysis,
as discussed in the following section.

Performing Cluster Analysis
You can perform clustering analyses with the following SAS/STAT procedures:

0 PROC CLUSTER performs hierarchical clustering using agglomerative methods for
coordinate or distance data.

o PROC FASTCLUS finds a specified number of disjoint clusters for coordinate data.
PROC FASTCLUS is especially suitable for large data sets containing as many as
100,000 observations.

0 PROC VARCLUS finds both hierarchical and disjoint clustering of variables.

To illustrate cluster analysis, the examples in this chapter use PROC CLUSTER and
distance data. The remainder of this section discusses some of the methods of cluster
analysis available with PROC CLUSTER. Each method may produce different clusters. All
methods are based on the standard agglomerative hierarchical clustering process. Each
observation begins as a cluster by itself. The two closest clusters are merged to form a new
cluster that replaces the two old clusters. Merging of the two closest clusters is repeated until
only one cluster is left. The various clustering methods differ in how the distance between
two clusters is computed.

In cluster analysis, distance is Euclidean length. For example, the Euclidean length of
the vector x is the square root of the sum of the squares of the elements of x.

The following list describes some of the clustering methods available in PROC
CLUSTER. Each is specified by the appropriate value for the METHOD= option in the
PROC CLUSTER statement.

single linkage
is obtained by specifying METHOD=SINGLE. The distance between two clusters is the
minimum distance between an observation in one cluster and an observation in the other
cluster. Single linkage has desirable theoretical properties, but it also has a notorious
chaining tendency (tendency for observations to enter existing clusters rather than
initiating new clusters).

average linkage
is obtained by specifying METHOD=AVERAGE. The distance between two clusters is
the average distance between pairs of observations, one in each cluster. By default, the
average distance is squared unless you specify the NOSQUARE option.
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centroid method linkage
is obtained by specifying METHOD=CENTROID. The distance between two clusters is
the squared Euclidean distance between the centroids (also known as means) of the
clusters. This method is more robust to outliers than other methods.

complete linkage
is obtained by specifying METHOD=COMPLETE. The distance between two clusters
is the maximum distance between an observation in one cluster and an observation in
the other cluster. Complete linkage is strongly biased toward producing clusters with
roughly equal diameters and can be severely distorted by moderate outliers.

density linkage
is obtained by specifying METHOD=DENSITY, which uses nonparametric probability
density estimation. You must also specify one of the K=, R=, or HYBRID options to
indicate the type of density estimation to be used.

K= specifies the number of neighbors to use for the Kth-nearest-neighbor
density estimation. The number of neighbors must be at least two but
less than the number of observations.

R= specifies the radius of the sphere of support for uniform-kernal density
estimation. The value of R= must be greater than 0.

HYBRID requests Wong’s hybrid clustering method in which density estimates
are computed from a preliminary cluster analysis using the K-means
method. The DATA= data set must contain means, frequencies, and
root-mean-square standard deviations of the preliminary clusters.

The remaining methods are EML method, flexible-beta method, McQuitty’s similarity
analysis, median method, two-stage density linkage, and Ward’s minimum-variance method.
Note that if you have no idea what kinds of clusters to expect, then select a relatively
unbiased method, such as density linkage. For more information about these methods, see
Chapter 6, “Introduction to Clustering Procedures,” and Chapter 18, “The Cluster
Procedure” in SAS/STAT User’s Guide, Version 6, Fourth Edition, Volume 1.

The next section uses the SAS/STAT CLUSTER procedure to group stocks into clusters
of similar stocks based on the distance data of the DIST1 data set.

K-Nearest-Neighbor Density-Linkage Cluster
Analysis

The clustering analysis of this example uses the density-linkage method with the K=
(Kth-nearest-neighbor method) option. In general, for this method, you decide the
appropriate number of neighbors to initiate a cluster, perform the cluster analysis, and then
examine the number of clusters and the stocks in each cluster.

The following PROC CLUSTER statements perform the Kth-nearest-neighbor
density-linkage cluster analysis with K=2 for the DIST1 data set. The results are printed in
Output 3.8.
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Explanation of syntax

PROC CLUSTER
invokes the CLUSTER procedure. The following options of the PROC CLUSTER
statement are specified.

DATA= specifies the input data set containing observations to be clustered.
Note that you cannot use a TYPE=CORR data set as input to PROC
CLUSTER because PROC CLUSTER uses dissimilarities such as
1 — ror 1 — r2, where r is the correlation. You use a
TYPE=DISTANCE input data set. For this example, the input data
set is the DIST1 data set created for Output 3.7.

METHOD= specifies the clustering method to be used by PROC CLUSTER. In
this example METHOD=DENSITY. (With METHOD=DENSITY,
you must also specify one of the following options: K=, R=,
HYBRID.)

K= specifies the number of neighbors to use for the K-nearest-neighbor
density linkage cluster analysis. In this example, K=2.

OUTTREE= creates an output data set that can be used by PROC TREE to draw a
tree diagram. For this example, the OUTTREE= data set is the
CLUST!1 data set.

VAR
lists numeric variables to be used in the cluster analysis.

ID
identifies observations in the printed cluster history and in the OUTTREE= data set. If
the ID statement is omitted, each observation is denoted by OBn, where 7 is the
observation number.

Example code

proc cluster data=distl method=density k=2 outtree=clustl;
var cin_d txu_d dte_d oru_d ku_d kan_d uep_d d_d
ayp_d mpl_d iwg_d ppl_d oge_d wse_d gmp_d;
id _name_ ;
title 'Sorting and Clustering Stocks’;
title2 'Record of Clustering’;
run;



Output 3.8

Cluster Record for
Kth-Nearest
Neighbor
Density-Linkage
Cluster Analysis for
K=2
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Sorting and Clustering Stocks
Record of Clustering

Density Linkage Cluster Analysis

K=2
Normalized
Maximum Density
Number Frequency Normalized in Each Cluster
of of New Fusion

Clusters -Clusters Joined-- Cluster Density Lesser Greater Tie

14 ORU KU 2 100.0000 100.0000 100.0000

13 cLl4 KAN 3 95.1819 90.8068 100.0000

12 AYP GMP 2 77.2483 77.2483  77.2483

11 cLi2 MPL 3 68.6180 61,7223  77.2483

10 cLi1 D 4 60.6604 49.9371  77.2483

9 UEP IWG 2 52.5478 52.5478 52,5478

8 CL9 0GE 3 51.9341 51.3346  52.5478

7 CL8 WSE 4 27.8406 19,0995 52.5478

6 CL7 TXU 5 26.6384 17.8414  52.5478

5 CLé PPL 6 13.2362 10.5207  52.5478

4 CIN DTE 2 9.1698 9.1698 9.1698

4 modal clusters have been formed.

_— === — — — — —

Interpretation of output
Output 3.8 prints the cluster record of the Kth-nearest-neighbor density-linkage cluster
analysis, where K=2, for the stocks in the DIST1 data set.

Initially, each of the 15 stocks is in a cluster by itself. The first two stocks to cluster
were ORU and KU. This new cluster is designated CL14. After this clustering, only 14
clusters remain (1 consisting of ORU and KU, and 13 consisting of individual stocks).

The second clustering is between the CL14 and KAN. After the second clustering, 13
clusters remain (1 consisting of ORU, KU, and KAN, and 12 consisting of individual
stocks).

The third clustering is a new cluster, initiated by the clustering of AYP (Allegheny
Power) and GMP (Green Mountain Power), designated as CL.12. Note that the fourth and
fifth clusterings chain MPL (Minnesota Power and Light) and D (Dominion Resources) to
the cluster with AYP and GMP, for a total of four stocks in this cluster.

The sixth clustering is a new cluster, initiated by the clustering of UEP (Union Electric)
and IWG (Iowa-Illinois Gas and Electric), designated as CL9. The seventh through tenth
clusterings chain OGE (Oklahoma Gas and Electric), WSE (Wisconsin Energy), TXU
(Texas Utilities), and PPL (Pennsylvania Power and Light) to CL9.

The eleventh clustering is a new cluster, initiated by the clustering of CIN and DTE.
After this clustering, four clusters remain:

o ORU, KU, and KAN
o AYP,GMP,MPL, and D

o UEP, IWG, OGE, WSE, TXU, and PPL
0 CINand DTE
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If your research indicates that K th-nearest-neighbor density-linkage cluster analysis
(where K=2) is appropriate, then you conclude that there are four clusters of stocks in the
DIST1 data set. The stocks in each of the clusters are more similar to each other than to
stocks in other clusters. In the section “Creating a Tree Diagram” later in this chapter, you
use PROC TREE to create a tree diagram of the clusterings; that is, a visual representation
of the clustering record.

The column titled “Frequency of New Cluster” contains the number of observations in
the new cluster. The column titled “Normalized Fusion Density” contains the estimated
density of the cluster. Consider a closed sphere centered at x with radius r (where r is the
distance to the Kth nearest neighbor). The estimated density at x is the proportion of the
observations within the sphere divided by the volume of the sphere.

The column titled “Normalized Maximum Density in Each Cluster” lists the lesser (or
minimum value) and the greater (or maximum values) of the two maximum-density values.

Additional K-Nearest-Neighbor Density-Linkage Cluster

Analysis

Your research may indicate that K=3 density-linkage cluster analysis is appropriate.
Specifying K=3 yields the following clusters.

o KU, KAN, GMP, AYP, ORU, MPL, and D
o UEP, IWG, OGE, TXU, WSE, PPL, DTE, and CIN

Specifying K=4 yields one cluster containing all of the stocks in the DIST1 data set. In
general, the value you select for K depends on the number of stocks in your data set, the
dissimilarity distance between them, and the magnitude of similarity appropriate for your
analysis.

R-Radius Density-Linkage Cluster Analysis

The cluster analysis of this example uses the density-linkage method with the R= option
(radius of the clustering sphere). The following PROC CLUSTER statements perform the
R-radius density-linkage cluster analysis for R=.1. The results are printed in Output 3.9.

proc cluster data=distl method=density r=.1 outtree=clust2;
var cin_d txu_d dte d oru_d ku_d kan_d uep_d d_d
ayp_d mpl_d iwg_d ppl_d oge_d wse_d gmp_d;
id _name_ ;
run;



Output 3.9

Cluster Record

for R-Radius
Density-Linkage
Cluster Analysis for
R=.1
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Sorting and Clustering Stocks
Record of Clustering

Density Linkage Cluster Analysis

R=0.1
Normalized
Maximum Density
Number Frequency Normalized in Each Cluster
of of New Fusion

Clusters -Clusters Joined-- Cluster Density Lesser (Greater Tie
14 KU GMP 100.0000 100.0000 100.0000 T
13 cLi4 AYP 100.0000 100.0000 100,0000 T

12 CLi13 KAN 100.0000 100.0000 100.0000
11 cri2 ORU 83.3333 71.4286 100.0000 T
10 cLi1 MPL 83.3333 71.4286 100.0000 T

UEP OGE 63.4921 57.1429 71.4286 T
CL8 ING 63.4921 57.1429  71.4286
CL7 TXU 53.5714 42,8571 71.4286 T

2
3
4
5
6
9 CL1O0 D 7 83.3333 71.4286 100.0000
2
3
4
CL6é WSE 5 53.5714 42.8571  71.4286

vl oy -1 @

5 modal clusters have been formed.

— — e —— —— ——— . —

Interpretation of output
In Output 3.9, the first two stocks to cluster were KU and GMP. This new cluster is
designated CL14. The next five clusterings chain AYP, KAN, ORU, MPL, and D to CL14.
Next, a second cluster is initiated consisting of UEP and OGE. This new cluster is
designated CLS8. The last three clusterings chain IWG, TXU, and WSE.
The remaining three stocks CIN, DTE, and PPL are farther than .1 away from these two
clusters; therefore, these three stocks remain in clusters by themselves.
The five clusters are

o KU, GMP, AYP, KAN, ORU, MPL, D
o UEP, OGE, IWG, TXU, and WSE

o PPL
o CIN
o DTE

Lastly, note that there are several ties in the cluster history. When there are ties, the
cluster analysis results depend on the order of the observations in the input data set. In
general, ties that occur early in the cluster history have little effect on the later clusterings.
Ties that occur in the middle part of the cluster history are cause for further investigation.
Ties late in the cluster history indicate important indeterminancies.

Additional R-Radius Density-Linkage Cluster Analysis

Your research may indicate that a different R=radius value is the appropriate criterion for
your cluster analysis. In general, the smaller the specified R= value, the greater the number
of clusters and the more similar the observations in each cluster.
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The following table lists the R= radius values and the number of clusters that are
formed for the 15 stocks in the DIST1 data set.

R=Radius Number of

Values Clusters
.025 10
.030 8
.035-.075 7
.080 6
.085-.130 5
.135-.140 4
.145-.160 3
.165-.195 2
.200 1

Additional Methods of Cluster Analysis

This section shows the results of using PROC CLUSTER with the following methods of
cluster analysis:

O single linkage
O average linkage
o0 centroid method

O complete linkage

The following PROC CLUSTER statements perform the cluster analyses for the DIST1
data set. The only differences in the statements for each method are the specifications for the
METHOD-= option and the name of the OUTTREE= data set. The results are presented in
Output 3.10.

/* Single Linkage Cluster Analysis */
proc cluster data=distl method=single outtree=clust3;
var cin_d txu_d dte_d oru_d ku_d kan_d uep_d d_d
ayp_d mpl_d iwg_d ppl_d oge_d wse_d gmp_d;
id _name_ ;
run;

/* Average Linkage Cluster Analysis */
proc cluster data=distl method=average outtree=clust4;
var cin_d txu_d dte_d oru_d ku d kan_d uep_d d_d
ayp_d mpl_d iwg_d ppl_d oge_d wse_d gmp_d;
id _name_ ;
run;

/* Centroid Method of Cluster Analysis */
proc cluster data=distl method=centroid outtree=clust5;
var cin_d txu_d dte_d oru_d ku_d kan_d uep d d_d
ayp_d mpl_d iwg_d ppl_d oge_d wse_d gmp_d;
id _name_ ;
run;
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/* Complete Linkage Cluster Analysis */
proc cluster data=distl method=complete outtree=clusté6;
var cin_d txu_d dte_d oru_d ku_d kan_d uep_d d_d
ayp_d mpl_d iwg_d ppl_d oge_d wse_d gmp_d;

id _name_ ;
run;
Output 3.10
l’p . Sorting and Clustering Stocks
Clustering Records Record of Clustering
Single Linkage Cluster Analysis
Mean Distance Between Observations = 0.58138
Number Frequency Normalized
of of New Minimum
Clusters  --Clusters Joined-- Cluster Distance Tie
14 ORU KU 2 0.025885
13 CL14 KAN 3 0.028506
12 AYP GMP 2 0.033509
11 CL13 CL12 5 0.040670
10 cLi1 MPL 6 0.041938
9 UEP IWG 2 0.049261
8 CL9 OGE 3 0.050425
7 CL10 D 7 0.051836
6 CL8 WSE 4 0.135529
5 TXU CL6 5 0.145086
4 CL5 CL7 12 0.226888
3 CL4 PPL 13 0.246043
2 CIN DTE 2 0.282289
1 CL2 CL3 15 0.336884
Sorting and Clustering Stocks
Record of Clustering
Average Linkage Cluster Analysis
Root-Mean-Square Distance Between Observations = 0.803778
Number Frequency Normalized
of of New RMS
Clusters --Clusters Joined-- Cluster Distance Tie
14 ORU KU 2 0.018723
13 AYP GMP 2 0.024238
12 KAN CL13 3 0.032916
11 UEP IWG 2 0.035631
10 CL11 OGE 3 0.042714
9 CL14 CLi2 5 0.050223
8 CL9 D 6 0.087520
7 CL8 MPL 7 0.106158
6 CL10 WSE 4 0.132771
5 TXU PPL 2 0.177965
4 CIN DTE 2 0.204182
3 CL5 CL6 6 0.460039
2 CL3 CL7 13 0.806514
1 CL4 CL2 15 1.706684
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Sorting and Clustering Stocks
Record of Clustering

Centroid Hierarchical Cluster Analysis

Root-Mean-Square Distance Between Observations = 0.803778

Number Frequency Normalized

of of New Centroid
Clusters --Clusters Joined-- Cluster Digtance Tie

14 ORU KU 2 0.018723

13 AYP GMP 2 0.024238

12 KAN CL13 3 0.030604

11 UEP IWG 2 0.035631

10 CL11 OGE 3 0.038821

9 CL14 CL12 5 0.046137

8 CL9 D 6 0.083247

7 CL8 MPL 7 0.098483

6 CL10 WSE 4 0.130697

5 TXU PPL 2 0.177965

4 CIN DTE 2 0.204182

3 CL5 CL6 6 0.447331

2 CL3 CL7 13 0.773574

1 CL4 CL2 15 1.652093

Sorting and Clustering Stocks
Record of Clustering

Complete Linkage Cluster Analysis

Mean Distance Between Observations = 0.58138

Number Frequency Normalized

of of New Maximum
Clusters  --Clusters Joined-- Cluster Distance Tie

14 ORU KU 2 0.025885

13 AYP GMP 2 0.033509

12 UEP IWG 2 0.0459261

11 KAN CL13 3 0.049878

10 CL12 OGE 3 0.066572

9 CL14 CL1l 5 0.124908

8 CL9 MPL 6 0.182588

7 CL8 D 7 0.219629

6 CLic WSE 4 0.240652

5 TXU PPL 2 0.246043

4 CIN DTE 2 0.282289

3 CL5 CL6 6 0.995718

2 CL3 CL7 13 2.249289

1 CL4 CL2 15 3.161819

Interpretation of output

Output 3.10 prints the cluster histories of the stock in the DIST1 data set for the

single-linkage, average-linkage, centroid-method, and complete-linkage cluster analyses.
Note the following similarities among the methods:

0 ORU and KU are the first stocks to cluster.
0  CIN and DTE are the last stocks to join a cluster.

O There are no ties.
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Note the following differences among the methods:

o The order of the stocks clustering differs among the methods for the intermediate
clusterings.

o The single-linkage approach initiates four clusters, while all other methods initiate five
clusters.

o The normalized distances of the single linkage, the average linkage, and the centroid
method are derived from the squared input distances. The normalized distances of the
complete method are derived from the values themselves. You use the NOSQUARE
option in the PROC CLUSTER statement to prevent input values from being squared.

Use Cluster Analysis with Care

You are encouraged to perform cluster analysis with as many different methods as necessary
until you are fully satisfied with your understanding of the results. Only when you are fully
satisfied with your understanding of the results of your cluster analyses should you consider
basing your investment strategies upon them. A

When you are fully satisfied with the results of your cluster analysis and you have
selected a distance criteria, then you can select the stock clusters of interest for building your
portfolio.

Additional Processing of Data Prior to
Performing Cluster Analysis

For some data sets and for some purposes, you may find it useful to process the data prior to
performing cluster analysis using some or all of the following procedures:

0 PROC ACECLUS (Approximate Covariance Estimation for CLUStering) estimates the
pooled within-cluster covariance matrix from coordinate data without knowledge of the
clusters. If the clusters have equal and known within-cluster covariances, then the data
can be transformed to make the clusters spherical so that any of the clustering methods
can find the correct clusters. PROC ACECLUS outputs a data set containing the
transformed variables as canonical scores to be used in the cluster analysis proper.

For example, the following PROC ACECLUS statements transform the variables X
and Y into the canonical variables CAN1 and CAN2, which can be used by PROC
CLUSTER for cluster analysis:

proc aceclus data=SASdataset! out=SASdatasetZ p=n;
var X y;
run;

proc cluster data=SASdatasetZ method=method;
var canl can2;
run;

o PROC FACTOR calculates scoring coefficients and performs factor rotations. Factor
analysis explains the correlations or covariances among a set of variables in terms of a
limited number of unobservable latent variables (also known as scoring factors).
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PROC FACTOR output data sets can be used as input for PROC VARCLUS. For
example, the following PROC FACTOR statements specify a rotation, print the scoring
factors, and create an output data set to be used as input for PROC VARCLUS.

proc factor data=SASdatasetl rotate=method score
outstat=SASdatasetZ;
run;

proc varclus data=SASdataset2 initial=input;
run;

o PROC PRINCOMP performs a principal component analysis and outputs principal
component scores. Principal component analysis transforms a set of variables into a
small number of linear combinations (new variables) that retain as much of the
information as possible. If you have many different characteristics (variables) for each
stock, you may want to perform principal component analysis to obtain a smaller set of
characteristics for cluster analysis.

If your data are categorical (qualitative), use PROC CORRESP (instead of PROC
PRINCOMP). If you want to find linear and nonlinear transformations of variables to
optimize properties of the transformed variables’ covariance or correlation matrix, you
use PROC PRINQUAL.

o PROC STANDARD standardizes variables to a specified mean and variance. With
coordinate data, you can use the STANDARD option in the PROC CLUSTER
statement to transform variables to a mean of 0 and standard deviation of 1. Note that
outliers should be removed before standardization (unless the TRIM=r option is also
specified in the PROC CLUSTER statement, which omits the specified percentage (1)
of data points.)

Creating Tree Diagrams

You can use PROC TREE and the CLUST1 data set to create a tree diagram of the stages of
the cluster analysis performed in Output 3.8. The following PROC TREE statements create
the tree diagram.

Explanation of syntax

DATA= specifies the input data set defining the tree. For this example, the
CLUST]1 data set is specified.

HORIZONTAL orients the tree diagram with the height axis horizontal and the root at
the left. If this option is not used, the height axis will be vertical, with
the root at the top. For some tree diagrams, specifying the
HORIZONTAL option can make the tree diagram considerably easier
to read.
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Example code

proc tree data=clustl horizontal;
title 'Sorting and Clustering Stocks’;
title2 ’'K-th Nearest Neighbor Clustering’;
title3 'Tree Diagram’;

run;
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Interpretation of output

The tree diagram in Output 3.11 is a visual representation of the clustering history shown
numerically in Output 3.8. In this horizontally oriented tree diagram, density is measured
horizontally across the the tree diagram, with lower densities to the left. (Note that the right
side of the diagram corresponds to closer Kth nearest neighbors, while the left side
corresponds to more distant Kth nearest neighbors.) The root of the tree diagram is to the
left, where the names of the variables are listed.

Each stock has two rows of Xs associated with it. The apper line of Xs indicates
clustering with the stock above, while the lower line of Xs indicates the clustering with the
stock below. (Note that the first stock joins only the cluster containing the second stock,
while the last stock joins only the cluster containing the next to last stock.)

For example, the next-to-last stock, Wisconsin Energy (WSE), clusters with Oklahoma
Gas and Electric (OGE) at a density of about .28, and it clusters with Pennsylvania Power
and Light (PPL) at a density of about .13. You can conclude that WSE is more similar to
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OGE than PPL, based on the criterion (dividend yield) used in this analysis. In general, the
most similar stocks cluster first, while the least similar cluster last.

Additional Tree Diagrams

You can create tree diagrams for the clustering histories of Outputs 3.9 and 3.10 with the
following PROC TREE statements. The MAXHEIGHT= and MINHEIGHT= options are
used to specify the maximum and minimum values for some of the tree diagrams. The
results are shown in Output 3.12.

proc tree data=clust? horizontal;
title2 ’R-Radius Density Linkage Clustering’;
title3 'Tree Diagram’;

run;

proc tree data=clust3 maxheight=.35 minheight=0 horizontal;
title2 ’‘Single Linkage Clustering Tree Diagram’;
tictled’;

run;

proc tree data=clust4 maxheight=1.8 minheight=0 horizontal;
title2 ’Average Linkage Clustering Tree Diagram’;
run;

proc tree data=clust5 maxheight=1.8 minheight=.3 horizontal;
title2 'Centroid Linkage Clustering Tree Diagram';
run;

proc tree data=clust6é maxheight=3.25 minheight=.3 horizontal;
title2 'Complete Linkage Clustering Tree Diagram’;
run;



Sorting and Clustering Stocks 0 Creating Tree Diagrams 83
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Centroid Linkage Clustering Tree Diagram
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Printing A Specified Number of Clusters

You can use the NCLUSTERS= option in the PROC TREE statement to specify the number
of clusters in the OUT= data set. Then, you can print out the clusters using PROC PRINT. In
the following PROC TREE statement, the NCLUSTERS= option specifies that the output
data set contains three clusters, the OUT= option creates the output data set CLUST3A, and
the NOPRINT option suppresses the printed output.

proc tree data=clust3 nclusters=3 out=clust3a noprint;
run;

The following PRINT procedure prints the output data set CLUST3A, created by the
previous TREE procedure. The results are shown in Output 3.13.

proc print data=clust3a;
title2 'Three Clusters of the’;
title3 ’'Single Linkage Clustering’;
run;
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Output 3.13
Printing a Specified
Number of Clusters
in the Output Data
Set CLUST3A

Sorting and Clustering Stocks
Three Clusters of the
Single Linkage Clustering
0OBS _NAME CLUSTER CLUSNAME
1 ORU 1 CL3
2 KU 1 CL3
3 KAN 1 CL3
4 AYP 1 CL3
5 GMP 1 CL3
6 MPL 1 CL3
7 UEP 1 CL3
8 IWG 1 CL3
9 OGE 1 CL3
10 D 1 CL3
11 WSE 1 CL3
12 TXU 1 CL3
13 PPL 1 CL3
14 CIN 2 CIN
15 DTE 3 DTE

Interpretation of output
Output 3.13 lists the three clusters of the CLUST3A data set. The variable labeled
CLUSTER contains the cluster number, while the variable CLUSNAME contains the cluster

name.

The first cluster consists of the first 13 observations. The second cluster consists of
CIN, while the third cluster consists of DTE. For cluster analyses of large numbers of
variables, the NCLUSTERS= option in the PROC TREE statement can be particularly
useful in analyzing which stocks join which clusters.

Learning More

o For more information on the DATA step, see SAS Language, Reference, Version 6,
First Edition and SAS Language and Procedures, Usage 2, Version 6, First Edition.

0 For more information on PROC ACECLUS, PROC CLUSTER, PROC CORRESP,
PROC FACTOR, PROC FASTCLUS, PROC PRINCOMP, PROC PRINQUAL, PROC
TREE, and PROC VARCLUS, see SAS/STAT User’s Guide, Version 6, Fourth Edition,
Volume 1 and Volume 2.

0 For more information on PROC CORR, PROC PLOT, PROC PRINT, PROC SORT,
and PROC STANDARD, see SAS Procedures Guide, Version 6, Third Edition and SAS
Language and Procedures, Usage 2, Version 6, First Edition.
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Introduction

The Capital Asset Pricing Model (CAPM) is used to predict the return on assets. The CAPM
relates the returns of an asset to the returns of the market portfolio. Thus, by using the
CAPM, you can predict returns on assets, given returns on the market portfolio. In this
chapter, the asset is limited to one or more common stocks, but in general, the asset may be
any financial instrument or capital asset that offers returns.

The CAPM was pioneered by the modern portfolio work of Harry Markowitz (1952 and
1959) and was formulated independently by Sharpe, Linter, and Mossin (see Sharpe, 1985).
This chapter shows you how to fit, test, interpret, and use CAPM equations with the SAS
System.
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The CAPM in Risk Premium Form

The basic time series CAPM equation developed in risk premium form by Black, Jensen,
and Scholes (1972) is

R, - R, =a+fX (RM_, - Rf") +e,

The parameters and variables of the CAPM equation are defined as follows:

Q,

B

the intercept parameter to be estimated, often called Alpha, and on average «; is
expected to be 0.

the slope parameter to be estimated, often called Beta. £ is a relative measure of
systematic, nondiversifiable risk. Ranking stocks by (the absolute value of) f is the
same as ranking them by systematic risk.

B is a proportionality factor of asset i’s dependence on the market’s rate of
return. The market § is 1.0. The returns of a stock with a 3 of .5 change 50 percent
as much as market returns change (on average). The returns of a stock with a § of
1.5 change 150 percent as much as market returns change (on average). The returns
of a stock with a f of -.5 change 50 percent as much as market returns change (on
average) but in the opposite direction.

the random error term for the ith asset in the rth period, interpreted as
nonsystematic (diversifiable) risk; holding additional assets can eliminate this risk.

the return on asset i in the tth period,

R Pil B Pil—-l+Dir

Lt—=1

In this equation, P, , is the price of the ith asset at the end of the th time period; D; ;
are the dividends (if any) of the ith asset paid during the tth period; and P; ,_; is the
price of the i-th asset at the end of the #-1th time period.

the return on a risk-free asset for the tth period. The return on 30-day U.S. Treasury
bills is often used in empirical work.

the return on the market portfolio (all assets) for the rth period. The Center for
Research on Securities Prices (CRSP) at the University of Chicago provides an Ry
based on the value-weighted transactions of all stocks listed on the New York and
American Stock exchanges.

The differences on each side of the CAPM equation are the risk premiums.R;, — R;,

is the risk premium of asset i in the 7th period (that is, the excess return over the risk-free rate
that investors require to compensate them for the additional risk of investing in asset i over
the rth period), and Ry, — R/, is the overall market’s risk premium for the ¢th period.

The CAPM is based on the following assumptions:

Investors make buying/selling/holding decisions based on the expected values and
standard deviations of the returns of their portfolios. The latter is a quantifiable measure
of portfolio risk suggested by Markowitz (1952).

Investors are indifferent between capital gains and dividends.
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0 There is perfect competition in the stock market; that is, there are many buyers and
sellers, and an individual investor cannot affect the price of a stock by an individual
action.

There are other assumptions that simplify the derivation of the CAPM but are not
required. Some of these assumptions are that
O assets are infinitely divisible
O there are no transaction costs
O all assets are marketable
O investors can borrow and lend at the risk-free rate.

For more information about the CAPM, see Markowitz (1959), Sharpe (1985), and
Black, Jensen, and Scholes (1972).

Preliminary Analysis
Before fitting the CAPM regression, you need to perform the following tasks:
1. Use the DATA step to create a data set named RETURN1, which contains

o returns of the Gerber Corporation’s common stock (GERBER)
O market returns (R_M)
O risk-free asset returns (R_F)

O newly created variables representing the risk premiums of Gerber and the market
(R_GERBER and R_MKT, respectively)

O date values created by the INTNX function.
2. Use PROC PRINT to print the first five observations of the RETURN1 data set.

3. Use PROC PLOT to plot the risk premiums of GERBER versus the risk premiums of
the market.

Creating the RETURN1 Data Set

The following statements create the RETURNI1 data set and print the first five observations.
The results are shown in Output 4.1.

data returnl;
input r_m r_f gerber Q@;
retain date ’'01dec77'd;
date=intnx('month’,date,1);
format date monyy.;

/* Creating of New Variables */
r_gerber = gerber - r_f;
rmkt = rm - r_f;
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cards;
-.045
.063
071
-.189
.058
026
-.013
-.097
.124
.080
.065
.006
-.014
-.008
-.033
.062
-.079
.041
-.006
.136
.065
.097
-.017
-.082
-.029
-.003
-.058
-.035
.097
-.010
012
.026
-.009
-.009
-.076
.018

/* Printing the First Five Observations

/* Labeling Variables */
label r_m='Market Rate of Return’
r_f='Risk-Free Rate of Return’
gerber='Rate of Return for Gerber Corporation’
r_gerber='Risk Premium for Gerber Corporation’
r_mkt='Risk Premium for Market’;

.00487
.00491
.00528
.00685
.00761
.00764
.00728
.00913
.00883
.00753
.00602
.00895
.01092
.01084
.01154
.01003
.00949
.00972
.00714
.00620
.00646
.00652
.00714
.00678
00712
.00741
.00771
.00688
.00606
.00601
.00562
.00577
.00548
.00444
.00458
.00418

.048
.004
.012
.138
.042
.088
.096
.090
.048
.027
.005
.026
.056
031
.021
.012
.004
.044
.019
.009
.015
119
.007
.000
.065
.025
112
.160
.091
.037
.036
.097
.088
113
.105
.069

.010
.067
.079
.084
011
.014
.095
116
112
.062
.025
.092
.009
.064
031
.069
101
.003
122
.049
.028
.080
.034
.066
.030
.058
.146
.019
.012
.019
.005
.059
.049
.049
.049
.000

.00494
.00513
.00607
.00719
.00761
.00772
.00789
.00819
.01073
.00630
.00731
01137
.01096
.01255
.01169
.00816
.00946
.00908
.00503
.00614
.00599
.00649
.00668
.00683
.00672
.00627
.00852
.00602
.00586
.00512
.00545
.00540
.00523
.00469
.00343
.00420

.160
.046
.079
.078
.023
.023
.148
.014
.004
.233
.008
.023
.020
.008
.031
011
111
.043
130
.072
.024
.016
.062
077
.091
.087
.018
.094
.006
.234
025
.137
.034
.040
J111
.020

proc print data=returnl (obs=5) label;

var date r_gerber r_mkt r_m r_f gerber;

title 'CAPM Analysis’;
title2 'Returns and Risk Premiums’;

run;

.050
.007
.002
.015
123
.075
.039
.086
.243
.086
.015
.056
.067
.003
164
.039
.028
.078
.008
.014
.043
.048
.000
.012
.003
.005
.000
.001
.008
.003
.055
013
.048
.004
.047
.005

*/

.00526
.00527
.00645
.00690
.00769
.00715
.00802
.00747
.01181
.00503
.00860
.00977
.01025
.01128
.01054
.00740
.01067
.00914
.00563
.00648
.00686
.00673
.00702
.00693
.00763
.00748
.00830
.00612
.00650
.00536
.00571
.00479
.00508
.00478
.00416
.00382

.036
.028
.104
.086
.065
.095
.009
.036
.237
011
.066
.070
.023
.066
.000
077
.136
.033
.209
.015
.084
114
.049
.063
.003
105
.165
.005
013
.031
.048
.063
174
.038
037
.060
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Creating the
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Output 4.2
Scatter Plot of Risk
Premiums
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CAPM Analysis
Returns and Risk Premiums

Rate of
Risk Premium Risk Market Rigk-Free Return for
for Gerber Premium Rate of Rate of Gerber

OBS  DATE Corporation for Market Return Return Corporation

1 JANTS -0.05287 -0.04987 -0.045 .00487 -0.048
2 FEBT8 0.15506 0.00506 0.010 .00494 0.160
3 MARTS -0.04126 0.04474 0.050 .00526 -0.036
4  APR7S -0.00091 0.05809 0.063 .00491 0.004
5 MAY78 0.04087 0.06187 0.067 .00513 0.046

————————— —

Plotting Risk Premiums

The following PROC PLOT statements plot the risk premiums (return in excess of the
risk-free rate) of Gerber Corporation common stock versus the risk premiums of the market.
The HREF= option draws a reference line perpendicular to the specified values on the
horizontal axis. In this example, a reference line is drawn at the value of 0.
The results of the statements are shown in Output 4.2.

/* Plotting Gerber Returns versus the Market Returns */
proc plot data=returnl vpct=125;

plot r_gerber*r_mkt = ’'*' / href=0;

title2 ’Cerber Corporation Stock Premiums’;

title3 ’Versus Market Premiums’;

run;
CAPM Analysis
Gerber Corporation Stock Premiums
Versus Market Premiums
Plot of R_GERBER*R_MKT. Symbol used is ’*'.
(NOTE: 42 obg hidden.)
R_GERBER | |
0.5 + |
| |
| |
l l * *
l * kkd ** *
l * * hkdkdkd k kdk kkd ¥ *
0.0 + * * *k dkdkhkdkdhk dhkhkkdhk kkk dd
l * dkhkkh kk hkkkdd * *k
| * * |
| * |
| |
| |
-0.5 + |
mmgmmmmm e $mmmmmmm s pmmmmmmmmmmen pommmmmmmmeen pmmmmmmm e +-
-0.3 -0.2 -0.1 0.0 0.1 0.2

Rigk Premium for Market
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Interpretation of output

Output 4.2 provides visual evidence of the relationship between the risk premiums of Gerber
Corporation and the risk premiums of the market. For any given level of market risk
premium, there is a corresponding range of Gerber risk premiums. For example, in the
scatter plot, the reference line for market risk premiums of ) indicates the range of observed
risk premiums of Gerber common stock. For a market risk premium of 0, the observed range
of Gerber risk premiums is about -.20 to .25. This range is typical for common stock risk
premiums.

The range of risk premiums is a visual representation of the risk associated with holding
stock. That is, you may receive returns at the upper end of the range, or you may receive
returns at the lower end of the range. By holding more than one stock in your portfolio, you
can reduce risk.

Additional Plots

Because the RETURN1 data set contains time series data, you may also want to visually
examine the fluctuations of Gerber (returns and risk premiums), the market (returns and risk
premiums), and the risk-free returns over time. By examining the plots of the data versus
time, you may discover visual evidence of trends or patterns for later analysis. This section
shows you how to use the PLOT and TIMEPLOT procedures to create these plots.

Using PROC PLOT to plot data versus time

You can create two sets of three scatter plots with the following PROC PLOT statements.
The first PLOT statement creates the first set of scatter plots: R_GERBER versus DATE,
R_MKT versus DATE, and R_F versus DATE. The second PLOT statement creates the
second set of scatter plots: GERBER versus DATE, R_M versus DATE, and R_F versus
DATE.

proc plot data=returnl vpct=125;
/* Plotting Risk Premiums and Risk-Free Returns versus Time */
plot (r_gerber r_mkt r_f)*date;
/* Plotting Returns versus Time */
plot {gerber r_m r_f)*date;
run;

The results from these statements are not shown.

You can create two overlaid scatter plots with the following PROC PLOT statements.
The first PLOT statement creates the first overlaid scatter plot: R_GERBER versus DATE,
R_MKT versus DATE, and R_F versus DATE, plotted with the symbols G, M, and F,
respectively. The second PLOT statement creates the second overlaid scatter plot: GERBER
versus DATE, R_M versus DATE, and R_F versus DATE, plotted with the symbols G, M,
and F, respectively.

proc plot data=returnl vpct=125;
/* Overlay Plot of Risk Premiums and Risk-Free Returns */
plot r_gerber*date='G’
r_mkt*date='M’
r_f*date='F’ / overlay;
/* Overlay Plot of Returns */
plot gerber*date='G’
r_m*date="M’
r_f*date='F' / overlay;
run;
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The results from these statements are not shown.

Using PROC TIMEPLOT to plot data versus time
You can also create plots of data versus time with PROC TIMEPLOT. PROC TIMEPLOT
has several distinctive features, including the following:

0 The vertical axis of PROC TIMEPLOT plots always represents time.

0 Each observation appears sequentially on a separate line of the plot. No observations are
hidden, as can occur with PROC PLOT.

0 Each observation in the plot is accompanied by a printing of the values plotted.

You create two sets of three time plots with the following PROC TIMEPLOT
statements. The first PLOT statement creates the first set of time plots: R_GERBER,
R_MKT, and R_F, plotted with the symbols G, M, and F, respectively. The second PLOT
statement creates the second set of time plots: GERBER, R_M, and R_F, plotted with the
symbols G, M, and F, respectively. The REF= option in the PLOT statement draws lines on
the plot perpendicular to the specified values on the horizontal axis. For this example, a
reference line is drawn at 0.

The MAXDEC= option in the PROC TIMEPLOT statement specifies the maximum
number of decimal positions to print. The default is MAXDEC=2. The ID statement prints
the values of the ID variable in the listing but does not plot them.

proc timeplot data=returnl maxdec=5;
/* Plotting Risk Premiums and Risk-Free Returns versus Time */
plot r_gerber='G’ r_mkt='M' r_f='F' / ref=0;
/* Plotting Returns versus Time */
plot gerber='G’ r_m='M' r_f='F' / ref=0;
id date;
run;

The results from these statements are not shown.

You can create two overlaid time plots with the following PROC TIMEPLOT
statements. The first PLOT statement creates the first overlaid time plot: R_GERBER,
R_MKT, and R_F, plotted with the symbols G, M, and F, respectively. The second PLOT
statement creates the second overlaid time plot: GERBER, R_M, and R_F, plotted with the
symbols G, M, and F, respectively.

proc timeplot data=returnl maxdec=5;
/* Plotting Risk Premiums and Risk-Free Returns versus Time */
plot r_gerber='G' r_mkt='M' r_f='F' / overlay;
/* Plotting Gerber, Market, and Risk-Free Returns vs Time */
plot gerber='G’ r_m='M’' r_f='F' / overlay;
id date;
title2 ’'Time Plot’;
title3 ’Gerber, Market, and Risk Free’;
run;
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Output 4.3
Plotting Risk
Premiums and the
Risk-Free Return
Using PROC
TIMEPLOT

The first twelve observations of the first overlaid timeplot are shown in Output 4.3.

CAPM Analysis
Time Plot
Gerber, Market, and Risk Free

DATE Risk Premium Risk Risk-Free min max
for Gerber Premium Rate of -0.29158 0.22888

Corporation for Market Return L it *

JAN78 -0.05287 -0.04987 0.00487 | @F |
FEB78 0.15506 0.00506 0.00494 | @ G |
MAR78 -0.04126 0.04474 0.00526 | GF M |
APR78 -0.00091 0.05809 0.00491 | @M |
MAY78 0.04087 0.06187 0.00513 | F GM |
JUN78 0.02273 0.00173 0.00527 | @G |
JUL78 -0.01728 0.06572 0.00528 | e M |
AUGT78 -0.08507 0.07293 0.00607 | G F M |
SEP78 0.09755 -0.00445 0.00645 | e ¢ |
0CT78 -0.14485 -0.19585 0.00685 | MG F |
NOV78 0.07081 0.07681 0.00719 | F @ |
DEC78 -0.09290 0.00810 0.00690 | G FM |

Interpretation of output
In Output 4.3, the vertical axis represents time, and the symbols G, M, and F represent
Gerber risk premiums, the market risk premiums, and the risk-free returns, respectively. The
@ symbol indicates that multiple variables have approximately the same value. For
example, in January 1978 the risk premium for Gerber and the risk premium of the market
are approximately -.05.

For complete documentation on PROC TIMEPLOT, see SAS Procedures Guide,
Version 6, Third Edition and SAS Language and Procedures, Usage 2, Version 6, First
Edition.

Fitting a CAPM Regression

CAPM regressions can be fit and tested using the SAS/STAT REG procedure. To analyze
the RETURNI1 data set, you need to perform the following tasks:

0 Fit the CAPM to the risk premiums of the Gerber Corporation’s common stock over the
period January 1978-December 1986.

0 Perform individual -tests on the estimated parameters.

o Calculate the Durbin-Watson D statistic.

0 Test for heteroskedasticity, the lack of constancy of the residual variance.

o Create an output data set containing the predicted and residual values.

The results for the following example are shown in Output 4.4.
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Explanation of syntax

PROC REG
invokes the REG procedure. The DATA= option specifies the RETURNI1 data set.

MODEL
specifies the regression model to be fit. In this example, R_GERBER is the dependent
variable and R_MKT is the independent variable. The following options of the MODEL
statement are specified:

DW specifies the Durbin-Watson D statistic and that the first-order
autocorrelation coefficient be printed.

SPEC specifies a test for heteroskedasticity.

OUTPUT
creates an output data set containing the requested variables and diagnostic statistics of
the fitted model. The following options of the OUTPUT statement are specified.

OUT= names the output data set. For this example, the output data set
is named R_OUT]I.

RESIDUAL= specifies that the residual values be included in the output data
set in the specified variable. For this example, the residuals are
named GERBER_R. You may also specify this option using
the alias R=.

PREDICTED= specifies that the predicted values be included in the output
data set in the specified variable. For this example, the
predicted values are named P1. You may also specify this
option using the alias P=.

L95= specifies that the lower 95 percent confidence limit values for
an individual prediction be included in the output data set in
the specified variable. For this example, the lower 95 percent
confidence limit values are named L.

U95= specifies that the upper 95 percent confidence limit values for
an individual prediction be included in the output data set in
the specified variable. For this example, the upper 95 percent
confidence limit values are named U.

TEST
tests linear hypotheses about the parameters estimated in the preceding MODEL
statement. For this example, an F-test is used to test if the slope parameter equals 1.0.
The F-test is labeled SLOPE.

Example code

proc reg data=returnl;
model r_gerber = r_mkt / dw spec;
output out=r_outl r=gerber_r p=pl 195=1 u95=u;
slope: test r_mkt=1;
title2 'Gerber Corporation Common Stock’;
title3;

run;
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44
Output . CAPM Analysis
CAPM Fit to Gerber Corporation Common Stock
Returnsﬁom Model: MODEL1
Common Stock Of Dependent Variable: R_GERBER Risk Premium for Gerber Corporation
the Gerber )
. Analysis of Variance
Corporation
Sum of Mean
Source DF Squares Square P Value Prob>F
Nodel 1 0.12676 0.12676 23,101 0.0001
Error 106 0.58166 0.00549
C Total 107 0.70843
1]
Root MSE 0.07408 R-square 0.1789
Dep Mean 0.01043 Adj R-8q 0.1712
c.v. 710.15401

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
(2] 3]
INTERCEP 1 0.006299 0.00717972 0.877 0.3823
R_MKT 1 0.530929 0.11046401 4.806 0.0001
Variable

Variable DF Label

INTERCEP 1 Intercept
R_MKT 1 Risk Premium for Market

CAPM Analysis
Gerber Corporation Common Stock

Dependent Variable: R_GERBER
© Test of First and Second Moment Specification

DF: 2 Chisq Value: 0.3299 Prob>Chisq: 0.8480
Durbin-Watson D 2.250 ©
(For Number of Obs.) 108

1st Order Autocorrelation -0.129

Dependent Variable: R_GERBER (6]
Test: SLOPE Numerator: 0.0989 DF: 1 P value: 18.0316
Denominator: 0.005487 DF: 106 Prob>F: 0.0001

Interpretation of output
The fitted CAPM for the Gerber Corporation is

R_GERBER = .006299 + .530929 x R_MKT .

The following list interprets items of interest from Output 4.4. The numbers of the list
correspond to the callout numbers in the output.

© The R-square for the model is .1789, and the Adjusted R-square is .1712. R-square
shows the portion of the dependent variable’s variance that is accounted for by the
model. Regressing the risk premium of Gerber stock on the risk premium of the market
accounts for 17.89 percent of the observed variation in the risk premium of Gerber’s
stock. (R-squares for CAPM regressions are often low; this is a typical value.)
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For CAPM regressions, R-square can be interpreted as the portion of risk premium
movements accounted for by the movements of the market. R-square measures the
systematic (nondiversifiable) risk of the risk premiums. An R-square of 1.0 indicates
that market movements account for all of the movements in the risk premium; that is, all
risk is systematic and cannot be diversified away by investing in other stocks. An
R-square of 0 indicates that market movements account for none of the movements in
the risk premium; that is, all risk is nonsystematic and can be diversified away by
investing in other stocks. An R-square between 0 and 1 indicates that some risk is
systematic and cannot be diversified away, while some risk is nonsystematic and can be
diversified away. For the Gerber stock, the R-square of .1789 indicates that about 18
percent of the risk of holding Gerber stock is related to market movements and cannot
be diversified away, and that about 82 percent of the risk of holding Gerber stock is not
related to market movements and can be diversified away.

The estimated intercept « is .006299. A value of « greater than 0 would indicate that
this stock systematically returns more than is expected for any level of market returns.
A value of « less than 0 would indicate the stock systematically returns less than is
expected for any level of market returns.

The estimated slope parameter /3 is .530929. This value implies that if the market risk
premium rose by 1 percent, then the risk premium of stock issued by the Gerber
Corporation would rise by about .53 percent. The risk premiums of Gerber stock move
with the market risk premiums and are less volatile than the market.

Note that the estimates of « and  have been calculated with historical data. There are
no guarantees that in the future these estimates will be accurate.

The #-test that « is not different from 0 yields a ¢-statistic of .877 and a p-value of .3823.
This test implies that at significance levels less than the p-value, the intercept is not
different from 0. Typical levels of significance for empirical research are .05 and .10.

The t-test that f is not different from 0 yields a ¢-statistic of 4.806 with a p-value of
.0001. You can conclude that the estimated slope parameter differs from 0 and that the
risk premiums of the Gerber common stock are related to the risk premiums of the
market. This conclusion enables you to use the estimated CAPM equation to predict the
risk premium of Gerber common stock given the risk premium of the market.

The White test for heteroskedasticity, nonconstancy of the residual variance, labeled
Test of First and Second Moment Specification, yields a chi-square value of .3299 with
a p-value of .8480. At the .05 level of significance, you conclude that the residuals have
constant variance (homoskedasticity).

The Durbin-Watson D statistic is 2.250. Although they are not shown in this output, the
Dj and Dy, limits are approximately 2.31 and 2.35, respectively, for the .05 level of
significance. If the D statistic is used as a test for first-order autocorrelation, then you
would conclude that these residuals are not first-order autocorrelated at the .05 level of
significance. You may want to use the SAS/ETS ARIMA or AUTOREG procedures for
further investigation.

The F-test that 3 is not different from 1 (the market 3) yields an F-statistic of 18.0316
with a p-value of .0001. You conclude that the estimated slope parameter differs from
1.0. If a stock has a 3 greater than 0 and less than 1, the returns of that stock move with
the market and, on average, are less volatile than the market.
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For additional information on the test for heteroskedasticity, see White (1980) and
SAS/ETS Software: Applications Guide 2. For additional information on the Durbin-Watson
D statistic and its interpretation as a test for autocorrelation, see Durbin and Watson (1951),
Durbin (1960), and SAS/ETS Software: Applications Guide 2.

Plotting Residuals

Residual values generated from CAPM regressions contain important financial and
statistical information. By definition, the residuals are the difference between the actual and
predicted values. In terms of the CAPM, the residuals represent the random component of
the stock returns — a portion of the returns that are not associated with market movements.

Residual values are important in a statistical sense in that they can be used to test the
statistical assumptions of the linear regression model. In Output 4.3, the Durbin-Watson D
statistic and the White test are used to formally test for autocorrelation and
heteroskedasticity, respectively.

In many cases, it is useful to plot the residuals and visually examine the distribution. By
plotting the residuals versus time, you can visually check for autocorrelation. By plotting the
residuals versus the independent variable, you can visually check for outliers and constancy
of residual variance (homoskedasticity).

Residuals versus Time

You can use PROC PRINT to print the actual, predicted, and residual values as well as the
upper and lower 95 percent confidence limits. Only the first five observations are printed in
Output 4.5.

You can use the following PLOT procedure statements to plot the CAPM regression
residuals (GERBER_R) versus time (DATE) and the independent variable. The scatter plot
produced by these statements is shown in Output 4.5.

Explanation of syntax

VREF= draws reference lines on the plot perpendicular to the specified values on the
vertical axis. In the following example, a reference line is drawn at 0.

VAXIS= specifies values for tick marks on the vertical axis. In the following example,
the tick marks run from -.25 to .25 at intervals of .1.

HAXIS= specifies values for tick marks on the horizontal axis. In the following
example, the tick marks run from December 1977 to December 1986 at
yearly intervals. Note that dates are put in single quotes and followed by a
A‘d‘ ”»

Example code

(* priating First Pive Qhservatiaqus *(
proc print data=r_outl (obs=5);
var date r_gerber u pl 1 gerber_r;
title2 ’'Actual, Predicted, and Residual Values’;
title3 'with Upper and Lower Confidence Limits’;
run;



Output 4.5

First Five CAPM
Residual Values and
Residuals Plotted
versus Time and the
Market Risk
Premiums
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/* Plotting Residuals versus Time */
proc plot data=r_outl vpct=125;
plot gerber r*date='*' / vref=0 vaxis=-.25 to .25 by .1
haxis='01dec77'd to '31dec86'd by year;
title2 'Gerber Residuals versus Date’;

title3;
run;
CAPM Analysis
Actual, Predicted, and Residual Values
with Upper and Lower Confidence Limits
0BS DATE R_GERBER U Pl L GERBER_R
1 JAN78 -0.05287 0.12477 -0.027154 -0.17908 -0.02572
2 FEB78 0.15506 0.15876 0.007275 -0.14422 0.14779
3 MAR78 -0.04126 0.18382 0.032145 -0.11953 -0.07340
4 APR78 -0.00091 0.19235 0.040512 -0.11132 -0.04142
5 MAY78 0.04087 0.19477 0.042881 -0.10901 -0.00201

CAPM Analysis
Gerber Residuals versus Date

Plot of GERBER_R*DATE. Symbol used is '*’.

|
0.25 +
R | * * *
e 0.15+ * * * *
8 | * * * * * * % * k%
i 0'05 + * * * kkk * % ¥ * *kkk * *k *
d I_____*__*_** __________ | JE JRpupipuy L2 L JUE L JUDES JUPEPIEE JEpEpE 2.3 JUUE JUPE DU
u _0'05 + kk ok k ok K kk k¥ k¥ * & *kk L *k & ddkd *k k¥
a | * kK kk * * * * * *
1-0.15 + * *
|
-0.25 +
|
———tmmm-- pommm—- $mmm—- $mmmm-- $mmm--- $mmmm-- EERLEEE EECTEEE 4mmmmee +==

DEC77 DEC78 DEC79 DEC80 DEC81 DEC82 DEC83 DEC84 DEC85 DEC86

DATE

Interpretation of output
Output 4.5 shows the actual, predicted, and residual values contained in the variables
R_GERBER, P1, and GERBER_R, respectively. The upper and lower 95 percent confidence
limits are contained in the variables U and L.

The scatter plot is a plot of the Gerber CAPM regression residuals versus time. Using
this plot, you can visually check for patterns in the residuals versus time.

When using time series data, you should visually check for and formally test for
autocorrelation. An often used test for autocorrelation is performed with the Durbin-Watson
D statistic. Visual patterns include

O alternating residual signs, which are a symptom of negative autocorrelation.

O sequences of like-signed residuals, which are a symptom of positive autocorrelation.

o extreme values for a sequence of residuals or extreme values that occur on a regular
basis, which are symptoms of systematic factors affecting the estimated CAPM
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Output 4.6
CAPM Residuals
Plotted versus the
Market Risk
Premiums

regression. You may want to examine these values to determine their cause and
respecify the CAPM regression with one or more additional variables.

A statistical consequence of an autocorrelated error structure is that the tests of
significance for the CAPM regression parameters are inaccurate. A financial consequence of
a truly autocorrelated error structure is that you may have discovered a systematic effect that
can be exploited for additional profit. For example, if you conclude that the CAPM residuals
display positive autocorrelation, this implies that sequences of same sign residuals are likely.
In more practical terms, this period’s overpriced stock may still be overpriced next period. If
you conclude that the CAPM residuals display negative autocorrelation, then this period’s
overpriced stock is more likely to be next period’s underpriced stock, and vice versa.

Residuals versus the Independent Variable

You can use PROC PLOT to plot the CAPM regression residuals versus the independent
variable. The following statements plot the residuals (GERBER_R) versus the market risk
premiums (R_MKT).

proc plot data-r_outl vpct=125;
plot gerber r*r mkt="*' / vref=0 vaxis=-.25 to .25 by .l;
title2 'Gerber Residuals versus R_MKT';

title3;
run;
CAPM Analysis
Gerber Residuals versus R_MKT
Plot of GERBER_R*R_MKT. Symbol used is ’*’,
|
0.25 +
R [ * % *
e 0.15 + L *
8 | * * *k ek Tk *
i 0.05 + * kkk kdkk * * ¥ *k * *
d I _____________________________ L J Tk _dkk _kkw _ ok _____
u _0.05 + * * * * % kkdkkdkdk Kk kkkkkdk ok ¥ *
a l * * * k¥ *% * * * *
1-0.15 + * *
|
-0.25 +
|
mmmmmmm e B B [EECEEE T E gmmmmmmmmmeem +--
-0.3 -0.2 -0.1 0.0 0.1 0.2
Risk Premium for Market

Interpretation of output
In Output 4.6 the scatter plot is a plot of the Gerber CAPM regression residuals versus the
independent variable, R_MKT, in the CAPM regression.

You can visually check for constancy of the residual variance using this scatter plot.
Consistent residual variance implies the range or distribution of the residuals is
approximately the same width for all levels of market risk premiums. The residuals for the
Gerber CAPM appear to have a relatively consistent variance, which corroborates the
conclusion from the White test of the first and second moments of the residual distribution
with the SPEC option in PROC REG, as shown in Output 4.3.
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Visual and statistical evidence of nonconstancy of residual variance may indicate
heteroskedasticity or possibly a misspecification of the estimated model. A statistical
consequence of heteroskedastic residuals is that the tests of significance of the CAPM
regression parameters are inaccurate. A financial consequence is that for some range of
market returns, the stock returns have a wider distribution; that is, the forecast for returns are
less precise, implying greater risk.

Plotting Predicted and Actual Values

Each predicted value represents the expected value of the stock’s risk premium for a given
level of market risk premiums. On average, the predicted values are accurate. However,
there are no guarantees that any particular predicted value will be accurate.

You can use the SAS/GRAPH GPLOT procedure to plot the actual and predicted values
and 95 percent confidence limits. The GPLOT procedure enables you to create
high-resolution graphics and to connect data points as well as to perform many other
plotting tasks.

You should be aware that PROC GPLOT does have system-specific characteristics, and
it requires that you specify a device driver and possibly additional options for some systems.
You can specify a device driver to run SAS/GRAPH software (including PROC GPLOT)
with the following GOPTIONS statement:

GOPTIONS DEVICE=device-driver-name,

For more information on specifying device drivers, see SAS/GRAPH Software:
Reference, Version 6, First Edition, Volume 1 and Volume 2.

The PROC GPLOT example in this book is run with the following graphics options. To
make sure that your graphs look as much like this example, submit the following program:

goptions reset=global gunit=pct cback=white border
htitle=6 htext=3 ftext=swissb colors=(black);

When you want to create a series of graphs using PROC GPLOT and you want to use a
variety of symbols, precede the PROC GPLOT statements with this GOPTIONS statement:

goptions reset=symbol;

This statement resets the symbols for each plot. After ending your SAS/GRAPH
session, the graphics options are reset to the default values.

You may want a legend in your PROC GPLOT plot. You can create a legend by using
PROC SORT to sort the data and by using array processing in a DATA step to assign labels
to the variables. The following statements perform these tasks and produce no output:

/* Sorting the R_OUT1 Data Set */
proc sort data=r_outl;

by r_mkt;
run;

/* Assigning Labels to Variables for PROC GPLOT Legend */
data regdata (keep=y_value pt_type r_mkt});

set r_outl;

label pt_type='Observation Type';

array regvar(4) r_gerber pl 1 u;

array varlabel (4) $12 _temporary_
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("Actual’ 'Predicted’ 'Lower Limits' 'Upper Limits'};
do 1i=1 to 4;
y_value=regvar(i);
pt_type=varlabel (i);
output;
end;
run;

Explanation of syntax

PROC GLOT
invokes the GPLOT procedure. The DATA= option specifies that the REGDATA data
set is to be used.

PLOT
specifies the vertical axis variable (listed first) to be plotted versus the horizontal axis
variable (listed second). The following options of the PLOT statement are specified:

HAXIS= specifies the horizontal axis for the plot.
VAXIS= specifies the vertical axis for the plot.
HMINOR=  specifies the number of minor tick marks between each major tick mark

on the horizontal axis.

VMINOR=  specifies the number of minor tick marks between each major tick mark
on the vertical axis.

SYMBOL
defines the characteristics of the lines and symbols displayed in the plot. The following
options of the SYMBOL statement are specified:

V= specifies a plot symbol for the data points.

H= specifies the height of plot symbols.

I= specifies interpolation between each point.

FONT= specifies a font.

L= specifies the type of interpolation line between points.

COLOR=  specifies the symbol color.

AXIS
specifies the axes of the plot. The following options of the AXIS statement are
specified:
LABEL= labels the axes.
ANGLE= specifies the angle of the axes labels, where 0 implies horizontal and 90
implies vertical.
ORDER= specifies the range and order of major tick marks on the axes.
TITLE
titles the plot.
QUIT

ends the interactive PROC GPLOT session.
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The graph produced by these statements is presented in Display 4.1.

Example code

proc gplot data=regdata;
plot v_value*r_mkt=pt_type / haxis=axisl vaxis=axis2
hminor=4 vminor=4;

symboll v=* h=3.5 pct font=swissb color=black;

symbol2 i=join font=swissb 1=2 color=blue;

symbol3 i=join font=swissb 1=1 color=green;

symbol4d i=join font=swissb 1=2 color=red;

axisl order=(-.3 to .15 by .05);

axis2 label=(angle=90 ’'Gerber Stock Risk Premium’)
order=(-.5 to .5 by .25);

titlel ’Actual and Predicted Values’;

title2 ‘with Upper and Lower Confidence Limits’;

run;
quit;
Display 4.1 .
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Interpretation of output

The scatter plot in Display 4.1 shows the actual and predicted risk premiums and the upper
and lower 95 percent confidence limits. As you may expect, most of the actual values are
within the confidence limits and are centered about the predicted values.

In the plot, the confidence limits provide visual evidence of the expected range of the

risk premiums. On average, you would expect the actual values to lie between the upper and
lower 95 percent confidence limits 95 percent of the time. The closer the confidence limits
are to the predicted values, the more precise are forecasts of Gerber returns based on market
returns.

The predicted values are the best point estimate of stock risk premiums, given market

risk premiums. The predicted values reflect the part of the risk premiums associated with
market movements, that is, the systematic (nondiversifiable) risk of holding the stock. The
residual values (as shown in Output 4.6) are the difference between the stock’s expected risk
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premiums and the actual risk premiums. The residual values reflect the part of the risk
premiums that are not associated with market movements, that is, the nonsystematic
(diversifiable) risk of holding the stock.

Applying the CAPM to Additional Stocks

This section shows you how to apply the CAPM to additional stocks. The CAPM
regressions you fit to these stocks give you more examples of the magnitude of the estimated
parameters and the goodness of fit for typical CAPM regressions. The results of these
regressions are also used in later examples.

In this section, you proceed as follows:

Use a DATA step to create a data set named RETURN?2, which contains returns for
additional common stocks.

Use a DATA step to merge the RETURN1 and RETURN2 data sets and to create a new
data set, RETURN3, containing the risk premium values of the stocks.

Use PROC PRINT to print the first ten observations of selected variables.
Use PROC REG to fit the CAPM regressions.

The RETURN?2 data set contains monthly returns on common stocks from January 1978

through December 1986 for the following firms:

0

0

Tandy Corporation (TANDY)

General Mills (GENMIL)
Consolidated Edison (CONED)
Weyerhauser (WEYER)

International Business Machines (IBM)
Digital Equipment Corporation (DEC)
Mobil Corporation (MOBIL)

Texaco Corporation (TEX)

Carolina Power and Light (CPL)

Tasks performed by the program
These tasks are performed by the following example:

0

m}

]

The first DATA step creates the RETURN?2 data set.
The second DATA step merges the RETURN1 and RETURN2 data sets.

PROC PRINT prints the first ten observations of the risk premiums of the Tandy
Corporation contained in the variable R_TANDY. These values are printed in Output
4.7.
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Example code

/* Creating the RETURN2 Data Set */
/* Containing Common Stock Returns */
data return2;
input tandy genmil coned weyer ibm dec mobil tex cpl @;
retain date ’0ldec77'd;
date=intnx{’month’,date,1);
format date monyy.;
label tandy='Rate of Return for Tandy Corporation’
genmil='Rate of Return for General Mills’
coned='Rate of Return for Con Edison’
weyer='Rate of Return for Weyerhauser’
ibm='Rate of Return for IBM'
dec='Rate of Return for DEC’
mobil="Rate of Return for Mobil Corporation’
tex='Rate of Return for Texaco’
cpl='Rate of Return for CPL’;
cards;
-.075 -.099 -.079 -.116 -.029 -.100 -.046 -.054 -.069
-.004 .018 -.003 -.135 -.043 -.063 -.017 -.010 .006
.124 -.023 .022 .084 -.063 .010 .049 .015 .017
.055 .046 -.005 .144 .130 .165 .077 .000 -.063
.176 .063 -.014 -.031 -.018 .038 -.011 -.029 .091
-.014 .008 .034 .005 -.004 -.021 -.043 -.025 .021
.194 .075 .011 .164 .092 .107 .028 .042 .034
.222 -.051 .024 .039 .049 -.017 .056 .000 -.011
-.100 -.012 .048 -.021 -.051 -.037 .064 .010 .033
-.206 -.032 -.067 -.090 -.046 -.077 -.069 -.066 -.117
.086 .009 .035-.033 .031 .064 .037 .055 .067
.085 .022 .005 -.034 .108 .117 .041 .000 .011
-.046 -.032 .076 .203 .034 -.012 .061 .037 .029
-.135 -.079 -.011 -.038 -.017 -.066 -.002 -.010 -.028
L122 -.043  .000 .097 .052 .088 .029 .068 .006
-.094 .022 -.057 -.069 -.004 .005 .079 .059 -.099
-.148 035 .032 -.013 -.022 -.028 -.086 -.040 .059
.096 -.043 .066 .053 -.035 .059 .088 .083 .069
.006 -.013 .015 .000 -.049 .009 .018 .032 -.042
.250  .138 -.021 .165 .016 .140 .111 .041 .025
-.005 -.032 .000 -.015 -.032 -.027 .180 .030 .006
-.037 -.067 -.049 -.083 -.079 -.010 -.031 -.053 -.083
L1700 .005 .109 -.065 .060 .095 .051 .067 .041
.037 .005 .005 .104 -.013 .018 .063 -.029 -.006
.032 .003 -.039 .069 .066 .058 .075 .229 -.071
.143 -.096 -.061 .033 -.062 .034 .366 .161 -.072
-.105 .011 .006 -.129 -.122 -.182 -.176 -.179 .047
-.038 .059 .140 .027 -.016 .047 .119 .082 .188
.256  .018 .043 .089 .025 .016 .003 .007 .006
.041 -.013 .040 -.026 .061 .021 -.024 .032 .103
L4460 .012 -.027 .140 .111 .183 .054 .003 -.032
.167 .018 -.005 -.041 .017 .081 -.059 .031 -.025
.157 -.013 -.010 -.064 -.021 .045 .007 -.037 -.025
-.015 -.073 -.021 .017 .039 -.028 .059 .087 -.075
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.212 -.030 -.035 .015 .035 .056 .193 .399 .000
.022 .102 .131 .007 -.004 .035 -.081 -.109 .051
-.139 .079 -.015 .028 -.052 -.089 -.082 -.145 .010
.082 .013 -.021 .025 .011 .006 -.067 -.012 -.035
.299 .146 .151 .088 -.029 .075 -.042 -.063 .066
.092 .019 .061 -.050 -.060 .075 -.025 -.003 .017
.136.030 .017 -.031 .017 .107 -.092 -.055 .049
-.167 .094 .022 .021 -.015 -.112 .053 .025 .026
.032 -.045 .026 -.081 -.030 -.014 .021 .045 -.003
-.063 -.031 .021 -.061 -.002 -.065 -.057 .003 .027
-.008 .036 -.013 -.113 -.018 -.019 -.106 -.093 -.006
.241 .067 .112 -.020 -.048 .102 .025 .008 .031
-.037 -.030 .038 .179 .075 -.065 .038 .065 .065
-.046 -.024 -.008 -.072 .044 -.060 -.090 -.047 -.006
.059 -.030 .042 -.079 .119 .027 -.016 -.045 .054
-.101 .098 .036 .014 -.014 -.049 -.016 -.004 .012
-.051 .020 .022 -.009 -.034 -.104 -.038 -.029 .054
.053 .076 .050 .059 .075 .054 -.011 -.008 .016
-.163 -.027 .016 -.086 -.029 -.056 .092 .034 -.023
.023 .050 -.024 -.015 -.014 -.073 -.038 -.017 -.047
.050 .038 -.032 -.012 .082 -.055 -.073 -.060 -.007
.017 .032 .133 .221 .087 .273 .157 .056 .108
-.026 .000 .039 -.029 .041 -.061 .043 .027 -.098
.454 160 -.050 .150 .089 .133 .020 .056 .056
.273 -.025 -.011 .141 .094 .175 -.040 .012 .025
-.042 -.020 .123 -.040 .113 -.052 .069 .029 .042
.091 -.039 -.012 .023 .027 .225 .055 .036 .080
.032 .067 .060 .065 .010 -.010 .009 .008 -.006
-.004 .061 .048 -.023 .028 .034 .095 .039 .006
.084 .066 .045 .091 .150 -.060 .091 .098 -.007
-.010 .023 -.012 -.067 -.041 -.052 -.052 -.038 .023
-.168 -.026 .000 -.013 .081 .075 .077 .018 .000
-.123 -.072 .017 -.071 .001 -.142 -.060 .036 -.007
-.048 -.010 -.023 -.011 .001 .007 .118 .059 .006
-.083 -.037 .087 -.033 .062 -.005 -.050 -.037 .069
-.058 .116 .101 -.046 -.001 -.364 -.032 -.014 .065
.082 -.014 -,025 .151 -.066 .065 -.033 .011 -.005
.095 -.009 .005 -.069 .039 .034 .009 .021 -.057
-.190 -.009 .005 -.039 -.065 .208 .084 .108 .023
-.100 -.073 -.069 -.093 -.026 -.024 .024 .151 -.061
-.008 -.018 .055 .094 .034 .057 -.028 -.122 .024
.120 .065 .031 -.088 -.002 .053 .029 .022 -.029
-.231 .018 .021 -.087 -.044 -.071 -.146 -.105 -.006
-.037 .055 .020 .019 -.019 -.043 .010 -.046 .019
.029 -.018 .054 .036 .047 -.009 -.092 -.044 .006
.079 .061 .029 .055 .127 .159 .261 .140 .099
-.100 .011 .051 -.069 .004 -.025 .013 .045 .045
-.096 -.010 .019 .035 .012 .093 .014 -.080 .060
.027 -.072 .004 .032 -.023 .006 -.042 .007 .058
.005 .017 .084 .026 .011 .070 -.052 .000 .005
.170 .095 -.021 .084 .108 .084 .053 .044 .040
119 .000 .034 -.016 -.009 -.067 .071 .022 -.019
.094 .054 .057 -.081 -.052 -.071 .000 .014 .069
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-.133 -.083 .019 .003 -.004 -.050 .027 .111 .047
.091 137 .098 .031 .025 .057 .029 -.065 .023
.087 .060 .046 -.004 -.038 -.101 -.032 .031 .066

-.119 -.099 -.084 .020 .062 .080 .002 -.030 -.095
.063  .002 .043 -.013 -.028 .032 -.013 .021 .014

-.011 .081 -.032 -.074 -.022 .036 .004 -.007 -.046
.098 .013 .066 .008 .048 .040 .100 .099 .098
.021 .114 .032 .171 .085 .073 -.008 -.175 .045
.098 .027 .082 -.004 .113 .095 -.040 -.077 .043

-.040 .019 .022 .072 -.026 .162 -.021 -.038 .047
.096 .121 .048 .123 .003 .093 -.003 .071 .069

-.047 .072 .021 .051 .004 -.063 -.026 -.004 .080

-.058 -.051 -.006 -.037 .031 .119 .042 .050 -.065
.094 .109 .042 .010 -.018 .037 .082 .069 .000

-.092 .071 .017 -.061 -.039 -.063 .012 -.042 .046

-.078 .049 .125 -.048 -.096 .066 -.022 -.036 .130
.018 .003 .061 .122 .055 .105 .173 .135 .112

-.108 -.088 -.139 -.058 -.031 -.110 .053 .026 -.077
242,123,045 .135 -.081 .103 .020 .043 .040
.094 .011 .070 .006 .037 .048 .044 -.028 .006

-.023 -.034 -.046 -.041 -.056 .008 .019 .047 -.034

/* Merging RETURNL and RETURN2 Data Sets */

/* Merging Stock Returns with Market and Risk Free Returns */
data return3;

merge returnl return2;

by date;

/* Creating New Variables */

r_tandy = tandy - r_f;

r_genmil = genmil - r_f;
r_coned = coned - r_f;

r_weyer = weyer - r_f;
r_ibm=ibm - r_f;

r_dec=dec - r_f;

r_MmOopll = mopi1l - r_t;
r_tex=tex - r_f;

r_cpl=cpl - r_f;

/* Labeling Variables */

label r_tandy='Risk Premium for Tandy Corporation’
r_genmil='Risk Premium for General Mills’
coned='Risk Premium for Con Edison’
weyer='Risk Premium for Weyerhauser’
ibm='Risk Premium for IBM’
dec='Risk Premium for DEC’
mobil='Risk Premium for Mobil Corporation’
tex='Risk Premium for Texaco’
cpl='Risk Premium for Carolina Power & Light’;

run;
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Output 4.7

First Ten
Observations of

R TANDY in
RETURN3 Data Set

/* Printing First 10 Observations */
proc print data=return3 (obs=10) label;

var date r_tandy;

title2 'Risk Premiums for Tandy Corporation’;
run;

CAPM Analysis
Rigk Premiums for Tandy Corporation
Risk Premium
for Tandy
OBS DATE Corporation
1 JANT78 -0.07987
2 FEB78 -0.00894
3 MAR78 0.11874
4 APR78 0.05009
5 MAY78 0.17087
6 JUN78 -0.01927
7 JUL78 0.18872
8 AUGT8 0.21593
9 SEP78 -0.10645
10 0CT78 -0.21285

Fitting Additional CAPM Regressions

You can use one invocation of PROC REG to fit many CAPM regression models. The
following statements fit CAPM regressions to the risk premiums of nine new firms in the
RETURNS3 data set. The DW option specifies the calculation of the Durbin-Watson D
statistic. The SPEC option performs the White test of the first and second moments of the
residual distributions, that is, a test for heteroskedasticity. The output from these statements
is not shown.

proc reg data=return3;
model r_tandy = r_mkt / dw spec;
model r_genmil = r_mkt / dw spec;
model r_coned = r_mkt / dw spec;
model r_weyer = r_mkt / dw spec;
model r_ibm = r_mkt / dw spec;
model r_dec = r_mkt / dw spec;
model r_mobil = r_mkt / dw spec;
model r_tex = r_mkt / dw spec;
model r_cpl = r_mkt / dw spec;

run;

The slope parameter associated with R_MKT in each equation is the CAPM g for that
stock. These Bs are used in Chapter 5, “Portfolio Creation with Linear Programming.”

For this example, TEST statements are included for each CAPM regression. The TEST
statements, labeled SLOPE, enable you to test if the estimated CAPM slope parameter is
different from unity.



The Capital Asset Pricing Model (CAPM) 0 Applying the CAPM to Additional Stocks 113

Lastly, the OUTEST= option in the PROC REG statement creates an output data set
containing the parameter estimates and optional statistics. In this example, the OUTEST=
data set is named CAPMEST1.

proc reg data=return3 outest=capmestl;

model r_tandy = r_mkt / dw spec;

slope: test

model r_genmil = r_mkt / dw spec;

slope: test

r_mkt=1;

r_mkt=1;

model r_coned = r_mkt / dw spec;

slope: test

r_mkt=1;

model r_weyer = r_mkt / dw spec;

slope: test

model r_ibm
slope: test

model r_dec
slope: test

r_mkt=1;

= r_mkt / dw spec;
r_mkt=1;

= r_mkt / dw spec;
r_mkt=1;

model r_mobil = r_mkt / dw spec;

slope: test

model r_tex
slope: test

model r_cpl
slope: test
run;

r_mkt=1;

= r_mkt / dw spec;
r_mkt=1;

= r_mkt / dw spec;
r_mkt=1;

The results from these statements are not shown, but selected statistics are shown in the
following table. Each row contains a fitted CAPM regression for the specified company.
Also included in the table are selected statistics from the CAPM regression for the Gerber
Corporation fit in Output 4.4.

Table 4.1 CAPM Regressions

F-statistic

Intercept Slope slope=1.0 White Test
Company (¢-statistic) (¢-statistic) (p-value) R-Sq. D.W. (p-value)
Gerber .006299 .530929 18.0316 .1789 2.250 .3299
(0.877) (4.806) (.0001) (.8480)
Tandy .013467 1.048230 .0896 2852 1.901 2.0226
(1.286) (6.504) (.7653) (.3637)

(continued)
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Table 4.1 (continued)
F-statistic
Intercept Slope slope=1.0 White Test
Company (¢-statistic) (¢-statistic) (p-value) R-Sq. D.W, (p-value)
General .006604 .138337 99.1320 .0235 2.022 4547
Mills (1.174) (1.598) (.0001) (.7967)
Con Ed .013044 102044 140.4491 .0168 2.136 .0835
(2.649) (1.347) (.0001) (.6691)
Weyer — .003558 723119 8.4187 3514 2.325 10.1817
(— .574) (7.578) (.0045) (.0062)
IBM .000095 395362 65.6575 2094 1.915 1.1133
(0.020) (5.298) (.0001) (.5731)
DEC .005509 715704 5.8982 .2607 2.149 6732
(0.724) (6.114) (.0168) (.7142)
Mobil .004688 .685563 10.7477 3252 2.047 3.4948
(0.752) (7.148) (.0014) (.1742)
Texaco .000391 578628 18.3080 2457 2.011 2.2995
(0.061) (5.876) (.0001) (.3167)
CP&L .005803 206764 103.5415 .0622 1.879 3.5000
(1.145) (2.652) (.0001) (.1738)

The columns of the table contain the following information:

The first column contains the firm names.

The second column contains the estimated intercepts: ¢; and the ¢-statistics for the test if
a equals 0. Only the intercept for the Consolidated Edison (CONED) CAPM regression
is different from O at the .05 level. (Note the critical t-value is about 1.98 for the .05
level of significance.)

The third column contains the estimated slope parameters: 3; and the f-statistics for the
test if B equals 0. All of the slope parameters are different from O at the .05 level, except
for General Mills and Consolidated Edison. (Note the critical t-value is about 1.98 for
the .05 level of significance.)

The fourth column contains the F-statistic and p-value (in parenthesis) for the test if the
estimated slope parameter equals unity. For the larger F-statistics, the p-values may be
smaller than .0001.

The fifth column contains the R-squares for the CAPM regressions. Note that CONED,
GENMIL (General Mills) and CPL have the lowest R-squares and low s (relative to
this sample), implying that the returns of their stocks are less correlated with the market
than other stocks in the sample.

The sixth column contains the Durbin-Watson D statistics. When used as a test statistic
in tests for first-order autocorrelation, the Durbin-Watson D lower and upper limits, Dy
and Dy, at the .05 level, are approximately 2.31 and 2.35, respectively, for the upper end
of the distribution and approximately 1.65 and 1.69 for the lower end of the distribution.
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These limits are appropriate for regression models with 1 independent variable and 108
observations. The limits vary for different levels of significance, different numbers of
independent variables, and different numbers of observations.

The D-statistic value for Weyerhauser (WEYER) is 2.325, which is in the
inconclusive region. None of the remaining D values are significant at the .05 level. For
practical purposes, you conclude that there is little evidence of a problem with
autocorrelated residuals for these regression models.

O  The seventh column contains the chi-square statistics and p-values for the White test for
heteroskedasticity. There is little evidence of problems with heteroskedasticity except
for the WEYER CAPM regression. You may want to perform further analysis on this
equation.

When using the CAPM regressions to predict stock risk premiums, be aware that the
predicted values are more accurate for models with R-squares closer to 1 because R-squares
closer to | imply

O higher correlations of stock risk premiums with market risk premiums

O smaller parameter standard errors, hence, smaller confidence intervals for parameters
(for a given level of significance)

o smaller confidence intervals for predicted values (for a given level of significance).

Further Analysis

You may want to continue the analysis of these stocks. You may find items of statistical,
economiic, or financial interest that suggest further analysis. Areas of further analysis
discussed in this section are heteroskedastic residuals, adding more regressors to CAPM
regressions, and joint estimation of seemingly unrelated CAPM regressions.

Heteroskedastic Residuals

One example of further statistical analysis is correcting the CAPM regression of the
Weyerhauser Corporation for heteroskedastic residuals.

If you conclude that the residuals of the Weyerhauser CAPM regression are
heteroskedastic and the heteroskedasticity is of the form that the residual variance is
proportional to the market risk premiums, then you want to fit a weighted least-squares
CAPM regression to mitigate the effects of the heteroskedasticity.

To estimate weighted least-squares CAPM regressions, use a DATA step to create the
new variables weighted by R_MKT, then use PROC REG. The following statements create
the weighted variables to fit a CAPM regression model corrected for heteroskedasticity:

data returnd;
set return3;
r_weyerw=r_weyer/r_mkt;
r_mkt_w=1/r_mkt;

run;

proc reg data=returnd;
model r_weyerw = r_mkt_w / dw spec;
B ne_1: test intercept=1;

run;
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The fitted model is of the following form:
— 1
R_WEYERW = a X R MKT +

The intercept and slope parameters have exchanged roles. The TEST statement labeled
B_NE_1 tests if the CAPM g differs from unity.

For more information on heteroskedasticity, see SAS/ETS Software: Applications Guide
2 and Pindyck and Rubinfeld (1991), Econometric Models and Economic Forecasts, Third
Edition.

Testing the Residual Distributions for Normality

Another example of further analysis you may want to perform is testing the CAPM
regression residual distributions for normality. An assumption of ordinary least-squares
(OLS) regression is that the residuals are distributed normally. This assumption enables you
to use standard F and ¢ distributions to test the estimated parameters.

You can test the CAPM regression residual distributions for normality by first creating
output data sets (in PROC REG with OUTPUT statements) containing the residuals from
each CAPM regression merging the output data sets in a DATA step, and then using the
NORMAL option in the UNIVARIATE procedure. The PROC REG statements to fit the
CAPM regressions and create output data sets containing the residuals are as follows:

proc reg data=return3;
model r_tandy = r_mkt;
output out=r_out2 r=tandy_r;

model r_genmil = r_mkt / dw spec;
output out=r_out3 r=g_mils_r;

model r_cpl = r_mkt / dw spec;
output out=r_outl0 r=cpl_r;
run;

The NORMAL option in the PROC UNIVARIATE statement specifies the calculation
of the Shapiro-Wilk statistic (for a sample size less than 2000) or the Kolmogorov statistic
(for a sample size greater than 2000). The p-values are also calculated for the null
hypothesis that the input data are a random sample from a normal distribution.

The PLOT option in the PROC UNIVARIATE statement specifies the plotting of three
descriptive plots as follows.

O astem-and-leaf plot (if no more than 48 observations fall into a single interval) or a
horizonal bar chart (if more than 48 observations fall into a single interval).

O abox plot (also known as a schematic plot) with top and bottom edges at the 25th and
75th percentiles, a center horizontal line drawn at the sample median, and a central plus
sign (+) at the sample mean. Additionally, central vertical lines, called whiskers, extend
from the box as far as the data extend; extreme values are marked with an asterisk (*).
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0 anormal probability plot, which plots the sample quantiles against the quantiles of a
standard normal distribution. Asterisks mark the data values. If the data are from a
normal distribution, the asterisks tend to fall along the reference line.

An excellent description and interpretation of these plots is provided in SAS System for
Elementary Statistical Analysis.

The following DATA step merges the output data sets by the variable DATE and the
PROC UNIVARIATE statements test the normality of the residuals. The results of these
statements are not shown.

/* Merging OQutput Data Sets */
data out_r;
merge return3 r_outl r_out2 r_out3 r_outd r_outh
r_out6 r_out?7 r_out8 r_out9 r_outll;
by date;
run;

/* Testing for Normality of Residuals */
proc univariate data=out_r normal plot;
var gerber_r tandy_r g_mils_r con_ed_r weyer_r ibm_r
dec_r mobil_r texaco_r cpl_r;
run;

Regression models that generate non-normal residual distributions may suggest further
analysis. Neter, Wasserman, and Kutner (1985) assert that small departures from normality
do not create any serious problems. Large departures from normality, that is, small p-values
for the Shapiro-Wilk or Kolmogorov statistics, indicate that you should consider remedial
measures. For example, the departure from normality may be caused by autocorrelation or
heteroskedasticity, and the model can be refit to account for the non-normality. If necessary,
Monte Carlo studies can be performed to find the actual critical values of the distribution.
Alternatively, you may want to respecify the equation by adding more regressors, as
discussed in the next section, and testing the resulting residuals.

Adding Additional Regressors to CAPM
Regressions

The CAPM presented in this chapter is a single index model; that is, it employs only one
independent variable, the market risk premium (R_MKT). As shown in previous examples,
CAPM regressions for individual stocks typically explain less than half of the variation in
the risk premiums (R_i), as indicated by the low R-square values of the CAPM regressions.

In theory, the CAPM can be extended to explain more of the variation in the risk
premiums of an individual company’s common stock by adding more independent variables
to the CAPM regression equation. (See Cohen and Pogue, 1967; Elton and Gruber, 1973;
and King, 1966). Because additional independent variables display a wide range of
explanatory power in CAPM regressions of individual stocks, investors typically explore
many additional independent variables and then fine-tune the CAPM regressions on a
stock-by-stock basis.

Variables you may want to consider adding to CAPM regressions include

0 real GNP (Gross National Product), that is, GNP deflated by the consumer price index
(the CPI), or Real GDP (Gross Domestic Product)

O inflation rate as measured by the CPI or some other index



118 Applying the CAPM to Additional Stocks 0 Chapter 4

O measures of the real money supply
O interest rates

O bond yields

O industrial indices of performance

O  any other variables you believe are correlated with the returns on stocks.

The variables can be included in level form, as percentage growth, as a rational
expectation (a forecast from a mathematical model), or as the unexpected level or growth
amount (deviations from the amount forecasted by a mathematical model).

If additional variables can be found that account for the variance of stock returns, the
forecasted returns of your model may be much more accurate and precise.

Seemingly Unrelated CAPM Regressions

One last example of further analysis you may consider performing is to use the statistical
method of seemingly unrelated regression (SUR), also known as joint generalized least
squares (JGLS), to simultaneously estimate the parameters of many CAPM regressions.
Often with separate regression models that appear unrelated, the cross-equation error
correlations are nonzero and can be used to simultaneously and more efficiently estimate the
regression models. However, when the independent variables are exactly the same in each
equation, SUR estimation is equivalent to equation-by-equation ordinary least-squares
estimates, and there is no efficiency gain from SUR estimation. Note that efficiency is
measured by magnitude of estimated parameter standard errors. (See Pindyck and Rubinfeld,
1991, for details.)

If you are estimating multiple CAPM regressions with different independent variables,
you can use the SAS/ETS MODEL and SYSLIN procedures to simultaneously fit and test
the estimated models. For more information on PROC MODEL and PROC SYSLIN, see
SAS/ETS User’s Guide, Version 6, Second Edition.

Arbitrage Pricing Model

Steven Ross (1976) hypothesized that stock returns depend partially on macroeconomic
variables and partially on events that are unique to that company. The returns are expected
to be linearly related to the factors, as follows:

R’, =a+ bl(rfam’]) + bz(rfmmz) + ...+ error

The factors can be any variables, including interest rates, energy prices, bond rates, and
so on. Chen, Roll, and Ross (1986) suggest including the level of industrial activity, the
inflation rate, the difference between short-term and long-term interest rates, and the
difference between low-risk and high-risk corporate bond yields. The return on the market
portfolio might or might not be included as a factor.

The returns of some stocks will be more responsive to one factor than the returns of
other stocks. Thus, there may be a unique set of factors in the expected risk premium
equation for stock. The risk premium equations are of the form

Ri - Rf = bl(rfactar] - rf) + bQ(rfactorZ - rf) oot b" (rfactarn - rf)
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A well-diversified portfolio is expected to be insensitive to macroeconomic factors and
is essentially risk free; therefore, it is expected to yield the risk-free rate of return. If the
well-diversified portfolio were priced so that it returned a greater amount than the risk-free
return, then investors would borrow to purchase the portfolio and arbitrage away the
difference. If the risk-free return is greater, then investors would sell the well-diversified
portfolio and invest in U.S. Treasury bills (the risk-free asset) to arbitrage away the
difference.

A diversified portfolio’s risk premiums vary in direct proportion to the variation of the
factors (as measured by the parameters b, b,, ..., b,). If two portfolios are equivalent in all
ways except that the first is twice as sensitive to the variations of factor 1 as the second, then
the first portfolio is expected to offer risk premiums that reflect that difference. If this
relationship between the two portfolios did not hold, then investors would buy and sell the
portfolios (as was appropriate) to arbitrage away the difference.

To implement the arbitrage pricing model, you follow these steps:

1. Identify the macroeconomic factors.

2. Estimate the risk premium required by investors for bearing risk of the macroeconomic
factors. One approach to estimating these risk premiums is to construct portfolios that
reflect the underlying macroeconomic structures and measure the historical risk
premium, that is, the difference between the portfolio returns and U.S. Treasury bills
(the risk-free asset).

3. Estimate the factor sensitivities; that is, estimate the parameters b,, b,, through b,. One
approach is to estimate CAPM-like regressions for the returns of the portfolio
constructed in the previous step.

4. Calculate the expected values for the risk premiums and the stock returns by using the
factor sensitivities, the expectations of macroeconomic risk premiums, and the arbitrage
pricing equation.

The details of this approach are beyond the scope of this book; however, you can
modify the examples shown in this chapter to implement the arbitrage pricing model.

Using the CAPM Regressions to Predict
Stock Risk Premiums

The estimated CAPM regressions shown in the previous table can be used to predict stock
risk premiums. In this section, you print the CAPMEST1 data set containing the fitted
CAPM regressions, and you use a DATA step to calculate point estimates of stock risk
premiums and returns for various market risk premiums and a given risk-free return.

Printing the Estimated CAPM Regression
Parameters

You use PROC PRINT to print the CAPMEST1 data set:

proc print data=capmestl;

var _depvar_ intercep r_mkt;

title2 'Estimated CAPM Regression Parameters’;
run;
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Output 4.8
Estimated CAPM
Regression
Parameters

CAPM Analysis
Estimated CAPM Regression Parameters
OBS _DEPVAR_ INTERCEP R_MKT
1 R_TANDY 0.013467 1.04823
2 R_GENMIL 0.006604 0.13834
3 R_CONED 0.013044 0.10204
4 R_WEYER -0.003558 0.72312
5 R_IBM 0.000095 0.39536
[ R_DEC 0.005509 0.71570
7 R_MOBIL 0.004688 0.68556
8 R_TEX 0.000391 0.57863
9 R_CPL 0.005803 0.20676

Interpretation of output
In Output 4.8, the column labeled _DEPVAR_ lists the dependent variables; the column
labeled INTERCERP lists the CAPM as; and the column labeled R_MKT lists the CAPM Ss.

Predicting Stock Risk Premiums and Returns

You can use the CAPMEST 1 data set and an iterative DO LOOP in a DATA step to
calculate point estimates of stock risk premiums and returns, given market risk premiums
and the risk-free return. In this example, future market risk premiums (F_R_MKT) range
from -.02 to .07, and the risk-free return is assumed to be .03. Note that the CAPM slope
parameters (the s) are labeled R_MKT; the future market risk premiums are labeled
F_R_MKT; and the future risk-free return is labeled RISK_FRE.

The following statements calculate and print the first ten point estimates of stock risk
premiums and returns:

data forecast;
set capmestl;
do f_r_mkt = -.02 to .07 by .01;
pred=intercep + f_r_mkt * r_mkt;

risk_fre=.03;
return = pred + risk_fre;
output;

end;

label _depvar_='Stock’
f_r mkt='Future Market Risk Premium’
pred='Predicted Stock Risk Premium’
return='Predicted Future Stock Return’;
Tun;

proc print data=forecast (obs=10) label;
var _depvar_ f_r_mkt pred;
title2 'Point Estimates of’;
title3 ’'Stock Risk Premiums and Returns’;
run;
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Output 4.9

Point Estimates of
Stock Risk
Premiums and
Returns

CAPM Analysis
Point Estimates of
Stock Risk Premiums and Returns

Future

Market Predicted Predicted

Risk Stock Risk Future Stock

0BS Stock Premium Premium Return

1 R_TANDY -0.02 -0.007497 0.02250
2 R_TANDY -0.01 0.002985 0.03298
3 R_TANDY 0.00 0.013467 0.04347
4 R_TANDY 0.01 0.023950 0.05395
5 R_TANDY 0.02 0.034432 0.06443
6 R_TANDY 0.03 0.044914 0.07491
7 R_TANDY 0.04 0.055396 0.08540
8 R_TANDY 0.05 0.065879 0.09588
9 R_TANDY 0.06 0.076361 0.10636
10 R_TANDY 0.07 0.086843 0.11684

Interpretation of output

Output 4.9 lists the predicted stock risk premiums and returns for the Tandy Corporation.
Note that these are point estimates for the given future market risk premium and the risk-free
return. Prior to using the predictions in your investment decisions, you should continue to
explore point estimates and confidence limits for the stock risk premiums and returns until
you are fully satisfied with your analysis.

Using the CAPM gs and the Security Marke-t Line

The security market line states that the expected return of an asset is linearly related to its 3
value. Moreover, in equilibrium, all assets and portfolios are expected to plot on the security
market line:

R=a+bp
A line is determined by identifying two points. One point on the security market line is the
risk-free asset with a 8 of 0 (or alternatively, you can use the return of a portfolio with  of
0):
R =a
A second point is the market portfolio with 8 of 1, so that
R,=a+b
R, —a=b
The security market line can be restated by substitution for its parameters a and b as
R,=R +B(R, - R
This equation matches the intuitive expectation that the higher the 3, the higher the expected

return; and the lower the 3, the lower the expected return. The security market line shows
the equilibrium relationships.
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Note that systematic risk (of which  is an index) is the factor determining expected
returns. Also note that nonsystematic (or diversifiable) risk plays no role; that is, investors
receive no reward for bearing diversifiable risk.

The security market line can be stated in risk premium form as

R, - Rf=‘Bi(RM B Rf)

Thus, the security market line is, first, an intuitive approach to deriving the CAPM, and,
second, a statement as to the expected return of stocks (given their fs, the expected return of
the market, and the expected risk-free return). (For details, see Elton and Gruber, 1987.)

Individual factors affecting the return of a particular stock and differing expectations of
investors imply that the risk premium and f of a stock may deviate temporarily from the
security market line. If a stock’s expected risk premium deviates from the security market
line, then its price will be adjusted by the actions of buyers and sellers until the stock’s
expected risk premium is on the security market line. That is, deviations from the security
market line will be arbitraged away because investors are actively searching these stocks.
For example, a stock with a risk premium greater than expected (for its 3 value) will be
sought after by investors, who bid up the stock’s price until its risk premium falls to the
appropriate level. A stock with a risk premium less than expected (for its 3 value) will be
shunned or sold short by investors until its risk premium rises to the appropriate level.

Given estimates of the expected returns on the risk-free asset, the market portfolio, and
the CAPM regression parameters, you can search for assets, stocks, and portfolios whose 8
and expected risk premiums deviate from the security market line.

You implement this strategy by

DO estimating the CAPM regressions for each stock.

o calculating or estimating the expected returns for each stock, the market portfolio, and
the risk-free rate.

0O calculating the security market line and predicting each stock’s expected risk premium
(SML).

O calculating each stock’s risk premium based on its CAPM regression (CAPM).

O comparing the predicted risk premium values of CAPM and SML. As a general
strategy, you want to buy stocks whose CAPM predicted risk premium values are
greater than their SML predicted risk premium values, and you want to sell stocks
whose CAPM predicted risk premium values are less than their SML predicted risk
premium values.

Calculating Expected Returns

There are many approaches you can pursue to estimate the level of expected returns as
discussed in Chapter 1, “Background Topics.” For this example, you use the RETURN3
data set and the MEANS procedure to calculate the average, monthly common stock risk
premiums (thatis, R, — R/) for the ten stocks in the RETURNS3 data set.

This approach is appropriate if you believe that the future performance of stock risk
premiums will be similar to past performance and if you plan to buy and hold the stocks.
This approach may be inappropriate if you believe that stock risk premiums will display
major differences in performance in the future from their past performance or if you plan to
pursue different investment strategies.
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You can calculate and print the average monthly risk premiums with the following
statements.

Explanation of syntax

PROC MEANS
invokes the MEANS procedure. The following options of the PROC MEANS statement

are specified:
DATA= specifies the data set to be used in the analysis.
NOPRINT  suppresses the printed output.

VAR

specifies the variables to be used in the analysis. In this example, the ten common stock
returns used in the CAPM regressions are specified as variables for analysis.

OUTPUT
specifies that the output statistics be stored in the data set created by the OUT= option.
The following options of the OUTPUT statement are specified:

OUT= specifies the name of the output data set. In this example, the output data
set is named M_OUT1.
MEAN= specifies that the mean of the variables listed in the VAR statement be

calculated and stored in the output data set. In this example, the ten
mean values are stored in the variables named M1 through M10.

Example code

/* Calculating Average Monthly Returns */
proc means data=return3 noprint;
var r_gerber r_tandy r_genmil r_coned r_weyer r_ibm
r_dec r_mobil r_tex r_cpl;
output out=m_outl mean=ml-ml10;
run;

You use PROC TRANSPOSE to transpose the M_OUT1 data set for ease in merging in
a later example with the PROC REG OUTEST= data set CAPMEST1 (containing the
estimated CAPM regression parameters).

proc transpose data=m_outl out=m_out2(rename=(coll=mean));
var ml-ml0;
run;

Next, you use PROC PRINT to print the average risk premiums. The results are shown
in Output 4.10.

/* Printing the Average Monthly Returns */
proc print data=m_out2;

title2 ’‘Average Monthly Stock Returns’;
run;
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Output 4.10
Average Monthly
Returns

CAPM Analysis
Average Monthly Stock Returns
0BS _NAME MEAN
1 M1 0.010431
2 M2 0.021626
3 M3 0.007681
4 M4 0.013839
5 M5 0.002070
6 M6 0.003172
i M7 0.011079
8 M8 0.010024
] M9 0.004894
10 M10 0.007413

Interpretation of output

Output 4.10 shows values that represent the average monthly risk premiums over the
nine-year period, 1978-1986. The observations are ordered (first to last) identically to the
ordering (left to right) of the stocks included in the VAR statement of PROC MEANS.

Using DCF Analysis as a Check on Expected CAPM

Returns

Note that you can use the discounted cash flow (DCF) analysis discussed in Chapter 2,
“Discounted Cash Flow (DCF) Analysis,” as a useful check on the expected returns. For
stocks with constant dividend growth, the general DCF equation becomes

This DCF equation states that the current value of the stock (V) is the expected dividend
in the next period (D,) divided by the difference in the discount rate (K) and the growth rate
of the constant growth rate of the dividends (G). The DCF equation can be rewritten as
follows:

DI
K=+ +G

In this form, the rate of discounting the stock (K) equals the expected dividend yield
(D, / V) plus the constant dividend growth rate. In this form, you expect K and R (expected
returns) to be close in magnitude (as long as the constant dividend growth form of the DCF
equation is appropriate). If K and R differ greatly, then you want to further analyze the
stock’s value and the appropriateness of the models.

Using the Security Market Line

You can use a DATA step to calculate stock risk premiums predicted by the CAPM
(CAPM), stock risk premiums calculated by the security market line (SML), and deviations
from the security market line.
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Tasks performed by the program
In the following DATA step you

o merge the CAPMEST1 data set, which contains the estimated CAPM regression
parameters (created in the section “Fitting Additional CAPM Regressions”), and the
M_OUT? data set, which contains the expected risk premiums (created in the code that
produces Output 4.10).

0 calculate the predicted equilibrium risk premiums from the security market line (SML)
and the individual risk premiums, as predicted from the CAPM regressions (CAPM).

0O calculate the deviations (DEVIA) between the SML and CAPM predictions.

O generate Actions to Consider with IF-THEN-ELSE statements. Stocks that offer greater
predicted CAPM risk premiums than SML risk premiums should be considered as
opportunities to buy. This example includes a safety factor of .01 (or 1 percent); that is,
the deviation must be at least .01 or no action to buy is generated. Stocks that offer
smaller predicted CAPM risk premiums than SML risk premiums should be considered
as opportunities to sell (if owned), or they should be shunned or sold short (if not
owned). This example includes a safety factor of .005 (or .5 percent); that is, the
deviation must be at least .005 or no action to sell is generated. Lastly, stocks that offer
risk premiums close to the security market line expected values are to be held (if
owned).

Note that you should develop buy-sell-hold criteria that best suits your investing
needs.

Example code
data out_m3;

/* Merging Data Sets */
merge capmestl(rename=(r_mkt=beta)) m_out2;

/* Expected Market Portfolio Risk Premium */
m_mkt=.007783;

/* Security Market Line Risk Premiums */
sml=beta* (m_mkt) ;

/* CAPM Risk Premiums */
capm=intercep+beta* (mean) ;

/* Deviations from the Security Market Line */
devia=capm-sml;

/* Actions to Consider */
if devia »>= .01 then action='buy ’;
else if devia <= -.005 then action='sell’;
else action="hold’;
run;
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Output 4.11
Expected Risk
Premiums and
Actions to Consider

You print the risk premiums, their deviations, and actions generated with the following
PROC PRINT statements. The results are shown in Output 4.11.

proc print data=out_m3;
var capm sml devia action;
title2 'Expected Risk Premiums’;
title3 'and Actions to Consider’;
run;

CAPM Analysis
Expected Risk Premiums
and Actions to Consider

OBS CAPM SML DEVIA ACTION
1 0.011837 0041322 0.007705 hold
2 0.036136 .0081584 0.027977 buy
3 0.007667 .0010767 0.006590 hold
4 0.014456 .0007942 0.013662 buy
5 -0.002061 .0056280 -0.007689 sell
6 0.001349 .0030771 -0.001728 hold
7 0.013438 0055703 0.007868 hold
8 0.011560 .0053357 0.006224 hold
9 0.003222 .0045035 -0.001281 hold

10 0.007336 0016092 0.005727 hold

Interpretation of output
Output 4.11 lists the risk premiums (CAPM and SML, respectively), the deviations
(DEVIA), and the actions (ACTION) suggested by the criteria of this example.

For this example, there are two stocks that meet the “buy” criterion (observations 2 and
4, corresponding to stocks TANDY and CONED) and one stock that meets the “sell”
criterion (observation 5, corresponding to the WEYER stock); the remaining stocks meet
neither criteria.

Chapter Summary

This chapter introduces the Capital Asset Pricing Model (CAPM) and presents examples of
basic CAPM regressions in risk premium form for individual firms. The CAPM regression
parameters were tested individually for difference from 0, and the slope parameters were
also tested for difference from 1.

The CAPM regression residuals were plotted versus time to visually assess their
independence. The residuals were also plotted versus the market risk premium (the
independent variable in the CAPM regression) to visually assess the constancy of the
residual variance. The Durbin-Watson D statistic was calculated to formally test residual
independence across time, and the White Test was used to formally test residual variance
constancy (homoskedasticity).

Then, the estimated CAPM regressions were used to predict point estimates of the stock
risk premiums and returns for given values of the market risk premiums and the risk-free
return.

Lastly, the security market line was derived and used (along with the CAPM
regressions) to identify stocks to buy, sell, or hold.
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Learning More

0 For more information on the DATA step, see SAS Language; Reference, Version 6,
First Edition; SAS Language and Procedures: Usage, Version 6, First Edition; and SAS
Language and Procedures, Usage 2, Version 6, First Edition.

0 For more information on PROC REG, see SAS/STAT User’s Guide, Version 6, Fourth
Edition, Volume I and Volume 2.

0  For more information on PROC PLOT, PROC PRINT, PROC SORT, PROC
TIMEPLOT, and PROC UNIVARIATE, see SAS Procedures Guide, Version 6, Third
Edition and SAS Language and Procedures: Usage 2.

0  For more information on the PROC UNIVARIATE plots produced by the PLOT option
in the PROC UNIVARIATE statement, see SAS System for Elementary Statistical
Analysis.

0  For more information on ordinary least-squares (OLS) regression and autocorrelated
and heteroskedastic regression models, see SAS/ETS Software: Applications Guide 2,
Econometric Modeling, Simulation, and Forecasting, Version 6, First Edition, and
Pindyck and Rubinfeld (1991), Econometric Models and Economic Forecasts, Third
Edition.

0  For more information on SAS/ETS ARIMA, AUTOREG, MODEL, and SYSLIN
procedures, see SAS/ETS Software: User’s Guide, Version 6, Second Edition.

References

Black, F.; Jensen, M.; and Scholes, M. (1972), “The Capital Asset Pricing Model: Some
Empirical Tests,” ed., Michael Jensen, Studies in the Theory of Capital Markets,
New York: Praeger, pp. 79-121.

Brealey, R. and Myers, S. (1991), Principles of Corporate Finance, Fourth Edition, New
York: McGraw-Hill, Inc.

Chen, N-F.; Roll, R.; and Ross, S. (1986), “Economic Forces and the Stock Market,”
Journal of Business, Vol. 59, pp. 383-403.

Cohen, K. and Pogue, J. (1967); “An Empirical Evaluation of Alternative Portfolio
Selection Models,” Journal of Business, Vol. 46, pp. 166-193.

Durbin, J., and Watson, G.S. (1951), “Testing for Serial Correlation in Least Squares
Regression,” Biometrika, Vol. 38, pp. 159-178.

Durbin, J. (1960), “Estimation of Parameters in Time-Series Regression Models,” Journal
of the Royal Statistical Society, Series B, Vol. 22, pp. 139-153.

Elton, E. and Gruber, M. (1973), “Estimating the Dependence Structure of Share Prices -
Implications for Portfolio Selection,” Journal of Finance, Vol. 8, No. 5, pp. 1203-1232.

King, B. (1966), “Market and Industry Factors in Stock Price Behavior,” Journal of
Business, Vol. 39, pp. 139-140.

Markowitz, H. (1952), “Portfolio Selection,” Journal of Finance, Vol. 7, pp. 77-91.

Markowitz, H. (1991), Portfolio Selection: Efficient Diversification of Investments, Second
Edition, Cambridge, MA: Blackwell, Inc.



128 References o Chapter 4

Neter J.; Wasserman W.; and Kutner M; (1985), Applied Linear Statistical Models,
Homewood, Illinois: Richard Irwin, Inc.

Pindyck, R. and Rubinfeld, D. (1991), Econometric Models and Economic Forecasts, Third
Edition, New York: McGraw-Hill, Inc.

Ross, S.A. (1976), “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic
Theory, Vol. 13, pp. 341-360.

Sharpe, W.F. (1985), Investments, Third Edition, Englewood Cliffs, N.J.: Prentice-Hall.

White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a
Direct Test for Heteroskedasticity,” Econometrica, Vol. 48, 817-838.



129

craper B Portfolio Creation with Linear
Programming

Introduction 129

Portfolio Creation Using Linear Programming 130
Calculating Expected Returns 130
Selecting a Risk Measure 131
Using the Standard Deviation of Stock Returns 131
Using the CAPM fs 131
Calculating Optimal Portfolio Weights 133
Including More Restrictive Bounds on Portfolio Weights 138
Sparse Data Form 140
Sensitivity Analyses 141
Setting Maximum Portfolio Risk Level while Calculating Portfolio Weights 143
Calculating Dollar Amounts to Invest 144

Portfolio Creation Using Integer Programming 145
Solving an Integer Programming Problem 145
Printing the Primal Solution Data Set 147
Printing the Dual Solution Data Set 148
Calculating Comparable Risk and Return Measures 149
Tailoring the Input Data Set 149
Merging the Input and Primal Solution Data Sets 150
Performing the Calculations 151

Portfolio Creation with Short Sales Allowed 151
Solving the Linear Programming Problem 152
Optimal Solutions for Other Risk Levels 153
Setting Bounds on the Optimal Weights 155

Chapter Summary 158
Learning More 158
References 159

Introduction

After performing preliminary analyses to select stocks of interest, investors often want to

find the optimal investment for each of these stocks, that is, what fraction of the portfolio

should be invested in each stock. Typically, investors desire to maximize returns subject to a

maximum acceptable level of risk and a variety of other constraints. After suitable measures

of expected return and risk are obtained, portfolio selection problems can be expressed and

solved through the linear programming techniques available in the SAS/OR LP procedure.
This chapter describes linear programming and shows you how to

o use PROC LP to calculate optimal portfolio weights for a variety of linear programming
problems, including integer programming

O use the DATA step to create input data sets for PROC LP, to calculate the dollar
amounts to invest in each stock from the PROC LP solution weights, and to calculate
comparable measures of portfolio risk and return for integer programming problems.
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Portfolio Creation Using Linear Programming

Output 5.1
Average Monthly
Returns

In this section, you solve for optimal portfolio weights using linear programming, as
outlined in the following steps:

1. Calculate the stock returns using the MEANS procedure.

2. Use a DATA step to create the input data set for PROC LP.

3. Use PROC LP to solve for the optimal portfolio weights.

4. Use PROC LP to perform sensitivity analyses.
5

Use a DATA step, the optimal weights, and the portfolio size to calculate the amounts
to invest in each stock.

Calculating Expected Returns

Before you can use PROC LP to solve linear programming problems, you first estimate the
level of expected returns. You should use the method you deem most appropriate for the
calculation of expected future returns. (Methods of calculating and estimating expected
returns are discussed in Chapter 1, “Background Topics.”) For illustrative purposes, the
examples of this chapter use the average return of past periods as a measure of expected
returns.

You use the following PROC MEANS statements to calculate the stock returns. The
results are printed with PROC PRINT and are shown in Qutput 5.1.

proc means data=return3 noprint;

var gerber tandy genmil coned weyer ibm dec mobil tex cpl;
output out=m_outla mean=ml-ml0;
run;

proc print data=m outla;
var ml-ml0;
title 'Linear Programming’;
title2 ‘Average Monthly Stock Returns’;

run;
Linear Programming
Average Monthly Stock Returns
OBS M1 M2 M3 M4 M5 M6

1 0.017593 0.028787 0.014843 0.021 .0092315 0.010333

0BS M7 M8 M9 M10

1 0.018241 0.017185 0.012056 0.014574
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Selecting a Risk Measure

Prior to using linear programming techniques, suitable measures of risk for an asset should

be considered. Of the many risk measures you may consider, this section considers two: the
first is standard deviation of individual stock returns, o;; the second is Capital Asset Pricing
Model (CAPM) Bs. If you have already selected a measure of risk, then you can proceed to

the next section.

Using the Standard Deviation of Stock Returns

Standard deviation is a statistical measure of dispersion, and dispersion of stock returns is
wherein lies the risk of holding stocks. The standard deviation of stock returns measures
total risk that includes both systematic (or nondiversifiable) risk and nonsystematic (or
diversifiable) risk. The greater the diversification of the portfolio, the more nonsystematic
risk is diversified away. The risk level of well-diversified portfolios approaches that of the
market.

You can use the total risk of each stock to create portfolios; however, it may be difficult
to compare the riskiness of the resulting portfolios because reduction of the nonsystematic
risk through diversification may not be accounted for. Moreover, the security market line,
developed in Chapter 4, “The Capital Asset Pricing Model (CAPM),” indicates that
investors are not rewarded for bearing nonsystematic risk.

If your research indicates that the standard deviation of stock returns is the appropriate
risk measure, you can use PROC MEANS to calculate them. The following PROC MEANS
statements calculate the standard deviations, store them in a data set named M_OUT1B, and
name the standard deviations STD1-STD10. You can use PROC PRINT to print the
standard deviations.

proc means data=return3 noprint;

var gerber tandy genmil coned weyer ibm dec mobil tex cpl;
output out=m_outlb std=stdl-stdl0;
run;

Using the CAPM gs

An alternative risk measure to consider is the CAPM S, which is an index of systematic risk.
The remainder of this section shows that for well-diversified portfolios, the CAPM fs can be
used as a measure of risk for linear programming techniques of portfolio selection.

A CAPM j is the slope parameter of a CAPM regression. Recall from Chapter 4 that a
CAPM regression relates the expected returns of asset i to the expected returns of the
market, as follows:

E(R‘) = ai + ﬁi E(RM)
For portfolio p, the CAPM becomes

E(R,) =, + B,E(R,))
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For portfolio weights Xj, the parameters ¢, and ,Bp can be expressed as a linear
combination of the individual stock ¢; and f;:

N
a, = E Xiai
i=1
N
ﬁp: Z: Xiﬁi

i=1

As noted previous, total risk is defined as the standard deviation of returns. For asset i,
the variance of returns (the square of the standard deviation) in terms of the CAPM is
2 2 2 2
o,=po,+o0,
For portfolio p, the variance of returns becomes

2 2 2 N 22
g, = ﬁpaM + i; Xiai

As the portfolio is diversified, the second term diminishes, and for well-diversified
portfolios, it approaches 0. Evans and Archer (1968) found that the total risk of a 15-stock
portfolio was approximately the same as that of the market portfolio. Thus, for
well-diversified portfolios, the variance of portfolio returns approaches

2 22
ap_'BPGM

The square root of the variance of portfolio returns (ai,) is the standard deviation (¢,) of

portfolio returns:
OP = ﬁPGM
N
OP = aM E X‘/S i

The standard deviation of market returns is a common factor to all stocks. Minimizing
the linear combination of the individual stock fs is the same as minimizing the monotonic
transformation of oy, times the linear combination of the fs. In this form, each stock is
contributing only a monotonic transformation of its systematic risk to the portfolio risk;
there is no overcounting of nonsystematic risk (which has been diversified away). Moreover,
minimizing the linear combination of the CAPM Ss also has the advantage that risk
measures among well-diversified portfolios are directly comparable.

Thus, for creation of well-diversified portfolios, you may want to minimize the linear
combination of the individual stock CAPM fs. Note that the better the diversification, the
better is this approach. The CAPM ps are the risk measure used in examples for this chapter.
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Calculating Optimal Portfolio Weights

After you have estimated (or calculated) future stock returns and risk levels, you can use
PROC LP to find the optimal portfolio weights to maximize returns, subject to a maximum
acceptable level of risk. The linear programming problem is of the following form:

Ui

maximize : ¢'X
subjectto : AX < b
where : li Sx=su

The terms are defined as follows:

is an m X n matrix of technological coefficients. In this example, A isa2 X 10
matrix, where the first row represents the CAPM fs, and the second row ensures
the weights sum to unity (or 100 percent of the portfolio).

isanm X I vector of right-hand-side (rhs) constants. In this example,bisa2 X 1
vector, where the first row represents the maximum acceptable risk level, and the
second row ensures the weights sum to unity (or 100 percent). Note that the risk of
the portfolio is the linear combination of the individual stock fBs.

isan n X [ vector of price coefficients. In this example, ¢ is a 10 X 1 vector, and
the c; represent the average annual returns. The portfolio return is the sum of the
weights times the individual stock returns. The weights are to be calculated to
maximize the portfolio return.

is an n X [ vector of structural variables. In this example, x represents the optimal
portfolio weights.

is a lower bound on x;. In this example, the lower bounds are minimum portfolio
weights. For example, following a buy-and-hold strategy, portfolio weights are
non-negative; the lower bound on each X; is 0. Alternatively, if you want to sell a
stock short, then the weight would be negative. If no lower bound is given, the
default lower bound in PROCLP is O.

is an upper bound on x;. In this example, the upper bounds are maximum portfolio
weights. For example, the maximum portfolio weight for each stock is unity or 100
percent and, for an optimal solution weight of unity, the entire portfolio amount
would be invested in a single stock.

This example uses PROC LP to solve for the portfolio weights (x;) that maximize the

objective function

x, X 0176 + x, x .0288 + ... + x X .0146
The objective function is subject to the following constraints:

the portfolio risk is .7. That is, the portfolio weights are chosen so that the sum of the
products of the weights times the individual stock fs is .7.

X, X 5309 + x, X 1.048 + ... + x, X .2068 = .7
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O  the weights sum to unity,

x1><1+x2><1+...+x10><1=1

o the upper bound on the portfolio weights is 1. That is, no more than 100 percent of the
portfolio may be in any one stock.

O the lower bound on the portfolio weights is 0. That is, no less than O percent of the
portfolio may be in any one stock.

The following DATA step defines a data set named WEIGHT that contains the linear
programming problem in dense form for PROC LP.

Explanation of syntax

DATA
begins a DATA step and provides names for any output SAS data sets. In this example,
the SAS data set WEIGHT1 is created.

INPUT
describes the arrangement of values in observations and assigns input values to the
corresponding SAS variables. In this example, the input variables are GERBER,
TANDY, and so on through CPL. The variables _ID_, _TYPE_, and _RHS_ create
special variables for PROC LP.

_ID_ contains an identifying name for the objective function and constraints. In
this example, the objective function is named EXP_RETURN, and the
constraints are named BETA (the risk constraint), SUM_WTS (that the
weights sum to unity), and AVAILABLE (upper and lower bound
constraints on the weights).

_TYPE_  defines a character variable that specifies how PROC LP is to interpret the
observation. For this example, the objective function has a_TYPE_
variable of MAX (the equation is to be maximized). The constraints BETA
and SUM_WTS have _TYPE_ variables of EQ (an equality constraint).
The AVAILABLE constraints have _TYPE _ variables of UPPERBD and
LOWERBD (upper and lower bounds).

_RHS_ identifies the variable in the problem data set that contains the
right-hand-side (numeric) constants of the linear program. In this example,
only the constraints BETA and SUM_WTS have right-hand-side
constants. Note that the objective function is to be maximized (no constant
value is given), while a right-hand-side constant for the upper and lower
bound constraints is unnecessary.

CARDS
indicates that data lines follow. The five lines that follow the CARDS statement contain
the following information:

1. Average monthly returns from Output 5.1. The _TYPE_ of MAX indicates that this
is the objective function to be maximized, that is, find solution values for the
portfolio weights that maximize the expected portfolio returns. No right-hand-side
constant is given because the objective is to maximize the portfolio return.
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Output 5.2

PROC LP Output,
Including Optimal
Portfolio Weights

2. The CAPM fs estimated by the CAPM regression in Chapter 4. The weights are to
be calculated so that the portfolio 3 is .7.

3. The constraint that the weights must sum to unity. That is, the sum of the products
of the weights times 1 is unity.

4. The upper bound restriction that the weights have a maximum value of 1.

5. The lower bound restriction that the weights have a minimum value of 0.

data weightl;

input _id_ $10. gerber tandy genmil coned weyer ibm dec mobil tex
cpl _

cards;

type_ $ _rhs_;

exp_return .0176 .0288 .0148 .021 .0092 .0103 .0182 .0172 .0121 .0146 max
.5309 1.048 .1383 .102 .7231 .3954 .7157 .6856 .5786 .2068 eq

beta
sum_wts
available
available

'

.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1 1 1 1 1 1
0 0 0 0 0 0 0

1.0
1

1.0
1
0

1.0
1
0

eq
upperbd
lowerbd

The following PROC LP statements calculate the optimal portfolio weights for the
given constraints. The PROC LP statement invokes the LP procedure, the DATA= option
specifies the WEIGHT data set, and the PRIMALOUT= option specifies that the solution
values be stored in an output data set named LP_OUT1. The QUIT statement ends the
interactive PROC LP session. The results from these statements are shown in Output 5.2.

proc lp data=weightl primalout=1p_outl;
title2 'Optimal Portfolio Weights’;

run;
quit;

LINEAR

Linear Programming
Optimal Portfolio Weights

PROGRAMMING
€@  PROBLEM SUMMARY

Max exp_return Objective Function

_RHS_ Rhs Variable
_TYPE_ Type Variable
Problem Density 1
Variable Type Number
Upper and Lower Bounded 10

Total 10

PROCEDURE

i
1.0



136 Portfolio Creation Using Linear Programming 0 Chapter 5

Linear Programming
Optimal Portfolio Weights

LINEAR PROGRAMMING PROCEDURE

PROBLEM SUMMARY

Constraint Type Number
EQ 2
Objective 1
Total 3

Linear Programming
Optimal Portfolio Weights

LINEAR PROGRAMMING PROCEDURE
©  SOLUTION SUMMARY
Terminated Successfully
Objective value 0.025931

Phase 1 iterations

Phase 2 iterations

Phase 3 iterations

Integer iterations

Integer solutions

Initial basic feasible variables
Time used (secs)

Number of inversions

woMOoOOoOOoO RN

Linear Programming
Optimal Portfolio Weights

LINEAR PROGRAMMING PROCEDURE

SOLUTION SUMMARY

Machine epsilon 1E-8
Machine infinity 1.7976931349E308
Maximum phase 1 iterations 100
Maximum phase 2 iterations 100
Maximum phase 3 iterations 99999999
Maximum integer iterations 100
Time limit (secs) 120

Linear Programming
Optimal Portfolio Weights

LINEAR PROGRAMMING PROCEDURE

©  VARIABLE SUMMARY

Variable Reduced
Col Name Status  Type Price Activity Cost
1 GERBER UPLOWBD 0.0176 0.000000 -0.006936

2 TANDY BASIC UPLOWBD 0.0288 0.632135 0.000000
3 GENMIL UPLOWBD 0.0148 0.000000 -0.006499
4 CONED BASIC UPLOWBD 0.021 0.367865 0.000000
5 WEYER UPLOWBD 0.0092 0.000000 -0.016921

6 IBM UPLOWBD 0.0103 0.000000 -0.013119

\/M\/\/\/W/\/
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/W\/\/\/\

7 DEC UPLOWBD 0.0182 0.000000 -0.007860
8 MOBIL UPLOWBD 0.0172 0.000000 -0.008612
9 TEX UPLOWBD 0.0121 0.000000 -0.012830
10 CPL UPLOWBD 0.0146 0.000000 -0.007264

Linear Programming
Optimal Portfolio Weights

LINEAR PROGRAMMING PROCEDURE

O  CONSTRAINT SUMMARY

Constraint s/s Dual
Row Name Type Col Rhs Activity Activity
1 exp_return OBJECT 0.025931 .
2 beta EQ 0.7 0.700000 0.008245
3 gum_wts EQ 1 1.000000 0.020159

Interpretation of output
The following list interprets items of interest from PROC LP in Output 5.2. The numbers of
the list correspond to the callout numbers in the output.

© Problem summary including the number of equations in the linear program (objective
function, linear constraints, and upper and lower bounds).

© Solution summary, including the following:

0

A message stating Terminated Successfully. If the linear program is infeasible,
then you receive an error message (Infeasible Problem) and a note to check the
boundary constraints.

Objective value of the objective function. In this example, the next month’s
expected portfolio return is .025931, or about 2.59%.

Also printed are the iterations, the maximum number of iterations, machine
constraints on epsilon and infinity, and the time allowed and time used.

© Variable Summary, including the following items:

0

The list of variables, their status, type, price (expected return), activity level
(solution weight), and the reduced cost.

The variables TANDY and CONED have activity levels of .632135 and .367865,
respectively. The activity levels are the solution values for the portfolio weights.
For this example, you would invest 63.21 percent of your funds in TANDY and
36.79 percent in CONED.

Note that both TANDY and CONED have reduced costs of 0. This implies that
neither an increase nor a decrease in the solution values will increase the portfolio
return.

Also note that TANDY and CONED have status of basic. That is, they are in the
basis of the linear program, having solution values between the upper and lower
bounds.
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0 The variable GERBER has an activity level of 0, the lower bound, and a reduced
cost (sometimes called a shadow price) of -.006936. These values imply the lower
bound constraint is active and binding for this variable. If the solution weight for
this stock could be further reduced, other weights could adjust to generate a greater
return and still satisfy the remaining linear programming constraints. The values for
the variables GENMIL, WEYER, IBM, DEC, MOBIL, TEX, and CPL can be
interpreted similarly.

O Constraint Summary lists the objective function, the constraints, their _TYPE_, their
right-hand-side constants, the activity levels (including the optimal solution level for the
objective function), and their dual activity levels (shadow prices).

For further information on interpreting specific items in the PROC LP output data sets,
setting options, and using the PROC LP, see Chapters 3 and 7 (“Introduction to
Mathematical Programming Using SAS/OR Software” and “The LP Procedure,”
respectively) in SAS/OR User’s Guide, Version 6, First Edition.

Including More Restrictive Bounds on Portfolio
Weights

You may want to restrict the portfolio weights to a more narrow range than the 0-to-1 range
used in the example code that produces Output 5.2. For example, you may want to include
the upper bound restriction that the weights have a maximum value of .3333 and the lower
bound restriction that the weights have a minimum value of .05. These upper and lower
bound constraints can be used to ensure some diversification in the portfolio because no
stock could be greater than 33.33 percent of the portfolio or less than 5 percent.

The following DATA step creates the WEIGHT?2 data set. The code is very similar to
that producing the WEIGHT 1 data set; only the upper and lower bounds have been changed.

data weight2;

input _id_ $10. gerber tandy genmil coned weyer ibm dec mobil tex

cpl _type_ $ _rhs_;

cards;
exp_return .0176 .0288 .0148 .021 .0092 .0103 .0182 .0172 .0121 .0146 max
beta .5309 1.048 .1383 .102 .7231 .3954 .7157 .6856 .5786 .2068 eq
sum_wts 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 eg
available .3333 .3333 .3333 .333 .3333 .3333 .3333 .3333 .3333 .3333 upperbd
available .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 lowerbd

]

The following PROC LP statement solves this linear programming problem for the
portfolio weights. Part of the output generated by these statements is shown in Output 5.3.
Only the solution portion is shown.

proc lp data=weight2 primalout=1p_out2;

title2 'More Restricted Portfolio Weights';
run;
quit;

P
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Output 5.3 . ;

. Linear Programming
More Restricted More Restricted Portfolio Weights
Portfolio Weights

LINEAR PROGRAMMING PROCEDURE

VARIABLE SUMMARY

Variable Reduced
Col Name Status  Type Price Activity Cost
1 GERBER UPLOWBD 0.0176 0.050000 -0.001443
2 TANDY UPLOWBD 0.0288 0.333300 0.012116
3 GENMIL UPLOWBD 0.0148 0.050000 -0.006034
4 CONED BASIC UPLOWBD 0.021 0.063379 0.000000
5 WEYER UPLOWBD 0.0092 0.050000 -0.008966
6 IBM UPLOWBD 0.0103 0.050000 -0.009361
7 DEC BASIC UPLOWBD 0.0182 0.253321 0.000000
8 MOBIL UPLOWBD 0.0172 0.050000 -0.001137
9 TEX UPLOWBD 0.0121 0.050000 -0.006726
10 CPL UPLOWBD 0.0146 0.050000 -0.005922

Linear Programming
More Restricted Portfolio Weights

LINEAR PROGRAMMING PROCEDURE

CONSTRAINT SUMMARY

Constraint s/s Dual
Row Name Type Col Rhs Activity Activity
1 exp_return OBJECT 0.020330 .
2 beta EQ 0.7 0.700000 -0.004562
3 sum_wts EQ 1 1.000000 0.021465

RS

s — —  — —

Interpretation of output
In Output 5.3, the objective function value (labeled EXP_RETURN) is 0.020330 or 2.03
percent.

The activity levels (shown in the Variable Summary) are the solution values for the
portfolio weights. For this example, you would invest 33.33 percent of your portfolio in
TANDY, 25.33 percent in DEC, 5 percent in each of GERBER, GENMIL, WEYER, IBM,
MOBIL, TEX, and CPL, and 6.34 percent in CONED.

Note the following items of interest:

0 The variable GERBER has an activity level of .05, the lower bound, and a reduced cost
(shadow price) of -.001443. These values imply the lower bound constraint is active and
binding. If the solution weight could be further reduced, the value of the objective
function could be increased. The values for the variables GENMIL, WEYER, IBM,
TEX, and CPL can be interpreted similarly.

O The variable TANDY has an activity level of .3333, the upper bound, and a reduced
cost of .012116. These values imply the upper bound constraint is active and binding. If
the solution weight could be further increased, the other weights could adjust to
generate a greater return and still satisfy the remaining linear programming constraints.

O The variables CONED and DEC have a status of basic. That is, they are in the basis of
the linear program, having solution values between the upper and lower bounds.
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Sparse Data Form

For linear programming problems with many variables, you may prefer to create the input
data set in the sparse data format. Often in linear programming, few of the coefficients in the
constraint matrix are nonzero. In the sparse format, only the nonzero coefficients need to be
specified.

Although this particular example is not very sparse, the PROC LP output shown in
Output 5.3 can be generated with data in the sparse data format shown in the following
example.

In this example, only the first and last stocks are included. You need to include all of
the stocks to create an input data set for PROC LP. Also, the PROC LP statement requires
the SPARSEDATA option when the input data set is in the sparse data format. The output
from this example code is not printed.

/* Creating the Sparse Input Data Set, WT_SPARS */
data wt_spars;
input _type_ $ @10 _col_ $13. @24 _row_ $16. _coef_;

cards;

max . exp_return

eq . beta

upperbd . upper

lowerbd . lower

eq . sum_wts .
gerber exp_return L0176
gerber beta .5309
gerber upper .3333
gerber lower .05
gerber sum_wts 1.0

more lines of data, for all ten stocks

cpl exp_return .146
cpl beta .2068
cpl upper .3333
cpl lower .05
cpl sum_wts 1.0
_rhs_ exp_return 0
_rhs_ beta N
_rhs_ sum_wts 1.0

/* Solving for the LP Problem Using the WT_SPARS Data Set */
proc lp sparsedata data=wt_spars primalout=sp_out;
run;
quit;
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Output 5.4
Sensitivity Analyses
of the Optimal
Portfolio Weights

Sensitivity Analyses

As the values of the expected returns, the risk measures, and the constraint values change, so
do the solution values for the portfolio weights. If a relatively small change in the return,
risk, and constraint values generates relatively large changes in the portfolio weights, you
conclude that the portfolio weights are sensitive to the market conditions. If relatively large
changes in the return, risk, and constraint values generate relatively small (or no) changes in
the portfolio weights, you conclude that the portfolio weights are robust to the market
conditions.

You can assess the stability of the portfolio weights (the primal solution values of the
linear programming problem) by performing sensitivity analyses. You can perform
sensitivity analyses on the price vector (the average annual returns) or on the
right-hand-side vector (the weights summing to unity and the portfolio 3 equaling .7).
Sensitivity analyses show you the range over which the price vector or the right-hand-side
vector can vary and the primal solution portfolio weights are still optimal.

You can perform these sensitivity analyses on the linear programming problem solved
in Output 5.3 with the following statements. The sensitivity analyses are printed in Output
5.4.

Explanation of syntax

DATA= specifies the data set to be used for analysis.

PRIMALIN= specifies the data set containing the solution for analysis.

RANGEPRICE specifies that range analysis is to be performed on the price coefficients.

RANGERHS specifies that range analysis is to be performed on the right-hand-side
vector.

Example code

proc lp data=weight2 primalin=1p_out2 rangeprice rangerhs;
title2 ’'Sensitivity Analyses’;

run;
quit;
Linear Programming
Sensitivity Analyses
LINEAR PROGRAMMING PROCEDURE
RHS RANGE SUMMARY
---------- Min Phi ---------- ---------- Max Phi ----------
Row Rhs Leaving Objective Rhs Leaving Objective
beta 0.575222 DEC 0.020900 0.708211 CONED 0.020293
sum_wts 0.988528 CONED 0.020084 1.231195 CONED 0.025293
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Linear Programming
Sensitivity Analyses

LINEAR PROGRAMMING PROCEDURE

PRICE RANGE SUMMARY

Variable  ---=------ Min Phi ~-=m----me mmmeeeeaeo Max Phi ----------
Col Name Price Entering Objective Price Entering Objective
1 GERBER -INF . -INF 0.019043 GERBER 0.020403
2 TANDY 0.016684 TANDY 0.016292 +INF +INF
3 GENMIL -INF . -INF 0.020834 GENMIL 0.020632
4 CONED 0.016207 GERBER 0.020027 0.764592 WEYER 0.067458
5 WEYER -INF . -INF 0.018166 WEYER 0.020779
6 IBM -INF . -INF 0.019661 IBM 0.020799
7 DEC 0.017004 MOBIL 0.020027 0.026060 TANDY 0.022322
8 MOBIL ~INF . -INF 0.018337 MOBIL 0.020387
9 TEX -INF . -INF 0.018826 TEX 0.020667
10 CPL -INF . -INF 0.020522 CPL 0.020627

Interpretation of output
Output 5.4 displays the sensitivity analyses of the linear programming problem solved in
Output 5.3.

The right-hand-side sensitivity analysis shows you

O the name of the variables that leave the optimal primal solution. DEC leaves when the
portfolio 3 constraint BETA is reduced to .575222, while CONED leaves when the
BETA constraint is increased to .708211. CONED leaves when the SUM_WTS
constraint is reduced to .988528, and CONED leaves when the SUM_WTS constraint is
increased to 1.231195.

o the value of the optimal objective function in the modified problems. In this example,
the level of expected returns is shown for each case.

0 the optimal solution of the modified problem.
The price-range sensitivity analysis shows you

O the name of the entering variables

O the range of prices (or for this problem, the range of expected returns) at which a
variable is in the basis of the linear programming problem. Prices (expected returns)
outside of this range generate different solution values for the portfolio weights.

0 minimum and maximum price coefficients (expected returns) in the modified problems

0O the resulting value of the optimal objective function in the modified problems.

By examining the sensitivity analyses, you can judge how robust the optimal primal
solution weights are. For example, you may want to compare the robustness of the solution
weights for several portfolios. The more the right-hand-side coefficients and the prices
(expected returns) can vary (with the solution weights still remaining optimal), the more
robust the solution weights are.

Suppose you were performing sensitivity analysis on the expected returns, and slight
changes in the expected returns caused large changes in the solution weights. You would
conclude that the solution weights for that particular linear programming problem are not
robust.
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p Caution

Output 5.5

Optimal Portfolio
Weights when
Portfolio Risk Level
(Beta) is Equal to or
Less than .7.

Use Solution Weights with Care

Only when you are fully satisfied with your assumptions about the future, your expectations
of future stock returns and risks, and your linear programming analysis should you consider
basing your investment strategies upon them. A

Setting Maximum Portfolio Risk Level while
Calculating Portfolio Weights

You may want to examine the optimal portfolio weights calculated when the risk constraint
is an inequality, that is, when the portfolio § can be less than or equal to a maximum
acceptable value.

For example, you may want to explore how the primal solution changes in the previous
problem if the portfolio § is allowed to be equal to or less than .7.

You can perform this task with a DATA step and PROC LP, as shown in the following
statements. Part of the output generated by these statements is shown in Output 5.5. Only the
solution portion is shown.

data weight3;

set weight2;

if _id_ = 'beta’ then _type_ = "le’;
run;

proc lp data=weight3 primalout=1p out3;

run;
quit;
LINEAR PROGRAMMING PROCEDURE
VARIABLE SUMMARY
Variable Reduced
Col Name Status Type Price Activity Cost
1 GERBER UPLOWBD 0.0176 0.050000 -0.003400
2 TANDY UPLOWBD 0.0288 0.333300 0.007800
3 GENMIL UPLOWBD 0.0148 0.050000 -0.006200
4 CONED BASIC UPLOWBD 0.021 0.266700 0.000000
5 WEYER UPLOWBD 0.0092 0.050000 -0.011800
6 IBM UPLOWBD 0.0103 0.050000 -0.010700
7 DEC UPLOWBD 0.0182 0.050000 -0.002800
8 MOBIL UPLOWBD 0.0172 0.050000 -0.003800
9 TEX UPLOWBD 0.0121 0.050000 -0.008900
10 CPL UPLOWBD 0.0146 0.050000 -0.006400
11 beta BASIC  SLACK 0.124778 0.000000

LINEAR PROGRAMMING PROCEDURE

CONSTRAINT SUMMARY

Constraint s/s Dual
Row Name Type Col Rhs Activity Activity
1 exp_return OBJECT 0.020900 .
2 beta LE 11 0.7 0.575222 0.000000
3 sum_wts EQ 1 1.000000 0.021000




144  Portfolio Creation Using Linear Programming 0 Chapter 5

Interpretation of output
Output 5.5 includes the optimal solution weights and the constraint summary for the
modified problem introduced and solved in Output 5.3.

Note in observation 11 (beta) that the TYPE variable is SLACK. This variable accounts
for the excess of the right-hand side of the BETA inequality constraint over the left-hand
side. (That is, the SLACK variable is a linear programming variable added by PROC LP to
simplify the inequality BETA constraint to an equivalent equality constraint and, thereby, to
simplify the mathematical analysis.)

The following table shows only the optimal portfolio weights that changed, the
resulting objective function and portfolio B values as the equality BETA constraint (in
Output 5.3) is modified to an inequality constraint (in Output 5.5):

Variables and Value from Value from
Functions Output 5.3  Output 5.5
CONED .063379 .266700
DEC .253321 .050000
Portfolio Return .020330 .020900
Portfolio Risk .700000 575222

The inequality BETA constraint of Output 5.5 is less restrictive than the equality BETA
constraint of Output 5.3. In the less restrictive problem, the objective function (portfolio
return) increases, while the BETA constraint (risk measure) decreases. The higher return and
lower risk indicate that the portfolio in Output 5.5 is superior to the portfolio of Output 5.3.

Calculating Dollar Amounts to Invest

For the dollar value of your portfolio, you can use a DATA step and the optimal portfolio
weights to calculate the dollar amounts to invest in each stock. For example, suppose you
wanted to invest $100,000 in the portfolio of stocks used in the analysis of this chapter. The
following statements use the optimal weights from Output 5.5 to perform this task:

data lp_out3a;
set lp_out3;
if _n_ > 10 then delete;
amount=_value_*100000;
rename _var_ = asset;
run;

proc print data=lp_out3a;

var asset amount;

title 'Linear Programming’;

title2 'Amount to Invest in Each Asset’;
run;
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Output 5.6
Optimal Amounts to
Invest in Each Stock

Linear Programming
Amount to Invest in Each Asset

0BS ASSET AMOUNT

1 GERBER 5000
2 TANDY 33330
3 GENMIL 5000
4 CONED 26670
5 WEYER 5000
6 IBM 5000
7 DEC 5000
8 MOBIL 5000
] TEX 5000
10 CPL 5000

Interpretation of output
The amounts shown in Output 5.6 are the optimal amounts to invest in these stocks to
maximize returns, given the constraints listed previously (in the code producing Output 5.5).

This linear programming approach is most appropriate if you can purchase any number
of common stock shares (including fractional amounts). Typically, mutual funds allow
purchases of any number of shares (above a minimum investment level).

Typically, individually listed stocks are traded in lots of 100 shares. Trading in lots
other than 100 shares is known as odd-lot trading. Finding the optimal number of 100-share
lots to purchase involves solving integer programs. The next section presents integer
programming examples that incorporate the constraint of trading in 100-share lots.

Portfolio Creation Using Integer Programming

Typically, for portfolio creation, you want to purchase individual stocks in lots of 100
shares. Finding the maximum expected return, subject to the constraint of purchasing
100-share lots, is an integer programming problem.

In this section, you

o use PROCLP to solve integer programming problems

o use PROC PRINT to print the primal and dual solution data sets

O use the DATA step and PROC TRANSPOSE to calculate the expected portfolio return
and the portfolio 8.

Solving an Integer Programming
Problem

You use PROC LP to solve integer programming problems. For this example, the expected
returns calculated in Output 5.1 and the CAPM Ss calculated in Chapter 4 are used. Because
the expected returns and CAPM s are calculated as of the end of 1986, the closing stock
prices as of December 31 1986 (times 100) are used as the cost of 100-share lots of the
stocks.

In the example that follows, the PROC LP statements

O maximize the expected portfolio return, subject to the listed constraints. This is the first
observation in the WEIGHT4 data set.
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O constrain the summation of the products of each individual stock 3 and the
corresponding number of 100-share lots purchased to 10 or less. This is the second
observation in the WEIGHT4 data set. Note that this risk measure is not comparable to
the portfolio 8 constraint of previous examples in this chapter.

O constrain the summation of the products of each 100-share lot cost times the number of
lots purchased to be less than or equal to $100,000. This is the third observation in the
WEIGHT4 data set. Note that for integer programming problems, inequality constraints
are advised; otherwise, you may create infeasible problems.

O  set upper bounds of either four or seven 100-share lots for each stock. Stocks selling for
over $100 per share are limited to four 100-share lots, while stocks selling for less than
$100 per share are limited to seven 100-share lots. This is the fourth observation in the
WEIGHT4 data set. The upper bounds ensure that the portfolio will not be concentrated
into only one or two stocks.

O set lower bounds of one 100-share lot for each stock. For this example, at least 100
shares of each stock in the portfolio are purchased. This constraint ensures
diversification. This is the fifth observation in the WEIGHT4 data set.

O specify integer programming with the _TYPE_ variable of INTEGER. Note that the
coefficients in the integer constraint specify the order in which the stocks are included
in the PROC LP iterations. In this example, the stocks are included in the order in which
they are listed. This is the sixth observation in the WEIGHT4 data set.

With integer programming problems, you may want to increase the maximum limit of
iterations above the default limit of 100 iterations. The PROC LP IMAXIT= option enables
you to set the maximum number of iterations.

You can store the primal and dual solutions from this integer programming problem in
output data sets with the PRIMALOUT= and DUALOUT?= options, respectively.

/* Input Data Set for Integer Programming Problem */
/* Buy Stock in Lots of 100 Shares */
/* 1 Lot Minimum, 4 or 7 Lots Maximum */
/* Portfolio Equal to or Less Than $100,000 */
/* Find Optimal Number of Lots to Buy */
data weight4;
input _1id_ $10. gerber tandy genmil coned weyer ibm dec mobil tex
cpl _type_ $ _rhs_;

cards;
exp_return .0176 .0288 .0148 .021 .0092 .0103 .0182 .0172 .0121 .0146 max
beta .5309 1.048 .1383 .102 .7231 .3954 .7157 .6856 .5786 .2068 le 1:
lots 4138 4250 4313 4713 3775 12000 10475 4013 3588 3863 1le 100::
upper 7 7 7 7 7 4 4 7 7 7 upperbd
lower 1 1 1 1 1 1 1 1 1 1 lowerhd

integer 1 2 3 4 5 6 7 8 9 10 integer

i

/* Solving the Integer Programming Problem */
proc lp data=weightd imaxit=200 primalout=1p_outd4 dualout=d_out;
run;

The output from PROC LP is not shown. The following sections print the primal and
dual solutions.
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Printing the Primal Solution Data Set

Before printing the primal solution data set, you may want to use a DATA step to eliminate
unneeded observations and variables. In this example, the DATA step creates the
LP_OUTA4A data set containing the stocks and the optimal number of 100-1ot shares to
purchase for this integer programming problem.

/* Tailoring Output Data Set for Printing */
data lp_outda(keep= _var_ _value_
rename= _var_=name);
set lp_outd;
if _n_ > 10 then delete;
run;

/* Printing the Primal Solution */
proc print data=lp_outda;

title 'Integer Programming’;

title2 'Number of 100 Share Lots to Buy';
run;

Integer Programming

0BS NAME _VALUE_

GERBER

CW®TAU B W
-
23
o
i

ey

Interpretation of output

Output 5.7 displays the optimal number of 100-share lots to purchase of each stock. What
cannot be shown by this output are comparable measures of the expected return and the
portfolio risk level (previously measured by portfolio ). These values can be calculated
from the input data set (WEIGHT4) and the primal solution data set (LP_OUT4).

A value required to calculate the portfolio expected return and risk level is the optimal
size of the portfolio. Notice in the code producing Output 5.7 that the LOTS constraint
(limiting the size of the portfolio) is an inequality constraint with a maximum value of
$100,000. Of the allocated $100,000, how much is used to create the portfolio? To answer
this question, you must examine the dual solution data set, which is printed and interpreted
in the next section.
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Output 5.8
Dual Solution to
Integer
Programming
Problem

Printing the Dual Solution Data Set

You use PROC PRINT to print the dual solution data set D_OUT. The dual solution data set
contains the following items of interest:

o the return of the portfolio
o the optimal size of portfolio

0 the optimal level of portfolio risk.

Note that these measures of portfolio risk and return are not comparable measures in
previous linear programming stock selection problems. Previous portfolio return measures
were linear combinations of the individual stock returns and the optimal portfolio weights.
Previous portfolio risk measures were linear combinations of the individual stock risk
(CAPM pfs) and the optimal portfolio weights.

/* Printing the Dual Solution */

/* Optimal Solution Size of the Portfolio */
proc print data=d_out;

title ’Linear Programming’;

title2 ‘Return, Risk, and Size of Portfolio’;
run;

Linear Programming
Return, Risk, and Size of Portfolio

OBS _ROW_ID_ _TYPE_ _RHS_ _VALUE_
1 exp_return OBJECT 0.39 0.39
2 beta LE 10.00 9.84
3 lots LE 100000.00 99719.00

Interpretation of output
Output 5.8 displays the dual solution to the integer programming problem. The variable
(column) headings are interpreted as follows:

o The OBS variable identifies the observation number.

0 The _ROW_ID_ variable identifies the rows. These rows correspond to those in the
input data set, WEIGHT4.

o The _TYPE_ variable corresponds to the input data set values for the observations.
EXP_RETURN is the objective function to be maximized, and BETA and LOTS are
inequality (less than or equal to) constraints.

0 The _RHS_ variable corresponds to the right-hand-side variable value in the input data
set WEIGHT4.

o The _VALUE_ variable contains the optimal dual solution values.
Note the following:

o The expected portfolio return is 0.39.
o The portfolio risk level is 9.84 (of the possible 10).
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O  The optimal portfolio size is $99,719 (of the possible $100,000).

The expected portfolio return and the portfolio risk level are not comparable to previous
measures of risk and return. The next section shows you how to calculate comparable
values.

Calculating Comparable Risk and Return
Measures

The constraint requirements of the integer programming problem do not allow the
right-hand-side coefficients to be set so that comparable portfolio risk and return measures

are generated in the primal or dual solutions.
You can use the DATA step and PROC TRANSPOSE to generate these values. You

proceed as follows:

0 Use PROC TRANSPOSE to transpose the input data set for the integer programming
problem.

0 Use the DATA step to eliminate unneeded observations and variables, rename
variables, and merge the input and primal solution data sets.

0 Use the DATA step to calculate the individual stocks’ contributions to comparable risk
and return measures.

0 Use PROC MEANS to sum the individual stocks’ contributions to comparable risk and
return measures.

Tailoring the Input Data Set
You can use PROC TRANSPOSE and the DATA step to tailor the input data set.

/* Transpose Input Data Set */
proc transpose data=weightd out=wtl;
run;

The transposition transforms rows to columns and columns to rows, After transposing,
you can use a DATA step to eliminate unneeded observations and variables. You rename the
variables with a RENAME statement. Then you use PROC PRINT to print the tailored input
data set.

data wt2(drop=col4 col5 col6);

set wtl;

if _n_ > 10 then delete;

rename _name_=name coll=return col2=beta col3=lots;
run;

/* Printing the Tailored Data Set */
proc print data=wt2;

title ’'Integer Programming’;

title2 'Transposed and Tailored Input Data Set';
run;
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Output 5.9
Tailored Input Data
Set

Output 5.10
Merged Data Set

Integer Programming
Transposed and Tailored Input Data Set
OBS NAME RETURN BETA LOTS
1 GERBER 0.0176 0.5309 4138
2 TANDY 0.0288 1.0480 4250
3 GENMIL 0.0148 0.1383 4313
4 CONED 0.0210 0.1020 4713
5 WEYER 0.0092 0.7231 3775
6 IBM 0.0103 0.3954 12000
7 DEC 0.0182 0,7157 10475
8 MOBIL 0.0172 0.6856 4013
9 TEX 0.0121 0.5786 3588
10 CPL 0.0146 0.2068 3863

Interpretation of output

Output 5.9 displays the tailored input data set, which is ready for merging with the tailored
primal solution data set LP_OUT4A. The variables RETURN, BETA, and LOTS contain the
expected stock returns, the fBs, and the cost of 100-share lots of each stock (as of December
31, 1986), respectively.

Merging the Input and Primal Solution Data Sets

You merge the tailored input and primal solution data sets in a DATA step. The merged data
set can be printed with PROC PRINT.

/* Merging Input and Primal Solution Data Sets */
data wt3;

merge lp_outda wt2;
run;

proc print data=wt3;
title ’'Integer Programming’;
title2 'Merged Data Set’;
run;

Integer Programming
Merged Data Set
0OBS NAME _VALUE_ RETURN BETA LOTS
1 GERBER 3 0.0176 0.5309 4138
2 TANDY [ 0,0288 1.0480 4250
3 GENMIL 1 0,0148 0.1383 4313
4 CONED 6 0.0210 0.1020 4713
5 WEYER 1 0.0092 0.7231 3775
6 IBM 1 0.0103 0.3954 12000
7 DEC 1 0.0182 0.7157 10475
8 MOBIL 1 0.0172 0.6856 4013
9 TEX 1 0.0121 0.5786 3588
10 CPL 1 0.0146 0.2068 3863
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Performing the Calculations

To calculate the comparable measures of risk and return, you first need to create a variable
containing each stock’s fraction of the portfolio. This fraction is used later to calculate each
stock’s contribution to the portfolio risk and return.

You use the portfolio size from the dual solution data set to calculate these fractions in a

DATA step.

data wtd;
set wt3;
amt=99719;
fraction=_value_*lots/amt;
risk=fraction*beta;
exp_ret=fraction*return;
run;

After creating each stock’s contribution to portfolio risk and return, you sum them with
PROC MEANS.

/* Sum the Individual Stock Contributions */
proc means data=wtd sum;

var risk exp_ret;

title2 'Comparable Measures of Risk and Return’;

run;

Output 5.11 ]

Integer Programming
Comparable Comparable Measures of Risk and Return
Measures of Risk variable o
andReturn | e

RISK 0.4862172

EXP_RET 0.0188888

Interpretation of output

In Output 5.11, the first observation (labeled RISK) is the CAPM portfolio S, calculated as a
linear combination of individual stock s and their portfolio weights. The second
observation (labeled EXP_RET) is the expected return of the portfolio (1.89 percent),
calculated as a linear combination of individual stock returns and their portfolio weights.

Portfolio Creation with Short Sales Allowed

Thus far, the linear and integer programming problems for portfolio selection have not
allowed short sales. The amounts to be invested in each stock have been constrained to
non-negative values. Lintner (1971) suggested a constraint that allows short sales but
requires investors to hold in escrow the amount sold short until the outcome is known. This
constraint is that the absolute values of the portfolio weights must sum to unity.
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Solving the Linear Programming
Problem

You can create an input data set in a DATA step for linear programming problems to
incorporate the constraint that the portfolio weights sum to unity. You modify the input data
set by listing each stock twice: once with positively signed return and risk measures for
buying and once with negatively signed return and risk measures for selling short. In the
INPUT statement, the suffix of | indicates that the stock is bought, while a suffix of 2
indicates that the stock is sold short.

Note that you may expect returns of different magnitudes from buying and holding a
stock versus selling a stock short. In that case, you want to adjust the price coefficients
(expected returns) in the objective function of the input data set to reflect those differences.
In lieu of any specific differences in the magnitude of expected returns, the examples in this
section are based on the same magnitudes of returns with opposite signs: positive for buying
and holding and negative for short sales.

The objective function is still to maximize expected return, and, for this example, the
constraints on the portfolio weights are as follows:

O Weights must be chosen so that the portfolio risk level (5) is less than or equal to unity.
0 The individual portfolio weights are allowed to vary between -1 and +1.

O The absolute value of the portfolio weights must sum to unity.

Under these constraints, the input data set for PROC LP is as shown in the following
DATA step. Note that the / line-pointer control in the INPUT statement forces a new record
to be read into the input buffer and forces the pointer to return to the beginning of that
record. That is, each observation in the WEIGHTS data set contains two lines of data. The /
line-pointer control indicates that the first data line of each observation ends with the
variable WEYERZ2, and the second data line begins with the variable IBM1.

data weighth;
input _id_ $10. gerberl gerber? tandyl tandy2 genmill genmil?2
conedl coned? weyer! weyer2 / ibml ibm2 decl dec2 mobill
mobil2 texl tex2 cpll cpl2 _type_ S _rhs_;
cards;
exp_return .0176 -.0176 .0288 -.0288 .0148 -.0148 .021 -.021 .0092 -.0092
.0103 -.0103 .0182 -.0182 .0172 -.0172 .0121 -.0121 .0146 -.0146 max

beta .5309 -.5309 1.048 -1.048 .1383 -.1383 .102 -.102 .7231 -.7231
.3954 -.3954 .7157 -.7157 .6856 -.6856 .5786 -.5786 .2068 -.2068 le 1.0
sum_wts 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 eq 1
available 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 upperbd

1

The PROC LP statements to solve this problem are shown in the following code. You
can tailor the primal output data set LP_OUTS to delete stocks with weights of 0. The
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Output 5.12
Amounts to Invest in
Stocks with Nonzero
Weights

p» Caution

amounts to invest in stocks with nonzero weights in a $100,000 portfolio are printed using
PROC PRINT in Output 5.12. The output from PROC LP is not shown.

proc 1lp data=weight5 primalout=1p_outbh;
run;
quit;

data lp_outba;
set Ip_out5;
if n_ > 20 then delete;
1f value_ = 0 then delete;
amount=_value_*100000;
rename _var_ = asset;

run;

proc print data=lp_outba;

var asset amount;

title 'Linear Programming’;

title2 ’Amount to Invest in Each Stock’;
run;

Linear Programming
Amount to Invest in Each Stock

0BS ASSET AMOUNT

1 TANDY1 94926.00
2 CONED1 5074.00

Interpretation of output
In Output 5.12, the stocks with nonzero portfolio weights and the amount to invest in each
are listed. Both stocks have a suffix of 1, indicating that they should be bought.

For Each Stock Either Buy and Hold or Sell Short, But Not Both

Be aware that when using the Lintner constraint, it may be possible (but unlikely) for the
solution to include a nonzero weight for purchases and for short sales. For each stock, you
should follow either the buy-and-hold investment strategy or the selling-short strategy, but
not both. In the rare case that the solution weights indicate following both strategies for an
individual stock, you should respecify the problem. A

Optimal Solutions for Other Risk Levels

The WEIGHTS data set created for Output 5.12 can be modified to constrain the portfolio
risk level to different values. For example, you can constrain portfolio 3 to .75 or less with
the following DATA step. Note that all other constraints in the WEIGHTS data set are
unchanged.

data weightbb;

set weight5;

1f _id_ = 'beta’ then _rhs_ = .75;
run;



154 Portfolio Creation with Short Sales Allowed © Chapter 5

You can use PROC LP to solve this linear programming problem with the following

statements:

proc lp data=weight5b primalout=1p_out5b;
run;
quit;

The primal solution is stored in the LP_OUTS5B data set. The output from these

statements is not shown.

For this linear programming problem, the solution percentages of the portfolio to invest

in each stock for various risk levels are shown in the following table:

Beta <= Stocks to Invest in Expected Return
-25 CONED1=57.34% WEYER2=42.66% 0.8116%
-15 CONED1=69.46% WEYER2=30.54% 1.1776%
-.05 CONED1=81.58% WEYER2=18.42% 1.5437%

0 CONED1=87.64% WEYER2=12.36% 1.7267%
.05 CONED1=93.70% WEYER2=6.30% 1.9097%
15 CONED1=94.93% TANDY1=5.07% 2.1396%
25 CONED1=84.36% TANDY1=15.64% 2.2220%
.50 CONED1=57.93% TANDY1=42.07% 2.4282%
75 CONED1=31.50% TANDY1=68.50% 2.6343%
1.00 CONED1=5.07% TANDY1=94.93% 2.8404%

The column labeled “Beta <=" lists a variety of values for which the portfolio 3 is less
than or equal to. A positive § implies that the stock moves with the market. That is, if the
market goes up, the portfolio return also goes up, and if the market goes down, the return
goes down. The market §is 1.0. On average, the return of a portfolio with 8 of 1.0 moves in
the same direction and magnitude as the market. On average, the return of a portfolio with 8
less than 1.0 and greater than 0, moves in the same direction as the market but with a smaller
magnitude.

A portfolio with 8 of 0 is still risky in that the level of its future returns is unknown in
advance, and returns of the portfolio are uncorrelated with the market. You may still be able
to reduce the risk of holding portfolios with 8 of 0 by further diversification.

A portfolio with a negative 3 implies the stock (or the portfolio) moves against the
market. That is, if the market goes up, the portfolio return goes down, and if the market goes
down, the portfolio return goes up.

The column labeled *“Stocks to Invest in” lists the optimal stocks (for this set of
constraints and assumptions) to buy and hold or to sell short and the percentage of the
portfolio to invest in each stock. In this example, Consolidated Edison stock is bought and
held in every case. For portfolio Bs of about .10 or less, the variable WEYER?2 appears in
the portfolio, and WEYER?2 indicates that Weyerhauser stock is sold short. For portfolio Bs
of about .10 or more, Tandy Corporation stock is bought and held.

The column labeled “Expected Return” lists the expected portfolio return, and in terms
of the linear program, the value of the objective function. As the portfolio 8 decreases, so
does the expected return of the portfolio. Typically, investors require higher expected
returns for accepting greater risks. The risk and return values in the table illustrate the
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trade-off investors face: greater return is possible, if one is willing to accept additional risk.
Each investor must decide the optimal trade-off of risk and return.

Setting Bounds on the Optimal Weights

You can set different upper and lower bounds on the amount to buy or sell short for each
stock. For example, you may want to modify the previous example by setting an upper
bound of 25 percent of the portfolio for buying each stock, and an upper bound of 10 percent
for short sales of each stock. For this example, the input data set WEIGHT®6 is as follows:

data weighté;
input _id_ $10. gerberl gerber2 tandyl tandy2 genmill genmil2
conedl coned?2 weyerl weyer2 / ibml ibm2 decl dec2 mobill
mobil2 texl tex2 cpll cpl2 _type_ S _rhs_;
cards;
exp_return .0176 -.0176 .0288 -.0288 .0148 -.0148 .021 -.021 .0092 -.0092
.0103 -.0103 .0182 -.0182 .0172 -.0172 .0121 -.0121 .0146 -.0146 max

beta 5309 -.5309 1.048 -1.048 .1383 -.1383 .102 -.102 .7231 -.7231
.3954 -.3954 .7157 -.7157 .6856 -.6856 .5786 -.5786 .2068 -.2068 le 1.0
sum_wts 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 eq 1
upper 250 .1 .25 Nl .25 .1 .25 1 25 .1

25 .1 25 .1 .25 1 .25 .1 .25 1 upperbd

The PROC LP statements to solve this linear programming problem are as follows:

proc lp data=weight6 primalout=Ip_outb;
run;
quit;

You can tailor the primal output data set LP_OUT®6 to delete stocks with weights of 0 in
a DATA step. The amounts to invest in stocks with nonzero weights in a $100,000 portfolio
are printed using PROC PRINT in Output 5.13. The PROC LP output is not shown.

data lp_outba;
set Ip_outé;
if n_ > 20 then delete;
if _value_ = 0 then delete;
amount=_value_*100000;
rename _var_ = asset;

run;

proc print data=1p_outba;

var asset amount;

title 'Linear Programming’;

title2 'Amount to Invest in Each Stock’;
run;
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Output 5.13 . .
. Linear Programming

Amounts to Invest in Amount to Invest in Each Stock
StO?ks with Nonzero 085 ASSET AMOUNT
Weights

1 GERBER1 25000

2 TANDY1 25000

3 CONED1 25000

4 DEC1 25000

_—s— . >~ >

Interpretation of output
In Output 5.13, the stocks with nonzero portfolio weights and the amount to invest in each
are listed. All stocks listed have a suffix of 1, indicating that they should be bought.

Optimal Solutions for Other Risk Levels

You can modify the WEIGHT®6 data set created for Output 5.13 to constrain the portfolio

risk level to different values. To perform this task, you follow the example code used to

generate the table that appears in the section “Optimal Solutions for Other Risk Levels.”
The solution percentages of the portfolio to invest in each stock for various risk levels is

shown in the following table:




Table 5.1
Portfolio Risk,
Weights, and
Expected Return
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Beta <= Stocks to Invest in % Return
TANDY2 =10.0% GENMIL1=25.0% CONEDI =25.0%
-25 WEYER2 =10.0% DEC2 =10.0% MOBIL2 = 2.7% 0.2717%
TEX2 =10.0% CPLI1 = 73%
TANDY2 =10.0% GENMIL1=25.0% CONEDI1 =25.0%
-.15 WEYER2 =10.0% DEC2 = 1.8% TEX2 =10.0% 0.6275%
CPL1 =18.2%
GERBER = 02% GENMIL1=25.0% CONED1 =25.0%
-.05 WEYER2 =100% MOBIL2 = 48% TEX2 =10.0% 0.9687%
CPLI =25.0%
GERBERI1= 43% GENMIL1=25.0% CONED1 =25.0%
0 WEYER2 =10.0% MOBIL2 = 0.7% TEX2 =10.0% 1.1117%
CPL1 =25.0%
.05 GERBER1= 8.8% GENMIL1=25.0% CONEDI1 =25.0% 1.2470%
WEYER2 =10.0% TEX2 = 6.2% CPL1 =25.0%
15 GERBER1= 9.0% TANDYI1l= 6.0% GENMIL1=25.0% 1.4989%
CONED1 =25.0% WEYER2 =10.0% CPL1 =25.0%
25 TANDY1 =18.0% GENMIL1=25.0% CONEDI =25.0% 1.7144%
WEYER2 = 7.0% CPL1 =25.0%
40 GERBER1= 8.1% TANDY1 =25.0% GENMIL1=25.0% 2.0043%
CONED1 =25.0% CPL1 =16.9%
.50 GERBER1=25.0% TANDYI =25.0% GENMIL1=172% 2.0816%
CONED1 =25.0% DECI = 7.8%
55 GERBER1=25.0% TANDY)1 =25.0% GENMIL1= 3.5% 2.1111%
CONED1 =25.0% DEC1 =16.5%
1.00 GERBER1=25.0% TANDY1 =25.0% CONEDI1 =25.0% 2.1400%

DEC1 =25.0%
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» Caution

The column labeled “Beta <=" lists a variety of values for which the portfolio 3 is less
than or equal to. The column labeled “Stocks to invest in”’ lists the optimal stocks (for this
set of constraints and assumptions) to buy and hold or to sell short and the percentage of the
portfolio to invest in each stock.

For example, given the constraints of this problem, if the portfolio £ is to be less than or
equal to 0, then the investor should buy and hold common stocks of Gerber (4.3 percent of
the portfolio), General Mills (25 percent), Consolidated Edison (25 percent), and CPL (25
percent) - while selling short the common stocks of Weyerhauser (10 percent), MOBIL (0.7
percent), and Texaco (10 percent).

The column labeled “Return” lists the expected returns for these portfolios. Note that as
the portfolio § decreases, so does the expected return; this illustrates the trade-off between
risk and return. As the portfolio B changes, so do the stocks to buy and hold, the stocks to
sell short, the optimal percentages, and the expected portfolio return. Each investor must
decide for himself the optimal trade-off of risk and return.

Continue Analysis Until You Are Satisfied

You are encouraged to experiment and explore many different constraints. Only when you
are fully satisfied with the realistic nature of the input values and the constraints should you
use the solution values to plan your investment strategies. A

Chapter Summary

This chapter has discussed stock selection for creating a portfolio subject to various
constraints using PROC LP. Linear and integer programming problems were presented,
discussed, solved, and interpreted. The objective function of the programming problems was
to maximize returns. Equality and inequality constraints included risk level, weight
summation equal to unity, and upper and lower bounds.

Learning More

O For more information on the DATA step, see SAS Language: Reference, Version 6,
First Edition, SAS Language and Procedures: Usage, Version 6, First Edition; SAS
Language and Procedures, Usage 2, Version 6, First Edition.

0 For more information on PROC REG, see SAS/STAT User’s Guide, Version 6, Fourth
Edition, Volume I and Volume 2.

0  For more information on PROC MEANS, PROC PLOT, PROC PRINT, and PROC
TRANSPOSE, see SAS Procedures Guide, Version 6, Third Edition and SAS Language
and Procedures, Usage 2.

o For more information on PROC LP, linear programming, and integer programming, see
SAS/OR User’s Guide, Version 6, First Edition.
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Introduction

A formal model for creating efficient portfolios was developed by Harry Markowitz (1952
and 1991). The efficient frontier of portfolios is the set of portfolios that offer the greatest
return for each level of risk (or equivalently, portfolios with the lowest risk for a given level
of return). His model quantified risk so that investors could analyze risk-return choices.
Moreover, risk quantification enabled investors to measure risk reduction generated by
diversification.

This chapter shows you how to use the DATA step (with the CORR procedure), the
NLP procedure in SAS/OR, and SAS/IML for portfolio creation with the Markowitz Model.
The remainder of this section reviews the basic concepts of the Markowitz Model.

In the Markowitz model, the return of a stock is the mean return (also called the
arithmetic mean). The risk for a stock is the standard deviation of stock returns. The
portfolio return (R,) is the weighted returns of the individual stocks. For portfolio creation
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in cases where short sales are not allowed, portfolio weights, X;, are between 0 and 1, and
they sum to 1. The portfolio return is calculated as follows:

Rp=xR1 +x2R2+ +xNRN
The portfolio risk, Op, for the two-stock portfolio is defined as follows:
2 2 2 2 1/2
o, = (x1 o, +x0, + 2xl)c2 012)

The variables in the nonlinear risk equation are defined as follows:

alz is the variance of the return of stock 1.
022 is the variance of the return of stock 2.
gy, is the covariance between the returns of stock 1 and stock 2. Note that, in some

applications, it is useful to define o, in terms of the individual stock risks and the
correlation between the individual stock returns, p,,.

012 = p120102

By using the Markowitz Model, investors solve for portfolio weights that minimize the
portfolio risk. Typically, investors constrain the portfolio risk equation to provide a desired
level of return. The Markowitz Model is nonlinear and, therefore, it may be difficult to solve
in some cases.

Portfolio Creation Using the DATA step and PROC CORR

Suppose you were considering constructing two-stock portfolios from the following three
common stocks: Consolidated Edison (CONED), Mobil Corporation (MOBIL), and Texaco
(TEX). (These stock returns are contained in the RETURN3 data set constructed in Chapter
4, “The Capital Asset Pricing Model (CAPM),” in the example code producing Output 4.7.)
What two-stock combinations yield the greatest return for any given level of risk? In other
words, what is the efficient frontier of two-stock portfolios?

This intuition-building section uses the DATA step and PROC CORR to calculate the
risk and return of portfolios. PROC PLOT is used to plot the risk and return of portfolios.

Calculating Means and Covariances of
Stock Returns

You can use the following PROC CORR statements to calculate the arithmetic (mean)
returns and the covariance matrix of the stocks. The COV option in the PROC CORR
statement calculates and prints the covariances. The OUTP= option in the PROC CORR
statement creates a new SAS data set containing the Pearson correlations, arithmetic means,
standard deviations, and number of observations. If the COV and the OUTP= options are
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specified, then the output data set also contains the covariances. In this example, the output
data set is named COV_OUT1.

proc corr data=return3 cov outp=cov_outl nosimple;
var coned mobil tex;
title ‘Markowitz Model’;

run;

Only the covariance matrix portion of the output is shown in Output 6.1.

Output 6.1 )
. . Markowitz Model
Covariance Matrix
OfCONED, MOBIL, 3 'VAR’ Variables: CONED MOBIL TEX
and TEXACO Covariance Matrix DF = 107
Common Stock
CONED MOBIL
Returns
CONED 0.0025956449 -.0000939720 Rate of Return for Con Edison
MOBIL ~.0000939720 0.0060380402 Rate of Return for Mobil Corporation
TEX -.0004572243 0.0041149896 Rate of Return for Texaco
Markowitz Model
Covariance Matrix DF = 107
TEX
CONED -.0004572243 Rate of Return for Con Edison
MOBIL 0.0041149896 Rate of Return for Mobil Corporation
TEX 0.0057175857 Rate of Return for Texaco
You use the following PROC PRINT statements to print the output data set
COV_OUT1.
proc print data=cov_outl;
title2 'Covariances, Means, and Correlations’;
run;
Output 6.2
Markowitz Model
COV_OUTJ Data Covariances, Means, and Correlatlons
Set 0BS _TYPE_ _NAME_ CONED MOBIL TEX
1 cov CONED 0.003 -0.000 -0.000
2 cov MOBIL -0.000 0.006 0.004
3 cov TEX -0.000 0.004 0.006
4 MEAN 0.021 0.017 0.012
5 STD 0.051 0.078 0.076
6 N 108.000 108.000 108.000
7 CORR CONED 1.000 -0.024 -0.119
8 CORR MOBIL -0.024 1,000 0.700
9 CORR TEX -0.119 0.700 1.000
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Calculating the Mean Return of
Two-Stock Portfolios

You can create many portfolios from two stocks. You can do this, for example, by holding
100 percent of one stock and 0 percent of the second stock, or O percent of one and 100
percent of the second, or any percentages in between. In the two-variable case, if one
portfolio weight is known, the second is easily calculated: one minus the known weight. In
general, the return of two-stock portfolios is calculated in the following equation:

R, =xR + (1 — xR,

In an iterative DO LOOP in a DATA step, you can add a variable, X, containing the
portfolio weights to the COV_OUT]1 data set. In this example, X goes from O to 1 by
increments of .05. Note that the DROP= option is used to drop the variable _NAME_. Also,
all observations other than those of _TYPE_ = MEAN are deleted.

data cov_out2(drop=_name_);
set cov_outl;
if _type_ ne ‘MEAN’ then delete;
dox=20tolby .05
output;
end;
label x='Portfolio Weight';
run;

The two-stock portfolios generated from the three stocks used in this example are

o CONED and MOBIL
o CONED and TEX
o MOBIL and TEX

In another DATA step, you can calculate the portfolio returns for these portfolios. The
returns are stored in the MEAN1 data set.

data meanl;
set cov_out?;
pfol_ml=x*coned+{1-x)*mobil;
pfol_m2=x*coned+{1-x) *tex;
pfol_m3=x*mobil+ (1-x)*tex;
run;

The portfolio returns of the MEANI data set are printed using PROC PRINT.

proc print data=meanl;

title 'Markowitz Model’;

title2 ’2-Stock Portfolio Returns’;
run;
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Output 6.3
Two-Stock Portfolio
Returns

Markowitz Model
2-Stock Portfolio Returns

OBS _TYPE_ CONED MOBIL TEX X PFOL_M1 PFOL_M2  PFOL_M3
1 MEAN 0.021 0.017185 0.012056 0.00 0.017185 0,012056 0.012056
2 MEAN 0.021 0.017185 0.012056 0.05 0.017376 0.012503 0.012312
3 MEAN 0.021 0.017185 0.012056 0.10 0.017567 0.012950 0.012569
4 MEAN 0.021 0.017185 0.012056 0.15 0.017757 0.013397 0.012825
5 MEAN  0.021 0.017185 0.012056 0.20 0.017948 0.013844 0.013081
6 MEAN 0.021 0.017185 0.012056 0.25 0.018139 0.014292 0.013338
7 MEAN 0.021 0.017185 0.012056 0.30 0.018330 0.014739 0.013594
8 MEAN 0.021 0.017185 0.012056 0.35 0.018520 0.015186 0.013851
9 MEAN 0.021 0.017185 0.012056 0.40 0.018711 0.015633 0.014107

10 MEAN 0.021 0.017185 0.012056 0.45 0.018902 0.016081 0.014364
11 MEAN 0.021 0.017185 0.012056 0.50 0.019093 0.016528 0.014620

Markowitz Model
2-Stock Portfolio Returns

OBS _TYPE_CONED MOBIL TEX X PFOL_M1 PFOL_M2 PFOL_M3
12 MEAN  0.021 0.017185 0.012056 0.55 0.019283 0.016975 0.014877
13 MEAN 0.021 0.017185 0.012056 0.60 0.019474 0.017422 0.015133
14 MEAN 0.021 0.017185 0.012056 0.65 0.019665 0.017869 0.015390
15 MEAN  0.021 0.017185 0.012056 0.70 0.019856 0.018317 0.015646
16 MEAN 0.021 0.017185 0.012056 0.75 0.020046 0.018764 0.015903
17 MEAN 0.021 0.017185 0.012056 0.80 0.020237 0.019211 0.016159
18 MEAN 0.021 0.017185 0.012056 0.85 0.020428 0.019658 0.016416
19 MEAN  0.021 0.017185 0.012056 0.90 0.020619 0.020106 0.016672
20 MEAN 0.021 0.017185 0.012056 0.95 0.020809 0.020553 0.016929
21 MEAN 0.021 0.017185 0.012056 1.00 0.021000 0.021000 0.017185

Interpretation of output
Output 6.3 lists the two-stock portfolio returns in the variables PFOL_M1-PFOL_M3. From
the mean return values, you can see that CONED has the highest mean monthly return,
followed by MOBIL and TEX. If the investor had perfect information about future returns,
then they would simply pick the stock with the highest returns. But perfect information
about future returns is unavailable; hence the motivation to diversify.

Thus, if all of the portfolios had equal risk, portfolio 1 would dominate because it is
linear combinations of the two stocks with greatest mean returns. You can see this by
plotting the portfolio returns versus the portfolio weight.

Plotting Portfolio Returns versus Portfolio
Weight

You use PROC PLOT to plot the portfolio returns versus the portfolio weight. The results
are shown in Output 6.4,

proc plot data=meanl vpct=150;
plot pfol _ml*x="1'
piol m*w="2"
pfol_m3*x="3" / overlay;
title2 'Portfolio Return versus Portfolio Weight’;
run;
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Output 6.4

Plotting the
Two-Stock Portfolio
Returns versus the
Portfolio Weight

Markowitz Model
Portfolio Return versus Portfolio Weight

Plot of PFOL_M1*X. Symbol used is ’'1’.
Plot of PFOL_M2*X. Symbol used is ’'2’.
Plot of PFOL_M3*X. Symbol used is ’'3’,

PFOL_M1 |

0.0213 + 1
| 1111
| 1111 2 2
| 1111 2 2

0.0182 + 1111 2 2
| 1111 2 3
| 2 2 3 33
| 2 2 333

0.0151 + 2 333
| 2 2 33 3
| 2 23 3 3
I 22 33

0.0121 + 2 3
|

Portfolio Weight

Interpretation of output
As shown in Output 6.4, portfolio 1 (combinations of CONED and MOBIL) has the greatest
returns for all levels of the portfolio weight (with the exception of the case where it ties with
portfolio 2 at 100 percent CONED and O percent TEX).

However, risk must also be considered. The next section shows you how to calculate
portfolio risk for the two-stock case.

Calculating the Risk of Two-Stock
Portfolios

You can calculate the risk levels of the two-stock portfolios in a DATA step using the
MEAN!I data set and the values from the covariance matrix of the COV_OUT1 data set. The
portfolio risk levels are calculated using the following equation, which was discussed in the
introduction section of this chapter:

2 2 2 2 1/2
g, = (xlal +x,0, + 2x1x2 012)

The following statements calculate the portfolio risk levels. The portfolio variances are
calculated in assignment statements; then the portfolio risk levels (the standard deviations)
are calculated using array processing in an iterative DO LOOP with the SQRT function.
Lastly, PROC PRINT is used to print the values, as shown in Output 6.4.

/* Calculating the 2-Stock Portfolio Risk Levels */

data riskl;
set meanl;
pfol_vl=x**2*.0025956+(1-x)**2*.0060380-2*x* (1-x)*.0000940;
pfol_v2=x**2*.0025956+ (1-x) **2*.0057176-2*%x* (1-x) *.0004572;
pfol_v3=x**2*,0060380+(1-x) **2*.0057176+2*x* (1-x)*.0041150;
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Output 6.5
Calculating
Two-Stock Portfolio
Risk Levels

v Iziininz the Arrays */
s 3, pfol_vl-pfol v3;
xrzv izl_zi3) pfol_rl-pfol_r3;

* Array Processing in the Iterative DO LOOP */
do 1i=1 to 3;
pfol_r(i)=sqrt (pfol_v(i));
end;
run;

/* Printing the 2-Stock Portfolio Risk Levels */
proc print data=riskl;

var x pfol_vl pfol_rl-pfol_r3;

title2 ’2-Stock Portfolio Risk Levels’;
run;

Markowitz Model
2-Stock Portfolio Risk Levels
0BS X PFOL_V1 PFOL_R1 PFOL_R2 PFOL_R3
1 0.00 .0060380 0.077705 0.075615 0.075615
2 0.05 0054469 0.073803 0.071576 0.074607
3 0.10 0048998 0.069999 0.067638 0.073704
4 0.15 .0043969 0.066309 0.063818 0.072912
5 0.20 .0039381 0.062754 0.060140 0.072233
6 0.25 0035234 0.059358 0.056630 0.071670
7 0.30 .0031527 0.056149 0.053322 0.071227
8 0.35 .0028262 0.053162 0.050256 0.070906
9 0.40 .0025439 0.050437 0.047478 0.070708
10 0.45 .0023056 0.048016 0.045043 0.070634
11 0.50 .0021114 0.045950 0.043008 0.070685
Markowitz Model
2-Stock Portfolio Risk Levels
0BS X PFOL_V1 PFOL_R1 PFOL_R2 PFOL_R3
12 0.55 .0019613 0.044287 0.041433 0.070861
13 0.60 .0018554 0.043074 0.040370 0.071160
14 0.65 .0017935 0.042350 0.039863 0.071581
15 0.70 .0017758 0.042140 0.039930 0.072121
16 0.75 .0018022 0.042452 0.040570 0.072779
17 0.80 .0018726 0.043274 0.041756 0.073552
18 0.85 .0019872 0.044578 0.043444 0.074434
19 0.90 .0021459 0.046324 0.045578 0.075423
20 0.95 .0023487 0.048463 0.048098 0.076515
21 1.00 .0025956 0.050947 0.050947 0.077705

Interpretation of output
Output 6.5 lists the two-stock portfolio risk levels in the variables PFOL_R1-PFOL_R3. The
variable X contains the portfolio weight values. The variable PFOL_V1 contains the
variance (the square of the risk level) for the first portfolio.

As you examine each column of risk levels, you can see how the risk level changes as
the portfolio weight changes. A naive approach to diversification is holding equal amounts
of each stock in the portfolio (as shown in observation 11), which may not be the portfolio
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weight that minimizes the portfolio risk level. For example, portfolio 1 has minimum risk at
observation 15 (.042140) where the portfolio is 70 percent CONED and 30 percent TEX.
The following table shows the portfolio risk levels for equally weighted and minimum

risk portfolios:

Equal
Weights Risk Minimum
Portfolio Level Portfolio Mix  Risk Level Portfolio Mix
1 .045950 50% CONED  .042140 70% CONED
50% MOBIL 30% MOBIL
2 .043008 50% CONED  .039863 65% CONED
50% TEX 35% TEX
3 .070685 50% MOBIL .070634 45% MOBIL
50% TEX 55% TEX

For each weight, portfolio 2 has the lowest risk. If all two-stock portfolio returns were
equal, then portfolio 2 would dominate. You can see this by plotting portfolio risk versus the

portfolio weight.

Plotting Portfolio Risks versus Portfolio Weight

The set of two-stock portfolios with minimum risk can be more easily seen by plotting the
risks versus the portfolio weight, X. The following PROC PLOT statements create this plot.
The OVERLAY option in the PLOT statement specifies that the sets of portfolios be plotted

on one plot. The plot is displayed in Output 6.6.

proc plot data=riskl vpct=175;
plot pfol_rl*x="1'
pfol r2*x='2’
pfol_r3*x='3" / overlay;
title2 'Portfolic Risk versus Portfolio Weight’;

run;
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Output 6.6

Plotting the
Two-Stock Portfolio
Risk Levels versus
the Portfolio Weight

169

Markowitz Model
Portfolio Risk versus Portfolio Weight

Plot of PFOL_R1*X.
Plot of PFOL_R2*X.
Plot of PFOL_R3*X.

Symbol uged is '1’.
Symbol used is '2’.
Symbol used is '3,

0.08 +
1 3
23 33
[ 13 33 33 3

PFOL_R1 | 2 3 333333333

| 1
| 2 1
| 2
| 1

0.06 + 2 1
|
| 2 1
| 2 1
| 21 1
| 1 1
| 2 1 1
| 2 1 1
| 2211111

0.04 + 2.2 2 2
it Sttt tmmmm——-- Fomm————- tmmmm——- tmmm———-- Fmm—————— o= +-=
0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05

Portfolio Weight

_— > ——— > »>»>>[—>~

Interpretation of output

Output 6.6 displays the plot of two-stock portfolio risk levels versus the portfolio weight.
Portfolio 2 (combinations of CONED and TEX) has the minimum risk for all values of
portfolio weights.

Identifying Efficient Portfolios Using
PROC PLOT

Efficient portfolios have the greatest return for any given level of risk. You can use the
PLOT procedure to visually identify efficient portfolios of the RISK1 data set by plotting
returns versus risks.

The following statements overlay the plots of the two-stock portfolios consisting of
CONED and MOBIL (labeled 1), CONED and TEX (labeled 2), and MOBIL and TEX
(labeled 3). The VAXIS= option enables you to specify the tick marks for the vertical axis.
The resulting plot is shown in Output 6.7.

proc plot data=riskl vpct=200;
plot pfol_ml*pfol_rl="1’
pfol_m2*pfol_r2="2"’
pfol_m3*pfol_r3='3" / overlay
vaxis=.012 to .021 by .003;
title2 'Portfolio Return versus Portfolio Risk’;
run;
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Output 6.7

Plotting the
Two-Stock Portfolio
Returns versus the
Portfolio Risk Levels

Markowitz Model
Portfolio Return versus Portfolio Risk
Plot of PFOL_M1*PFOL_R1l. Symbol used is ‘1’.
Plot of PFOL_M2*PFOL_R2. Symbol used is ’'2’.
Plot of PFOL_M3*PFOL_R3. Symbol used is ’3’.
PFOL_M1 |
0.021 + 11
| 1 12
| 11 2
| 12
| 2111
|2 1 1
|2 1 1
0.018 + 2 1 1
| 2 1 1 1
| 2 31
| 2 3
| 2 33
| 33
| 2 3
0.015 + 2 33
| 2 3
| 2 3
| 2 33
| 2 33
| 2 3
| 2 33
0.012 + 2
|

Interpretation of output
Output 6.7 displays the plot of two-stock portfolio risk levels versus returns. Returns are
plotted on the vertical axis, and risk levels are plotted on the horizontal axis.

Each of the three sets of portfolios outline a curve. The end points of the curves (toward
the right) are the nondiversified portfolios (100 percent of one stock and 0 percent of the
other). Diversification reduces the risk levels. Portfolios on the top half of each curve
dominate the portfolios on the bottom half of each curve because a greater return can be
obtained for the same level of risk. In general, portfolios above and to the left dominate
portfolios below and to the right.

The efficient frontier of portfolios are those with the greatest return for a given level of
risk, that is, the upper left-most portfolios. Note that all portfolios labeled with 3s are
dominated by those labeled with 1s and 2s.

Plotting A Subset of the Portfolios

You can plot a subset of the two-stock portfolios shown in Output 6.7 by first using a DATA
step to eliminate most of the dominated portfolios and then by using PROC PLOT.

In the DATA step, portfolios with weight less than .61 are deleted. From Output 6.4,
you can see that these are portfolios of lower return. From Output 6.6, you can see that these
are portfolios of greater risk.

data risk2(drop=pfol m3 pfol_r3);
set riskl;
if x < .61 then delete;

run;
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In the PLOT statement of PROC PLOT, the portfolio returns are plotted versus the risk
levels. Portfolios of CONED and MOBIL are plotted with the symbol *, while portfolios of
CONED and TEX are plotted with the symbol @. The $ enables you to label the points with
the portfolio weight X.

Output 6.8

Plotting the
Two-Stock Portfolio
Risk Levels versus
the Portfolio
Returns

proc plot data=risk2 vpct=225;
plot pfol_ml*pfol _rl="*' § x
pfol_m2*pfol_r2='@" $ x / overlay
vaxis=.0175 to .0214 by .0003;
title2 'Return versus Risk’;
title3 'Selected Portfolios’;
run;

Markowitz Model
Return versus Risk
Selected Portfolios

Plot of PFOL_M1*PFOL_R1$X. Symbol used is ’'*’,
Plot of PFOL_M2*PFOL_R2$X. Symbol used is '@’,
PFOL_M1
0.0214
0.0211
0.0208 * 0.95
* 0.9
0.0205 * 0.85 @ 0.95
* 0.8

* (.75 @o0.9
* 0.7

0.0202
0.0138

0.65* @0.85

o

.0196

o

.0193
@o.8

o

.0190

o

.0187 @ 0.75

o

.0184
@ 0.7

o

.0181

o

.0178

+ —+ — 4+ —+ —+ —F —F —F — + —F —F — F — + — +

=

0175
mmmdmmmmmeee pommmmmee pommmmae- pommmmann $mmmmmm e pmmmmm $mmmmmee- +--
0.038 0.040 0.042 0.044 0.046 0.048 0.050 0.052

PFOL_R1

Interpretation of output
Output 6.8 plots the returns versus the corresponding risk levels for the subset of two-stock
portfolios. For most points, the portfolio weight is plotted to the right of the plot symbols.
The right uppermost point (the 100 percent CONED portfolio) is shared by both sets of
portfolios. The efficient frontier for the two-stock portfolios is portfolio 2 with weights from
.65 to .8 and then portfolio 1 with weights .7 to 1.0.
However, if all three stocks are included, then additional portfolios can be created with
lower risk for the same level of returns. For example, if investors construct a new
three-stock portfolio consisting of 50 percent of portfolio 1 with weight .70 and 50 percent
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of portfolio 2 with weight .75, these portfolios would dominate all portfolios below and to
the right. The portfolio weights for the individual stocks are calculated as follows:

(Portfolio 1 with weight of .70).50 + (Portfolio 2 with weight of .75).50
(.70 CONED + .30 MOBIL).50 + (.75 CONED + .25 TEX).50
.725 CONED + .15 MOBIL + .125 TEX

Note that the efficient frontier slopes upward. More return can be obtained only as more
risk is incurred. Different investors have different tolerance for risk; therefore, they may
select different portfolios.

Portfolio Creation Using PROC NLP

The NLP procedure can be used to solve a wide variety of linear and nonlinear optimization
problems, including the optimal portfolio weights from the nonlinear Markowitz model.
With PROC NLP, you can also include boundary constraints and general linear constraints
in the structure of the problem. This section shows you how to use PROC NLP to solve for
the portfolio weights of the Markowitz model.

A Two-Stock Example

The following statements solve for the portfolio weights that minimize the two-stock
portfolio risk of CONED and TEX, subject to the constraints that the weights are between
zero and one, and that the weights sum to one. The results are shown in Output 6.9.

Explanation of syntax

PROC NLP
invokes the NLP procedure. The OUTEST= option creates an output data set containing
the solution values and other items of interest. In this example, the output data set is
named NLP_OUTI.

MIN

specifies the minimization of the listed variable. In this example, the variable to be
minimized is RISK (the standard deviation of the portfolio returns), which is defined in
programming statements within PROC NLP.

Note that in PROC NLP you can also specify MAX and LSQ for objective function
maximization and fitting least squares models, respectively.

Also note that you can use most of the DATA-step functions and programming
statements within PROC NLP.

PARMS

specifies the parameters to be calculated. Starting values can be given to the parameters.
By listing parameter starting values, you may substantially reduce computing time and
the number of iterations. In this example, the parameters to be calculated are X1 and
X2. The starting value of .5 is given to each of the parameters. (You can use the stock
names as the parameter names; however, for data manipulations, parameter names like
X1-Xn can simplify the programming statements.)

You can also list more than one starting value for each parameter, which specifies
an initial grid search. The feasible grid point (meeting all of the linear and boundary
constraints) with the minimum objective function value is chosen as the initial estimate.
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If you do not include starting values, PROC NLP will select starting values from the

feasible region.
The next two statements are programming statements defining the portfolio
variance and risk levels. You include all arithmetic operators in assignment statements

when defining functions in PROC NLP.

BOUNDS
specifies the upper and lower bounds of the parameters. In this example, the parameters

X1 and X2 are bounded to the interval O to 1, including the end points. You separate
multiple boundary constraints with commas.
Note that the boundary constraints can be of the following forms:

O number relation variables relation number
O number relation variables

O variables relation number

The relations between numbers and variables can be <=, <, >, =>, and =.

LINCON
specifies a list of linear equality or inequality constraints separated by commas. In this

example, there is one linear constraint: the parameters sum to unity.
Note that the general linear constraints can be of many forms. The following are

examples:

n
O > ax relation b,
=S i

n
O number relation D, ax
j=1

n n
o > ax  relation > ax, relation...relation b,
j=1 j=1

In these equations, the a;; are the appropriate numbers, b; are the right-hand-side
values, and the relations between linear terms, variables, and numbers can be <=, <, >,
=>, and =.

Note that linear constraints written simply with as few relations as possible are
easier for diagnostic checking.

Example code

proc nlp outest=nlp_outl;

min risk;
parms x1=.5,
X2=.5;

var_p=x1*x1*,0025956+x2*x2*.0057176-2*x1*x2%.0004572;
risk=var_p**.5;
bounds 0 <= x1-x2 <= 1;
lincon 1=x1+x2;
title ’Markowitz Model’;
title2 ’Quadratic Programming Portfolio Weights';
title3;
run;
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Output 6.9
Calculating
Two-Stock Portfolio
Weights Using
PROC NLP

Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

€@ Optimization Start
Parameter Estimates

Parameter Estimate Gradient Lower BC Upper BC
1x1 0.500000 0.024860 0 1.000000
2 X2 0.500000 0.061156 0 1.000000

Value of Objective Function = 0.0430081388

Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

© Linear Constraints

[1] acT 1.00000 = + 1.0000 * X1 + 1.0000 * X2

First Order Lagrange Multipliers

Active Lagrange
Constraint Multiplier
Linear EC [1] -0.043008

Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

© Projected Gradient

Free Projected
Dimension Gradient

1 -0.025665
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Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

O Newton-Raphson Ridge Optimization
Without Parameter Scaling

Number of Parameter Estimates 2
Number of Lower Bounds 2
Number of Upper Bounds 2

Number of Linear Constraints 1

Optimization Start: Active Constraints= 1 Criterion= 0.043
Maximum Gradient Element= 0.026

Iter rest nfun act optcrit difcrit maxgrad ridge rho
1 0 2 1 0.0399 0.00310 0.00461 0 0.865
2 0 3 1 0.0398 0.000092 0.00002 0 0.997
3 0 4 1 0.0398 1.962E-9 21E-13 0 1,000

Optimization Results: Iterations= 3 Function Calls= 5 Hessian Calls= 4

Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

Active Constraints= 1 Criterion= 0.040 Maximum Gradient Element= 0.000
Ridge= 0.000

© Optimization Results
Parameter Estimates

Parameter Estimate Gradient Active BC
1 x1 0.669166 0.039820
2 X2 0.330834 0.039820

Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

O Value of Objective Function = 0.0398199853

Active and Violated Linear Constraints

[1] acT 1.0000 * x1 + 1,0000 * X2 - 1.0000 = -1,11022E-16

Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

© First Order Lagrange Multipliers
Active Lagrange
Constraint Multiplier

Linear EC [1] -0.039820
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Markowitz Model
Quadratic Programming Portfolio Weights

PROC NLP: Nonlinear Minimization

© Projected Gradient

Free Projected
Dimension Gradient

Interpretation of output
The following list interprets items of interest from Output 6.9. The numbers of the list
correspond to the callout numbers in the output.

@ Optimization Start

1. Parameter names X1 and X2. Note that X1 refers to CONED and X2 refers to TEX.
Instead of X1 and X2, you can use CONED and TEX as the parameter names.

2. User-specified starting values.

3. Initial gradient values (first derivatives of the objective function with respect to the
parameters being estimated, that is, %&I%IS and %, which measure the change in

. . . . ! 2
the objective function for changes in the parameter values). Note that at a local

minimum, the gradient values are 0.
4. User-specified lower and upper bounds.

5. Initial value of the objective function (0.0430081388).
© Linear Constraints

1. Active constraints, denoted ACT. In this example, the linear constraint that the
parameters sum to 1 is active.

2. First-order Lagrange Multipliers. In this example, if the active linear constraint
could be adjusted to be less restrictive, then the objective function could be reduced
by the value of the Lagrange Multiplier. For example, if both of the weights could
be reduced to 0, then the objective function could be reduced to O.

© Projected gradient value at the end of the optimization process. In this example, there is
one free dimension because the parameters must sum to 1, hence X2 =1 — X1,

O Newton-Raphson Ridge Optimization (Summary of the Optimization Iterations),
number of parameter estimates, lower and upper bounds, the number of constraints, the
iteration history, and the number of calls.

© Optimization Results, Parameter Estimates. This section includes the final parameter
estimates (X1 = 0.669166, and X2 = 0.330834) and the gradient values.

@ Value of the objective function at the end of the optimization process (0.0398199853),
and value of the linear constraint at the end of the optimization process. In this example,
the linear constraint written as X1 + X2 — 1 isequal to-1.11022E-16 (which is 0 for
all practical purposes).
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© First-order Lagrange Multiplier for the active constraint at the end of the optimization
process (-0.039820).

© Projected gradient in the free dimension is 2.101264E-12 (which is O for all practical
purposes).

The optimization process indicates that the optimal portfolio weights for minimizing the
risk of the two-stock portfolio are 66.92 percent CONED and 33.08 percent TEX. As a
check, you may want to compare these portfolio weights to those listed in Output 6.5 (in the
variable PFOL_R?2).

Printing the OUTEST= Data Set

You use PROC PRINT to print the OUTEST= data set NLP_OUT1, created in Output 6.9.
The following statements print the NLP_OUT]1 data set, as shown in Output 6.10.

proc print data=nlp_outl;
title2 'NLP_OUTI Data Set’;
run;

Markowitz Model

NLP_QUT1 Data Set

OBS _TECH_ _TYPE_ _NAME_ X1 X2 _RHS_
1 NRRIDG INITIAL 0.50000 0.50000 0.04301
2 NRRIDG PARMS 0.66917 0.33083 0.03982
3 NRRIDG GRAD 0.03982 0.03982 .
4 NRRIDG NABC 0.00000 0.00000
5 NRRIDG UPPERBD 1.00000 1.00000
6 NRRIDG LOWERBD 0.00000 0.00000
i NRRIDG NALC 1.00000 1.00000 .
8 NRRIDG EQ ACTIVE 1.00000 1.00000 1.00000
9 NRRIDG PROJGRAD 0.00000 . .
10 NRRIDG LAGRANGE -0.03982 . .
11 NRRIDG HESSIAN X1 0.02536 -0.05130 1.00000
12 NRRIDG HESSIAN X2 -0.05130 0.10377 2.00000
13 NRRIDG PROJHESS 0.11587 . 1.00000

Interpretation of output

Output 6.10 lists the PROC NLP OUTEST= data set, NLP_OUT]1. The data set contains
_TECH_ (the optimizing technique used, Newton-Raphson Ridge Method), _TYPE_,
_NAME_, parameter values, and _RHS_ (the right-hand-side values).

If you use the OUTEST= output data set from one invocation of PROC NLP as an
INEST= input data set for another invocation of PROC NLP, the OUTEST= data set also
contains the boundary and linear constraints specified in the first invocation of PROC NLP.
You should avoid specifying the same constraints a second time.

Using an INEST= Input Data Set

For some NLP problems, you may want to use an INEST= input data set for PROC NLP.
The form of the input is similar to that in the SAS/OR LP procedure (discussed in Chapter 5,
“Portfolio Creation with Linear Programming.”)

In particular, for larger and more complex nonlinear programming problems, you may
want to specify the parameter bounds and starting values, as well as the general linear
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constraints, in a DATA step and then specify the objective function with programming
statements in PROC NLP.

For the nonlinear programming problem solved in Output 6.10, the following
statements create the INEST= data set.

Explanation of syntax

DATA
names the data set. In this example, the data set is named IN_NLP1. The TYPE= option
indicates the SAS data set type for specially structured SAS data sets. For use as an
input data set in PROC NLP, the data set should be TYPE=EST.

INPUT
describes the arrangement of values in an input record and assigns input values to
corresponding SAS variables. In this example, the data set IN_NLP1 is used to calculate
the solution values of the portfolio weights for CONED and TEX. The IN_NLP1 data
set also contains the following:

O  acharacter variable, _TYPE_, that indicates the type of observation

O  parameter names for » numeric variables used in the PARMS statement of PROC
NLP

O anumeric variable _RHS_ (right-hand-side values), needed only if linear
constraints are used.

CARDS
indicates that the data lines follow the statement. The four lines that follow the CARDS
statement contain the parameter starting values (PARMS), the lower and upper bounds
(LOWERBD and UPPERBD), and the linear constraints (EQ). You can include
inequality constraints with the _'TYPE_ of LE and GE, for less than and greater than
constraints, respectively. The right-hand-side value is needed only for the linear
constraint and is listed as a missing value (.) in the other observations. Note that the
linear constraint is

(1 x CONED) + (1 X TEX) = 1
Example code

data in_nlpl (type=est);
input _type_ $8. coned tex _rhs_;

cards;
parms .5 .5
lowerbd 0 0
upperbd 1 1
eq 1 1 1

1

The PROC NLP statements that solve the nonlinear programming problem are as
follows. The INEST= option in the PROC NLP statement specifies IN_NLP1 as the input
data set. The output from these statements is not shown.

proc nlp inest=in_nlpl;
min risk;
parms coned tex;




The Markowitz Model, Portfolio Creation 0 Portfolio Creation Using PROC NLP 179

var_p=coned*coned*.0025956+tex*tex*.0057176-2*coned*tex*.0004572;
risk=var_p**.5;
run;

Using SAS/IML Optimizing Subroutines

You can also use SAS/IML optimizing subroutines to solve quadratic programming
problems, like the Markowitz model, as well as other nonlinear optimizing problems. The
following PROC IML statements solve the Markowitz model of Output 6.10:

/* Invoking the IML Procedure */
proc iml;

/* Defining Portfolio Risk */
start risk(x);
yl=x[1]#x[1];
y2=x[2]#x[2];
var_p=y1#.0025956+y24.0057176
-2#x[1]1#x[2]4.0004572;

risk=sqrt(var_p);

return(risk);
finish risk;

/* Listing the Constraints */
/* Lower Bounds, Upper Bounds, Sum to One Linear Constraint */
con=(0 0 . .,
11 . .,
1 1 0 1);

/* Starting Values */
x0 = (.5, .5);

{* Calling the NLPQN (Quasi-Newton) Subroutine */
CALL NLPQN(rc,xr,"risk",x0,{0,2},con);
print rc xr;
quit;

For additional information on quadratic programming with PROC IML, see pages
143-145 of SAS/IML Software: Usage and Reference, Version 6, First Edition.

Including a Constraint on Portfolio Returns

You may want to include a return constraint in the nonlinear programming problem of
Output 6.10. For example, you may want to minimize the portfolio risk subject to a
minimum acceptable level of expected return. The average returns for CONED and TEX
from Output 6.3 are used as the expected future (monthly) returns. For your analysis, you
should use the future returns that your analysis indicates.

Suppose you wanted to minimize risk of the two-stock portfolio of CONED and TEX,
subject to the constraint that expected returns must be at least .0195 (in addition to the
constraints that the portfolio weights are between 0 and 1, and that they sum to 1). You can
solve this nonlinear programming problem with the following PROC NLP statements.
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The statements are the same as those shown previously for using an INEST= data set,
with the exception of the additional general linear constraint, listed as the observation with
_TYPE_ of GE. The results are shown in Output 6.11.

data in_nlp2(type=est);
input _type_ $8. coned tex _rhs_;

cards;
parms .5 .5
lowerbd 0 0
upperbd 1 1 .
eq 1 1 1
ge .021 .0121 .0195

7

proc nlp inest=in_nlp2 outest=nlp_out2 noprint;
min risk;
parms coned tex;
var_p=coned*coned*.0025956+tex*tex*.0057176-2*coned*tex*.0004572;
risk=var_p**.5;

run;

proc print data=nlp_out2;
title2 ’Quadratic Programming Portfolio Weights’;
title3 ’Expected Return Must Be 1.95% or More';

run;
Outp, ut6.11 Markowitz Model
Solvmg the Quadratic Programming Portfolio Weights
Quadratic Expected Return Must Be 1,95% or More
Programming 0BS  _TECH_  _TYPE_ _NAME_ CONED TEX _RHS_
Problem with a
.. . 1 NRRIDG INITIAL 0.83146 0.16854 0.04276
Minimum Constraint 2 NRRIDG  PARMS 0.83146 0.16854  0.04276
on Expecled Returns 3 NRRIDG GRAD 0.04867 0.01364 .
4 NRRIDG NABC 0.00000 0.00000
5 NRRIDG UPPERBD 1.00000 1.00000
6 NRRIDG LOWERBD 0.00000 0.00000
7 NRRIDG NALC 2.00000 2.00000 .
8 NRRIDG EQ ACTIVE 1.00000 1.00000 1.00000
9 NRRIDG GE ACTIVE 0.02100 0.01210 0.01950
10 NRRIDG LAGRANGE -0.03397 3.93489 .
11 NRRIDG HESSIAN CONED 0.00531 -0.02622 1.00000
12 NRRIDG HESSIAN TEX -0,02622 0.12935 2.00000

s - 3

Interpretation of output

Output 6.11 contains the following items: initial and final parameter values, the gradient
values, the upper and lower bounds, the active constraints, the Lagrange multiplier, and the
Hessian values. The solution values for the portfolio weights of this example are 83.146
percent CONED and 16.854 percent TEX, as shown in observation 2.
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Listing the Efficient Frontier

You can define the efficient frontier of portfolios for any given set of assets by minimizing

portfolio risk for different levels of return.
To list risk-minimizing portfolios for different levels of return of the problem solved in

Output 6.11, you need to change the right-hand-side (_RHS_) value for the greater-than
(GE) inequality return constraint, as shown in the following DATA step.

data in_nlp3(type=est});

set in nlp2;

if _type_ = 'ge’ then _rhs_ =.0190;
run;

After changing the right-hand-side value, you must also change the name of the
INEST= data set option in the PROC NLP statement to match the new data set name. For
the preceding DATA step, the new INEST= data set for PROC NLP is named IN_NLP3.

By selecting different right-hand-side values for the return constraint, you can trace the
efficient frontier of portfolios. Each row of the following table contains the results of a
separate invocation of PROC NLP with different right-hand-side values for the return
constraint. The columns of the following table list the

o right-hand-side value of the required return constraint

O optimal percentages of the portfolio to invest in CONED and TEX

o risk level of the resulting portfolios.

Return=> % CONED % TEX Risk

.0210 100.000 0.000 050947
.0205 94.382 5.618 047767
.0200 88.764 11.236 045012
0195 83.146 16.854 .042763
.0190 77.528 22472 .041104
.0185 71.910 28.090 .040108
.0180 66.917 33.083 .039820
0175 66.917 33.083 .039820
.0170 66.917 33.083 .039820

For this example, right-hand-side values of portfolio returns in the range .0121 to .021
are feasible, because .0121 is the expected return on a portfolio of 100 percent TEX, and
.021 is the expected return on a portfolio of 100 percent CONED. For this example,
right-hand-side values for the return constraint outside of this range are infeasible. Note that
when the right-hand-side value of the (greater than or equal to) return constraint is reduced
below .0180, it is no longer active, and the optimal portfolio weights remain unchanged.

The efficient frontier of portfolios for these two stocks are the first seven rows of this
table. Notice that return and risk are positively related along the efficient frontier.
Intuitively, this seems reasonable; typically, investors accept greater risk only if offered
greater returns.
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Calculating Dollar Amounts to Invest

For the dollar value of your portfolio, you can use a DATA step and the optimal portfolio
weights to calculate the dollar amounts to invest in each stock. For example, suppose you
wanted to invest $100,000 in the portfolio of CONED and TEX using the optimal weights
from Output 6.11. The following statements perform this task:

data amt_out?2 (drop=_TECH_ _NAME_);
set nlp_out2;
if _TYPE_ne 'PARMS’' then delete;
coned_a=round (coned*100000, .01);
tex_a=round(tex*100000, .01);
total=sum(of coned_a tex_a);

run;

proc print data=amt_out2;
var coned a tex_a total;
title2 'Amount to Invest in Each Stock’;
title3;

run;

Output 6.12 )

. Markowitz Model
Optimal Amounts to Amount to Invest in Each Stock
Invest in Each Stock

0BS CONED_A TEX A TOTAL

1 83146.07 16853.93 100000

Interpretation of output

The amounts shown in Output 6.12 are the optimal amounts to invest in CONED and TEX
to minimize risk, given an expected return of 1.95 percent and given the constraints listed in
the code producing Output 6.1 1. The variable TOTAL is included as an accounting check.

A Ten-Stock Example

You can solve Markowitz models with hundreds (or even thousands) of variables using
PROC NLP. The following statements solve a ten-stock example, where the ten stocks are
the same stocks used in previous chapters (GERBER, TANDY, GENMIL, CONED,
WEYER, IBM, DEC, MOBIL, TEX, and CPL).

The parameters are listed as X1-X10 for ease in array processing when calculating
amounts to invest in each stock in later examples. The parameters are constrained to the
range of O to 1, and they must sum to 1. Lastly, the expected return must be at least 1.9
percent. The variances, covariances, and mean returns (used as expectations of future
returns) are calculated by PROC CORR. (See Output 6.2.)

The results from these statements are stored in the OUTEST= data set NLP_OUT4. The
first ten observations of the NLP_OUT4 data set are printed in Output 6.13.

proc nlp outest=nlp_out4 noprint;
parms x1 - x10;
var= x1*x1*.0065845 + x2*x2*,0161666 + x3*x3*.0034068
+ x4*x4* 0025956 + x5*x5%.0061889 + x6*x6*.0030980
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x7*x7%.00
x10*x10*
2*x1*x2%
2%x1*x5%,
2*¥x1*x8%,
2¥x2*¥x3*
AP VA (L
2*x2*x9%,
2¥x3*x4*
2FR3I*XT*,
2%x3*x10*
2¥R4*x5%
2*x4*x8*,
2*x5%x6*,
2*x5*x5*,
2*¥x6*x7*,
2*x6*x10*
2*¥xT*x8*,
2*¥x8*x9*,

risk=sqrt (var);
min risk;
bounds 0 <= x1-x10 <= 1;
lincon 1=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,
L0176%x1+.0288%x2+.,0148%x3+.0210%x4+.0092*x5
+.0103*x6+.0182*x7+.0172*x8+.0121*x9+.0146*x10;

run;

019 <=

.0024433

81904 + x8*x8*.0060380 + x9*x9*.0057176

.0028676
.0012481

0014933
0016392

0021623
0019255
0011501

+ + + + + o+ o+

2*x1*x3*.0008390
2%¢1*x6%.0011241
2%x1*x9*.0010154
2%x2%x4* . 0006034
2*x2*x7*.0055136 ~ 2*x2*x8*.0018761
2%x2*x10*.0008840

2%x3*x5% 0013081 ~ 2*x3*x6*.0002182

- 2*x1*x4*.0008552
2xx1*x7*.0008087
- 2*x1*x10%,0007377
- 2*x2*x5%.0043589

t

0005988 - 2*x3*x8*,0004289 - 2*x3*x9*.0008492

.0011713

0006618 + 2*x4*x6*.0002583 + 2*x4*x7*.0003856
0000940 ~ 2*x4*x9*.0004572 + 2*x4*x10*.0017717
0017847 + 2*x5*x7*.0033916 + 2*x5*x8*.0018391

0009703 + 2*x5*x10*.0010631

0017977 + 2*x6*x8*.0009574 + 2*x6*x9*.0007195

0002032

0023587 - 2*x7*x9*.0014764 + 2*x7*x10*.0008061

0041150 +

proc print data=nlp outd (obs=10);
title2 'Quadratic Programming Portfolio Weights’;
title3 'Ten-Stock Example’;

2*x8*x10*.0000495 - 2*x9*x10*.0001139;
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Tuny
Markowitz Model
Quadratic Programming Portfolio Weights
Ten-Stock Example
OBS _TECH_ _TYPE_ _NAME_ X1 X2 X3 X4 X5
1 NRRIDG INITIAL 0.00000 0.00000 0.00000 0.72052 -0.00000
2 NRRIDG PARMS 0.04798 0.05696 0.10175 0.52813 -0.00000
3 NRRIDG GRAD 0.03412 0.05822 0.02810 0.04144 0,03408
4 NRRIDG NABC 2.00000 2.00000 2.00000 2.00000 2.00000
5 NRRIDG ACTIVE 0.00000 0.00000 0.00000 0.00000 1.00000
OBS X6 X7 X8 X9 X10 _RHS_
1 0.04914 0.00000 0.00000 0.00000 0.23035 0.04602
2 0.04156 0.02778 0.12062 0.07522 0.00000 0.03714
3 0.01842 0.03542 0.03326 0.02229 0.03147 .
4 2.00000 2.00000 2.00000 2.00000 2.00000
5 0.00000 0.00000 0.00000 0.00000 1.00000
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Markowitz Model
Quadratic Programming Portfolio Weights
Ten-Stock Example

OBS _TECH. _TYPE_  _NAME_ X1 X2 X3 X4 X5
6 NRRIDG UPPERBD 1.00000 1.00000 1.00000 1.00000 1.00000
7 NRRIDG LOWERBD 0.00000 0.00000 0.00000 0.00000 0.00000
8 NRRIDG NALC 2.00000 2.00000 2.00000 2.00000 2.00000
9 NRRIDG EQ ACTIVE 1.00000 1.00000 1.00000 1.00000 1.00000
10 NRRIDG GE ACTIVE 0.01760 0.02880 0.01480 0.02100 0.00920
0BS X6 X7 X8 X9 X10 _RHS_

1.00000 1.00000
0.00000 0.00000

.00000 1.00000 1.00000
.00000 0.00000 0.00000

.00000 1.00000 1.00000 1:00000
.01720 0.01210 0.01460 0.01900

1.00000 1.00000

6 1
7 0
8 2.00000 2.00000 2.00000 2.00000 2.00000
9 1
0 0.01030 0.01820 0

Interpretation of output
In Output 6.13, the optimal portfolio weights are listed in the second observation with
_TYPE_ of PARMS. For this example, the majority of the portfolio (52.813 percent) should
be invested in X4 (CONED). The remaining portion should be invested as follows: 4.798
percent in X1 (GERBER), 5.696 percent in X2 (TANDY), 10.175 percent in X3 (GENMIL),
4.156 percent in X6 (IBM), 2.778 percent in X7 (DEC), 12.062 percent in X8 (MOBIL),
7.522 percent in X9 (TEX), and O percent in X5 (WEYER) and X10 (CPL).

Also listed are the gradient values (observation 3), the upper and lower bounds
(observations 6 and 7), and the constraints (observations 9 and 10). The projected gradient,
Lagrange multipliers, and Hessian values are not shown.

Calculating Dollar Amounts to Invest

For the dollar value of your portfolio, you can use a DATA step and the optimal portfolio
weights to calculate the dollar amounts to invest in each stock. For a $100,000 portfolio of
these stocks used in Output 6.13, the following statements perform this task.

Note that array processing is used in an iterative DO LOOP with the DATA step, and
that the amounts are rounded to the nearest $.01. A variable named TOTAL (the sum of the
ten individual amounts) is included as an accounting check.

data amt_out3;
set nlp_outd;
if _TYPE_ ne 'PARMS’ then delete;
array xa(10) x1-x10;
array a(10) al-al0;

do i=1 to 10;
a(i)=round(xa(i)*100000, .01);
end;
total=sum(of al-al0);
run;

data amt_out4;
set amt_out3;
rename al=gerber a2=tandy a3=genmil ad=coned a5=weyer
ab=ibm a7=dec a8=mobil a9=tex all=cpl;
run;
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proc print data=amt_outd;
var gerber tandy genmil coned weyer ibm dec mobil tex

cpl total;
title2 ’'Amount to Invest in Each Stock’;
title3;
run;
Markowitz Model

Amount to Invest in Each Stock
0BS GERBER TANDY GENMIL CONED WEYER IBM
1 4797.64 5696.06 10175.26 52813.13 0 4156.46
0BS DEC MOBIL TEX CPL TOTAL
1 2778.12 12061.53 7521.80 0 100000

Using an INEST= Input Data Set

For Markowitz models involving large numbers of stocks, you may want to use an INEST=
input data set for PROC NLP because the use of an INEST= data set simplifies the
remaining PROC NLP statements while also simplifying diagnostic checking. The following
statements create an INEST= data set for the problem solved in Output 6.13.

The INEST= data set should be a TYPE=EST data set. The initial starting values are
given as .1 for all stocks. If these initial starting values are infeasible, PROC NLP will
calculate feasible starting values. The lower bounds are zero and the upper bounds are one.
The right-hand-side value of the return inequality constraint is set at .019 (or 1.9 percent).
The mean values of the stocks are used as expected future returns. For this problem,
right-hand-side return inequality constraint values greater than .0288 or smaller than .0103
are infeasible.

data in_nlp4(type=est);
input _type_ $8. x1-x10 _rhs_;

cards;
parms 1 1 A A1 .1 1 1 Nl 1
lowerbd 0 0 0 0 0 0 0 0 0 0
upperbd 1 1 1 1 1 1 1 1 1 1 .
eq 1 1 1 1 1 1 1 1 1 1 1
ge .0176 .0288 .0148 .021 .0092 .0103 .0182 .0172 .0121 .0146 .019

ll

Using this INEST= data set, the following PROC NLP statements solve the
programming problem. Note that the BOUNDS and LINCON statements are omitted from
these PROC NLP statements because they are accounted for in the INEST= data set. Also to
save space, only the first and last lines of the portfolio variance are shown.

proc nlp inest=in_nlp4 outest=nlp out5;
parms x1 - x10;
var=  x1*x1*,0065845 + x2*x2*,0161666 + x3*x3*.0034068
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+ 2*x8*x9* . 0041150 + 2*x8*x10*.0000495 - 2*x9*x10*.0001139;
risk=sqrt (var);
min risk;
run;

The output from these statements is not shown.

Using an INQUAD= Input Data Set

For Markowitz models involving large numbers of stocks, you may want to use an
INQUAD= input data set for PROC NLP, which greatly simplifies the PROC NLP
statements. The INQUAD-= data set should contain the variances and covariances of stock
returns. The general quadratic function to be minimized, f{x), is of the following form:

AX)=5XHX + g X + ¢

In this equation, X is the portfolio weights, T stands for transposition (in a transposed
matrix, the rows become columns and the columns become rows), H is a symmetric matrix
of variance and covariances, g is a vector of linear coefficient (all O, for examples in this
chapter), and ¢ is a constant (0, for examples in this chapter).

If you use an INQUAD-= data set, then you minimize one half of the portfolio variance
with PROC NLP. Because the portfolio variance is the square of the portfolio standard
deviation (the Markowitz measure of risk), a strongly monotonic transformation, the same
portfolio weights minimize both functions. (Note that to calculate the portfolio risk level
(the standard deviation), you need to multiply the objective function value by 2 and then
take the square root.)

To create an INQUAD= input data set, first use PROC CORR to create a covariance
matrix; then use a DATA step to tailor the covariance matrix. The following statements use
the RETURN3 data set from Chapter 4, “The Capital Asset Pricing Model (CAPM),” to
create an INQUAD= data set for the problem solved in Output 6.13.

/* Renaming Variables to Match INEST= Data Set */
data returnd;
set return3;
rename gerber=xl tandy=x2 genmil=x3 coned=x4 weyer=x5 ibm=x6
dec=x7 mobi1l=x8 tex=x9 cpl=x10;
run;

/* Creating the Covariance Matrix */

proc corr data=returnd cov outp=cov_outl nosimple noprint;
var x1-x10;

run;

/* Tailoring Covariance Matrix for Input to PROC NLP */
data cov_out2;

set cov_outl;

if _TYPE_ ne 'COV' then delete;

_TYPE_ = 'QUAD’;
run;



The Markowitz Model, Portfolio Creation 0 Portfolio Creation Using PROC NLP 187

Using the INEST= data set created in the previous section and the INQUAD= data set
created above, the PROC NLP statements that solve the programming problem are as
follows. The output from these statements is not shown.

proc nlp inest=in_nlp4 inguad=cov_out2 outest=nlp_outé;
min;
parms x1-x10;

run;

Concatenating INEST= and INQUAD= Input Data Sets
If you are using Release 6.10 or higher SAS software, you can further simplify the PROC
NLP statements by concatenating the INEST= and INQUAD-= data sets. This concatenation
enables you to use only an INQUAD= data set in the PROC NLP statement.

The following DATA step concatenates the IN_NLP4 and COV_OUT?2 data sets.

data quad;

set cov_out2 in_nlp4;

keep _TYPE_ _NAME_ x1-x10 _RHS_;
run;

The PROC NLP statements that solve the programming problem of Output 6.13 (using
the concatenated QUAD data set) are as follows. The output from these statements is not
shown.

proc nlp inquad=quad outest=nlp_out7;
min;
parms x1-x10;

run;

Creating an Input Data Set and Constraints

You can create an input data set for PROC NLP with PROC CORR and a DATA step that
contains the constraints and starting values. The following DATA step statements use array
processing to set the upper and lower bounds, to set initial values for the solution weights
(equal to the reciprocal of the number of stocks, 1/N), and to constrain the solution weights
to sum to unity.

/* Creating the VAR-COV Matrix */

proc corr data=returnd cov outp=cov_outl nosimple noprint;
var x1-x10;

run;

/* Creating Initial Values and Constraints */
data quada(type=est);

keep _type_ x1-x10 _rhs_;

array x x1-x10;

n=10;

/

/* Setting Initial Values for Solution Weights */

_type_='parms’;
_rhs_=.;
do over x;

x=1/n;
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end;
output;

/* Setting Lower Bounds */
_type_='1b";
do over X;
x=0;
end;
output;

/* Setting Upper Bounds */
_type_="ub’;
do over x;
x=1;
end;
output;

/* Constraining Solution Values to Sum to Unity */
_type_="eq’;
_rhs_=1;
do over x;
Xx=1;
end;
output;

run;

You create the complete input data set for PROC NLP by merging the QUADA and
COV_OUT1 data sets in a DATA step.

data quadb;
set cov_outl (in=D) quada;
keep _type_ _name_ x1-x10 _rhs_;
1f D then do;
if _type ='COV' then _type_='QUAD’;
else if _type_ ne 'MEAN’ then delete;
end;
run;

Now you can use the following PROC NLP statements to solve for the solution weights
that minimize the portfolio risk:

proc nlp inquad=quadb outest=est;
min;
parms x1-x10;

run;

The results from these statements are not shown. For more details about using input
data sets for PROC NLP (and many advanced uses of PROC NLP for the Markowitz
Model), see the SAS Technical Paper, “Using PROC NLP for Risk Minimization in Stock
Portfolios.”
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The Markowitz Model, Portfolio Creation 0 Portfolio Creation Using PROC NLP 189

Listing the Efficient Portfolios

You can list the efficient portfolios by repeatedly varying the right-hand-side value of the
expected return inequality constraint in the INQUAD= or INEST= data sets used as input by
PROC NLP. The following DATA step creates a new INQUAD= data set QUADI, with the
right-hand-side value of .020 for the return inequality constraint.

data quadl;

set quad;

if _TYPE_ = ‘ge’ then _rhs_ =.020;
Tun;

After creating the QUADI data set, you use it as the INQUAD= data set for PROC NLP
to find the optimal portfolio weights.

The following table lists the resulting portfolios for various right-hand-side return
inequality constraint values for the ten stocks used in Output 6.13. Note that for the expected
returns used in these examples, the feasible range of returns is .0103 to .0288, which are the
minimum and maximum expected returns on the individual stocks.

Included in the table are the right-hand-side values, the portfolio weights, and the value
of the objective function. The portfolio risk can be obtained by multiplying the objective
function value by 2 to obtain the portfolio variance, and then taking the square root of the
portfolio variance.

Xl X2 X3 X4 X5 X6 X7 X8 X9 X10
RHSValue | G G
of E T E C W M
Inequality | R A N 0] E 0] Objective
Constraint| B N M N Y I D B T C Function
on E D I E E B E I E P Value
Returns R Y L D R M C L X L

.0288 0 100 O 0 0 0 0 0 0 0 .00808331
.0280 0 897 0 103 0 0 0 0 0 0 00657942
.0270 0 769 0 231 0 0 0 0 0 0 .00495925
.0260 0 641 O 359 0 0 0 0 0 0 .00362764
.0250 0 513 0 487 0 0 0 0 0 0 .00258457
.0240 0 385 0 615 0 0 0 0 0 0 .00183006
.0230 0 269 0 704 0 0 0 027 0 0 .00135805
.0220 .008 .189 0 686 0 0 0 A17 0 0 .00106108
0210 .051 .116 006 .642 O 0 012 173 0 0 .00088853
.0200 .050 .082 .067 581 O 0 027 146 047 O .00077936
.0190 .043 057 .102 530 0O .043 .028 .122 075 O .00069069
.0180 037 .032 137 478 0 .085 .029 .099 .102 O .00061873
.0170 .030 .008 .171 427 O .127 .031 .076 .130 O .00056347
.0160 022 0 192 346 0 173 018 .054 .153 .042| .00052555
.0150 013 0 208 254 0 220 O .031 .175 .099| .00050807
.0140 010 O 213 223 0 234 0 .021 .183 .116| .00050699
.0130 010 0 213 223 0 234 0 .021 .183 .116| .00050699
.0120 010 0 213 223 0 234 0 .021 .183 .116| .00050699
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For this example, the efficient portfolios are those with returns of .0140 to .0288. When
the right-hand-side value of the inequality return constraint is less than .0140, the inequality
constraint is no longer active, and the portfolio weights remain constant.

Note that none of the stocks are included in all of the portfolios and that WEYER (X5)
is not included in any of the portfolios. Also note that, along the efficient frontier, as the
required expected return increases, so does the variance (and the risk) of the portfolio.
Lastly, note that you may want to explore portions of the efficient frontier in greater detail,
and you can do so by specifying additional intermediate values for the right-hand-side value
of the return inequality constraint.

Plotting the Capital Market Line

The capital market line is the line which connects the expected return on the risk-free asset
with the efficient frontier of portfolios, and it is just tangent to the efficient frontier. All
points of the capital market line are linear combinations of the the risk-free asset and the
tangency portfolio on the efficient frontier. The portfolios on the capital market line
dominate all other portfolios. (Given the importance of this tangential portfolio, the section
“Calculating the Tangential Portfolio with PROC NLP,” later in this chapter, shows you
how to use PROC NLP to calculate the solution values for the tangential portfolio weights.)
To plot the capital market line for the ten-stock example, follow these steps:

1. Create a data set containing the return and risk values for portfolios on the efficient
frontier.

2. Calculate or forecast the expected return on the risk-free asset.

3. Add the expected return on the risk-free asset to the data set containing the return and
risk values of portfolios on the efficient frontier. Note that risk on the risk-free asset is
0.

4. Use PROC PLOT or the SAS/GRAPH GPLOT procedure to plot the portfolio returns
versus the portfolio risks and to include the risk-free asset.

5. Draw a line connecting the risk-free asset with the tangential portfolio on the efficient
frontier (by hand if using PROC PLOT and with the ANNOTATE facility of PROC
GPLOT).

You begin the process of plotting the capital market line by placing the efficient
portfolio returns and variances in a data set named PLOT1.

If you have already calculated or forecasted the expected risk-free return, you may
include that value as an observation in the data set. There are many ways that you can
calculate or forecast the expected return on the risk-free asset. For approaches to calculating
expected returns on assets, see Chapter 1, “Background Topics.”

For this example, the mean value of past risk-free monthly returns (.007161) is used as
the expected risk-free return. You can calculate this value using PROC MEANS and the
RETURN3 data set.

The following DATA step creates the PLOT1 data set. Note that the portfolio risk level
is calculated by multiplying the PROC NLP objective function values (from the previous
table) by 2 and taking the square root.

data plotl;
input return obj_fun @g;
risk=sqgrt (2*obj_fun);
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cards;

.0288 .00808331 .0280 .00657942 .0270 .00495925
L0260 .00362764 .0250 .00258457 .0240 .00183006
.0230 .00135805 .0220 .00106108 .0210 .00088853
.0200 .00077936 .0190 .00069069 .0180 .00061873
.0170 .00056347 .0160 .00052555 .0150 .00050807
.0140 .00050699 .007161 0.0

1

The following PROC PLOT statements plot the portfolio returns versus the risk levels.
The labeling option in the PLOT statement is used to label the points with their return
values. The results are shown in Output 6.15.

proc plot data=plotl vpct=225;
plot return*risk='*" $§ return;
title2 'The Capital Market Line';

run;
O"tp?t 6.15 . Markowitz Model
Plotting the Capital The Capital Market Line
Market Line for the
J Plot of RETURN*RISK$RETURN. Symbol used is '*’.
Ten-Stock Example
RETURN |
|
0.030 +
| *0.0288
| *0.028
[ * 0.027
| * 0.026
0.025 + * 0.025
|
|
|
|
0.020 +
|
|
|
|
0.015 +
|
|
|
|
0.010 +
|
|
I 40.007161
|
0.005 +
|
R $mmmmmmmmm pommmmmmene e et 4mmmmmmmean 4=
0.000 0.025 0.050 0.075 0.100 0.125 0.150
RISK
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Interpretation of output

In Output 6.15, the return values are plotted versus the risk values of the ten-stock example.
The plotted curve of portfolios is the efficient frontier for these stocks. The line representing
the capital market line has been added to the plot. The efficient portfolio that is on the
capital market line is the portfolio with expected return of .020, or 2.0 percent (for accuracy
of the nearest .1 percent of expected returns). You may want to further explore the portion of
the efficient frontier in the vicinity of the expected returns of 2.0 percent by specifying
additional values of the right-hand-side value of the return inequality constraint.

Investors select the optimal portfolio along the capital market line based on their
risk-return trade-off. Investors desiring less risk will select points closer to the risk-free asset
by investing relatively greater percentages of their funds in the risk-free asset and the
remainder in the tangential portfolio on the efficient frontier. Investors desiring relatively
greater returns will select points closer to the tangential portfolio by investing relatively
lesser percentages of their funds in the risk-free asset and the majority in the tangential
portfolio on the efficient frontier.

Note that you can also perform this analysis with the data in Output 6.8.

Customizing a PROC PLOT Plot

You may want to customize a PROC PLOT by adding reference lines and axis values. A
reference line can provide focus on one or more important points in the plot as well as
provide a baseline reference. Specific axis values provide additional useful information to
interpret points in the plot.

For example, the following options in the PLOT statement perform the customization of
the plot in Output 6.15.

Explanation of syntax

HREF=
adds a horizontal reference line. The portfolio risk level (the standard deviation, or the
square root of the variance) of .03948 is the value specified for the horizontal reference
line.

VREF=
adds a vertical reference line. The expected portfolio return of .020 is the value
specified for the vertical reference line.

VAXIS=
specifies vertical axis values. The vertical axis values from .007 to .029 are specified by
increments of .002.

Example code

proc plot data=plotl vpct=225;
plot return*risk="*’ $ return / vref=.020 href=.03948
vaxis=.007 to .029 by .002;
run;
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Customizing the Plot
of the Capital
Market Line
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Markowitz Model
The Capital Market Line
Plot of RETURN*RISK$RETURN. Symbol used is "*’,
RETURN | |
| [
0.029 + | * 0.0288
| | * 0.028
0.027 + | * 0.027
| | * 0.026
0.025 + | * 0,025
| | * 0,024
0.023 + | * 0,023
| | *0.022
0.021 + | *0.021
|=mmmmm e ¥, 02 == m e e e e e
0.019 + *[0.019
| * 0.018
0.017 + * 0,017
| * 0.016
0.015 + * 0.015
| * 0.014
0.013 + |
\ |
0.011 + |
| |
0.009 + |
| |
0.007 + * 0.007161 |
| |
et St GREEELT S P E P e R L e PR -
0.000 0.025 0.050 0. 075 0. 100 0. 125 0.150
RISK

Calculating the Tangential Portfolio with
PROC NLP

You can use PROC NLP to calculate the tangential portfolio described in the interpretation
of Output 6.15. The return of the risk-free asset and the tangential portfolio (which is on the
efficient frontier) define the capital market line. The capital market line is the ray emanating
from the risk-free asset that is tangential to the efficient frontier, and it will have the
maximum slope of all such rays that intersect or are tangent to the efficient frontier. See
Elton and Gruber (1987) for details. This relationship implies that the tangential portfolio

can be found by maximizing the fallowing expression, 5 % /. where R, 1s the expected
portfolio return, Ry is the expected risk-free return, and oy, 1s the risk of the portfolio.

The following PROC NLP statements solve for the portfolio weights, the X; that
maximize this expression (OBJ) subject to the constraints that each X; is between zero and
one, and that the X; sum to one. The NOPRINT option suppresses the printed output. To
save space, only the first and last lines of the portfolio variance are shown.

proc nlp outest=nlp out8 noprint;
parms x1 - x10;
var=  x1*x1*.0065845 + x2*x2*.0161666 + x3*x3*.0034068
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Output 6.17
Portfolio Weights
for the Tangential
Portfolio

+ 2*x8*x9%.0041150 + 2*x8*x10*.0000495 - 2*x9*x10*.0001139;

risk=sqrt(var);

r_f=.007161;

num= . 0176*x1+.0288*x2+.0148*x3+.0210*x4+.0092*x5+.0103*x6
+.0182*x7+.0172*x8+.0121%x9+.0146*x10-r_£f;

obj=num/risk;

max obj;

bounds 0 <= x1-x10 <= 1;

lincon 1=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10;

run;

Printing the Tangential Portfolio Weights

The following DATA step tailors the NLP_OUTS data set by deleting all observations
except the solution values for the portfolio weights:

data amt_outh;

set nlp_out8;

if _TYPE_ ne 'PARMS’ then delete;
run;

The following PROC PRINT statements list the AMT_OUTS data set containing the
amounts to invest in a tangential portfolio with a total value of $100,000. The results are
shown in Output 6.17.

proc print data=amt_out5;
var x1-x10;
title 'Markowitz Model’;
title2 ‘Tangential Efficient Portfolio Weights’;

run;
Markowitz Model
Tangential Efficient Portfolio Weights
0 X
B X X X X XX X X X 1
S 1 2 3 4 56 7 8 9 0
1 0.028534 0.089837 0.023734 0.66193 0 0 0.052165 0.12694 0.016866 -1.3878E-17

Interpretation of output
In Output 6.17, the solution values are listed for the tangential portfolio weights. Note that
X10 is O for practical purposes.

If you want to invest in a portfolio on the capital market line but with a lower level of
risk, the amount invested in the tangential portfolio can be scaled back and invested in the
risk-free asset instead. For example, a portfolio on the capital market line with half the risk
level of the tangential portfolio can be constructed by investing 50 percent
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in the risk-free asset and 50 percent in the tangential portfolio (in the weights as shown in
Output 6.17). At the other end of the capital market line, you can invest 100 percent of the
portfolio in the risk-free asset and (virtually) eliminate risk.

After the tangential portfolio has been calculated, you should decide which portfolio (on
the capital market line) is optimal for you based on your tolerance for risk and the available
trade-off of risk and return. For an example of calculating dollar amounts to invest in each
stock, see the example that generates Output 6.14.

Chapter Summary

This chapter has discussed the Markowitz model of portfolio creation. The first set of
examples use PROC CORR and the DATA step to list portfolio risk and return levels. You
use PROC PLOT to plot portfolio risk and returns to visually identify efficient portfolios.
The second set of examples use PROC NLP and PROC IML to solve for optimal portfolio
weights. Efficient portfolios were listed, and then plotted with the capital market line.
Investors select their portfolio of choice from the capital market line.

Learning More

o  For more information on the DATA step, see SAS Language, Reference, Version 6,
First Edition and SAS Language and Procedures, Usage 2, Version 6, First Edition.

0  For more information on SAS/IML, see SAS/IML Software: Usage and Reference,
Version 6, First Edition.

0  For more information on PROC NLP, see The NLP Procedure: Release 6.10, Extended
User’s Guide and the SAS Technical Paper, “Using PROC NLP for Risk Minimization
in Stock Portfolios.”

o For more information on PROC CORR, PROC PLOT, and PROC PRINT, see SAS
Procedures Guide, Version 6, Third Edition and SAS Language and Procedures, Usage
2, Version 6, First Edition.
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Introduction

As investors construct portfolios, they expect to receive the greatest return for the selected
risk level. To perform the task of portfolio construction, investors predict future stock
returns and risk levels, select stocks of interest, and then calculate solution values for
portfolio weights. Chapters 2-6 discuss techniques for valuing stocks (DCF methodology in
Chapter 2), sorting and clustering of stocks (sorting and clustering in Chapter 3), predicting
stock returns and risk levels (the CAPM in Chapter 4), and methods of constructing
portfolios (linear programming and nonlinear programming techniques in Chapters 5 and 6,
respectively). This chapter shows you how to use SAS software to measure how well your
portfolio performed.

Using portfolios constructed in previous chapters, you can measure portfolio
performance and compare portfolios by

O comparing the portfolio ex ante expectations and their ex post realizations as a summary
performance statistic
C  comparing the portfolio return measures to the market portfolio return measures

O comparing portfolio ex ante expectations and their ex post realizations through « from a
CAPM regression

0 comparing portfolio returns per unit of risk using only systematic (nondiversifiable) risk
with 3 from a CAPM regression

O comparing portfolio returns per unit of risk using total risk (both systematic and
nonsystematic risk).
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This chapter uses the following portfolios for comparison:

o the portfolio created in Output 5.2 with PROC LP (linear programming), where
portfolio § is constrained to be .7, the weights sum to 1, and all weights are constrained
to be in the range O to |

o the portfolio created in Output 5.5 with PROC LP (linear programming), where
portfolio 3 is constrained to be less than or equal to .7, the weights sum to 1, and all
weights are constrained to be in the range .05 to .3333

0O  the portfolio created in Output 5.7 with PROC LP (integer programming), where all
100-share lots are constrained to be in the range 1 to 7 (stocks less than $100/share) or 1
to 4 (stocks greater than $100/share)

o the portfolio created in Output 6.13 with PROC NLP (nonlinear programming), where
the minimum expected return is constrained to be at least 1.9 percent

0O the tangential portfolio created in Output 6.17 with PROC LP (nonlinear programming).

Comparing Expected and Actual Returns

Prior to investing, you compare portfolio risk and expected returns among portfolios and
with the expected return of the market portfolio. After investing, you typically want to
evaluate portfolio performance. To evaluate the performance of portfolios, you compare the
expected portfolio returns with their actual returns. You also compare the actual portfolio
returns with the market portfolio return. To make these comparisons, you calculate the
expected returns and actual return measures for the comparison portfolios and the market
portfolio.

This section shows you an approach to calculating expected returns, an approach to
calculating actual return measures, and ways of comparing the resulting values. Note that
Chapter 1, “Background Topics,” discusses risk and return measures.

Creating a Data Set Containing the
Portfolio Weights

Before calculating actual return measures, you want to create a data set containing the
portfolio weights. There are five data sets (one for each portfolio) to tailor, transpose, and
merge.

You can create a data set containing the portfolio weights by:

O tailoring output data sets, that is, by deleting unneeded observations and variables.
For this example, you tailor the output data sets LP_OUT1 (from Output 5.2),
NLP_OUT4 (from Output 6.13), and NLP_OUTS (from Output 6.17). Note that the
output data sets, LP_OUT3 (from Output 5.6) and LP_OUT4 (from QOutput 5.7) have
already been tailored to create the data sets LP_OUT3B (from Output 5.6) and WT4
(from Output 5.11), respectively.

O transposing output data sets (where necessary) with the TRANSPOSE procedure.
For this example, you transpose the PROC LP data sets LP_OUT!1 (from Output
5.2), LP_OUT3A (from Output 5.6), and WT4 (from Output 5.11).

0 merging the tailored and transposed data sets in a DATA step.
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The following code performs these tasks. The results are printed in Output 7.1.

Example code

/* Tailoring the LP_OUT1 Data Set from Qutpu: 5.2 */
data Ip_outlal(keep= _var_ _value_
rename= _var_=name);
set 1p_outl;
if _n_ > 10 then delete;
run;

/* Transposing the Data Set LP_OUTIA */
proc transpose data=lp_outla out=lp_outlb(drop=_name_ _label
rename=(coll=x1 col2=x2 ccl3=x3 cold=x4 col5=x5
colb=x6 col7=x7 col8=x8 col9=x9 coll0=x10));
var _value_;
run;

/* Transposing the Data Set LP_OUT3A from Qutput 5.6 */
proc transpose data=lp_out3da out=1p_out3b(drop=_name_ _label_
rename=(coll=x1 col2=x2 col3=x3 cold=x4 col5=x5
colé=x6 col7=x7 col8=x8 col9=x9 coll0=x10));
var _value_;
run;

/* Transposing the Data Set WT4 from Output 5.11 */
proc transpose data=wtd out=wtda(drop=_name_ _label
rename={coll=xl c0l2=x2 c0l3=x3 cold=x4 colb=x5
colb=x6 col7=x7 co0l8=x8 col9=x9 coll0=x10));
var fraction;
run;

/* Tailoring the LP_OUT4 Data Set from Output 6.13 */
data amtout3a(drop=_tech_ _type_ _name_ _rhs_ _iter_);
set nlp_outd;
if TYPE_ ne ‘PARMS’ then delete;
run;

/* Tailoring the LP_OUT8 Data Set from Qutput 6.17 */
data amtoutSa({drop=_tech_ _type _name_ _rhs_ _iter_);
set nlp_out$;
1f _TYPE_ ne 'PARMS’ then delete;
run;

/* Merging the Tailored and Transposed Data Sets */
data p_foliol;

set lp_outlb lp_out3b wtda amtout3a amtoutba;
run;
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/* Printing the P_FOLIOl Data Set */
proc print data-p_foliol;

title 'Portfolio Evaluation’;

title2 'Portfolio Weights';

run;
7.1
O_utl.’ ut . Portfolio Evaluation
Listing of Portfolio Portfolio Weights
Weights in the
0BS x1 X2 X3 x4 x5
P _FOLIOI Data Set
1 0.00000  0.63214  0.00000  0.36786  0.000000
2 0.05000  0.33330  0.05000  0.26670  0.050000
3 0.12532  0.17161  0.04354  0.28546  0.038108
4 0.04798  0.05696  0.10175  0.52813  0.000000
5 0.05446 0.12241 0.00000 0.64696 0.000000
0BS X6 X7 x8 X9 10
1 0.00000  0.00000  0.00000  0.000000  0.000000
2 0.05000 0.05000 0.05000 0.050000 0.050000
3 0.12114  0.10574  0.04051  0.036220  0.038996
4 0.04156  0.02778  0.12062  0.075218  0.000000
5 0.00000  0.00704  0.16913  0.000000  0.000000

Interpretation of output

Output 7.1 lists the solution values for the portfolio weights of the five portfolios used for
comparison. Each row represents a portfolio. The first row contains the portfolio weights of
Output 5.2; the second row contains the portfolio weights of Output 5.5; and so on through
the fifth row, which contains the portfolio weights of Output 6.17.

Each column represents portfolio weights for a particular stock. The stock variable
names are changed to X1-X10 for ease in data manipulation. The variables X1-X10 refer to
stock returns of GERBER, TANDY, GENMIL, CONED, WEYER, IBM, DEC, MOBIL,
TEX, and CPL, respectively.

Calculating Expected Returns

There are many ways to calculate or predict expected portfolio returns, as discussed in
Chapter 1. The examples in this chapter use the average of past returns as the expectation of
future returns. Therefore, the expected return of the market portfolio is the arithmetic mean
of the past market returns, while the expected portfolio returns are a linear combination of
the expected individual stock returns.

This section first calculates the expected returns for the market portfolio, then the
comparison portfolios from Chapters 5, “Portfolio Creation with Linear Programming,” and
Chapter 6, “The Markowitz Model, Portfolio Creation with Nonlinear Programming.”
Lastly, the chapter compares the expected returns.
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Calculating Expected Returns for the Market
and the Risk-Free Asset

You can use the TRANSPOSE procedure, the RETURN3 data set (introduced in Chapter 4,
“The Capital Asset Pricing Model (CAPM)”), and a DATA step to calculate the expected

returns of the market portfolio and the risk-free asset.

Tasks Performed by the Program

1. Use PROC TRANSPOSE to transpose the market returns (R_M) and the risk-free asset

returns (R_F).
2. Use aDATA step to

a. calculate the mean values with the MEAN function

b. create a variable NAME to name the observations.
3. Use PROC PRINT to print the results, as shown in Output 7.2.
Example code

/* Transposing the RETURN3 Data Set */
proc transpose data=return3 out=return3a;
var r_m r_f;
Tun;

/* Calculating Market Returns */
data return3b;

set return3a;

r=mean(of coll-coll08};

1f _n_ =1 then name = 'Market ’;

if n_ = 2 then name = 'Risk Free’;
run;

/* Printing Expected Market Return */
proc print data=return3b;

var name r;
title2 'Expected Returns’;
run;

Portfolio Evaluation
Expected Returns

0BS NAME R
1 Market 0.014944
2 Risk Free 0.007161
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Output 7.3
Expected Portfolio
Returns

Interpretation of output

In Output 7.2, the expected market portfolio return is .014944, or about 1.5 percent, and the

expected risk-free asset return is .007161, or about .72 percent. The expected market

portfolio return is more than twice the magnitude of the expected risk-free asset return.
You want to compare these values with the expected returns of the comparison

portfolios from Chapters 5 and 6. In general, you want to invest in portfolios with the

highest return for any given level of risk.

Calculating Expected Returns for the
Comparison Portfolios

In this example, the expected individual stock returns are the average monthly stock returns
as calculated in Output 5.1. The weights for the linear combination are the solution values
for the portfolio weights (X1 - X10), as shown in Output 7.1.

The following DATA step calculates the expected portfolio returns and creates a
variable, NAME, that identifies each of the portfolios. PROC PRINT prints the results in
Output 7.3.

data p_folio2;
set p_foliol;
r= .0176*x1+.0288%x2+.0148*x3+.021*x4+.,0092*x5+.0103*x6
+.0182*x7+.0172*x8+.0121*x9+.0146*x10;
if _n_ =1 then name = 'Ex_ 5.2 ';
if _n_ = 2 then name = 'Ex_5.5 ';
if _n =3 then name = 'Ex 5.7 ’;
if _n_ = 4 then name = 'Ex_6.13 ’;
if _n_ = 5 then name = "Ex_6.17 ';
run;

proc print data=p_folio2;

var name r;

title2 'Expected Portfolio Returns’;
run;

Portfolio Evaluation
Expected Portfolio Returns

OBS NAME R
1 Ex 5.2 0.025931
2 Ex 5.5 0.020900
3 Ex 5.7 0.019014
4 Ex 6.13 0.019000
5 Ex 6.17 0.021107

Interpretation of output
Output 7.3 lists the expected returns of the comparison portfolios. Note that the portfolio
constructed in Output 5.2 has the greatest expected return, .025931, or about 2.6 percent.
The portfolio constructed in Output 6.13 has the lowest expected return of .019, or 1.9
percent.

These expected portfolio returns are based on the average monthly returns of each stock
and their weight in the portfolios. If future stock returns behave similarly to past returns,
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then over time, the average, actual portfolio returns should approach the expected returns.
You can compare these expected portfolio returns with actual portfolio returns and with the
market portfolio.

Comparing Expected Returns

You can compare the expected returns of the market (shown in Output 7.2) with the
expected returns of the comparison portfolios (shown in Output 7.3). The expected returns
of the portfolios are contained in the P_FOLIO2 data set, and the expected market returns
are contained in the RETURN3B data set. You can use a DATA step to concatenate the
P_FOLIO2 and RETURN3B data sets. The results are printed with PROC PRINT in
Output 7.4.

/* Concatenating Data Sets */
data p_folio3;

set p_folio2 return3b;
run;

/* Printing Expected Returns */
proc print data=p_folio3;

var name r;

title2 'Expected Portfolio Returns’;
run;

Portfolio Evaluation
Expected Portfolio Returns
0BS NAME R
1 Ex 5.2 0.025931
2 Ex 5.5 0.020900
3 Ex_5.7 0.019014
4 Ex_6.13 0.019000
5 Ex_6.17 0.021107
6 Market 0.014944
7 Risk Free 0.007161

Interpretation of output

In Output 7.4, all of the five comparison portfolios have greater expected returns than the
market portfolio. Simply comparing among the expectations, the future returns from investing
in any of these portfolios appears good. However, for actual investing, you also want to
compare risk measures and select the appropriate trade-off of risk and return.

Calculating Actual Return Measures

The actual portfolio returns are calculated only after the market, industry, and
company-specific events have occurred that generate the actual returns. Returns are
calculated as described in Chapter 1. Typically used summary measures of return are the
arithmetic mean, wealth index, and geometric mean.
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This section

0  introduces the RETURN4 data set, which contains the monthly returns of the market for
1987, the risk-free return (the return on 30-day US treasury bills), and the returns of the
ten stocks used to construct the portfolios used for comparison

0 uses PROC TRANSPOSE to transpose the RETURN4 data set for ease in data
manipulation

O uses a DATA step to calculate the wealth index, the arithmetic mean, and the average
compound return measure for the actual returns of the market portfolio

0 uses PROC IML to calculate the actual monthly returns for the comparison portfolios
O uses a DATA step and the PROC IML output to calculate the actual return measures

o uses PROC PRINT to print the actual return measures.

Creating the RETURN4 Data Set

You create the RETURN4 data set in the following DATA step. Note that the risk premium
for the market portfolio (R_MKT) is created for later examples.

data returnd;
input r_m r_f gerber tandy genmil coned weyer ibm dec
mobil tex cpl;
retain date '0ldec86'd;
date=intnx('month’,date,1);
format date monyy.;
rmkt = r_.m - r_£f;
cards;
.148 .00454 .057 .130 .123 .040 .270 .073 .385 .093 .049 .102
.065 .00437 .019 .174 .049 -.067 .094 .092 .056 -.022 -.080 -.060
.037 .00423 .040 -.118 .010 -.050 .089 .076 .061 .124 .103 .013
-.025 .00207 -.063 -.119 -.104 .020 -.027 .067 .055 -.007 -.094 -.039
.004 .00438 .138 -.026 .190 -.012 -.107 .006 -.082 -.003 .114 -.090
.038 .00402 .005 .045 .030 .059 .026 .016 .041 .091 .073 .088
.055 .00455 .232 .087 .036 -.039 .021 -.009 .000 .032 .142 -.035
,015 .00460 -.113 .027 .022 .043 .081 .053 .157 .030 -.076 .021
-.015 .00520 -.061 .088 -.009 -.006 -.054 -.105 .001 -.082 -.053 -.014
-.260 .00358 -.288 -.246 -.148 -.017 -.271 -.187 -.281 -.178 -.194 -.040
-.070 .00288 -.085 -.190 -.102 -.012 -.066 -.087 -.127 -.150 -.031 -.019
.073 .00277 .070 .040 .128 -.006 .103 .043 .134 159 .178 .023

Calculating Actual Market Return Measures

To calculate the actual arithmetic mean and the average compound return of the market
portfolio, first use PROC TRANSPOSE to transpose the RETURN4 data set, then use a
DATA step. Lastly, use PROC PRINT to print the returns, as shown in Output 7.5.

The following PROC TRANSPOSE statement uses the RETURN4 data set as input and
places the transposed values in the RETURN4A data set.

proc transpose data=returnd out=returnda;
var r_m r_f;
run;
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The DATA step uses array processing to add 1 to the returns for ease in calculating the
wealth index and the average compound return. The MEAN function is used to calculate the
arithmetic mean. The observations containing the return measures for the market portfolio
and the risk-free asset are named Market and Risk Free, respectively.

/* Calculating the Market Return Measures */
data returndb;

set returnia;

t=12;

array col(12) coll-coll2;

array ss(12) sl-sl2;

do i=1 to 12;

ss(i) = col(i) + 1;

end;

wealth=(s1*s2*s3*s4*s5%s6*sT*s8%59*510*s11*s12) ;

gm=( {wealth)**(1/t))-1;

gm_pct=gm*100;

am=mean{of coll-coll2);

am_pct=am*100;

if _n_ =1 then name = 'Market ';

if _n_ = 2 then name = 'Risk Free’;
run;

proc print data=returndb;
var name gm gm_pct am am_pct wealth;
title2 'Return Measures’;
title3 'Market Portfolio and Risk-Free Asset’;

run;
Portfolio Evaluation
Return Measures
Market Portfolio and Risk-Free Asset
0BS NAME GM GM_PCT AM AM_PCT WEALTH
1 Market .0002831 0.02831 .0054167 0.54167 1.00340
2 Rigk Free .0039321 0.39321 0039325 0.39325 1.04822

Interpretation of output
Output 7.5 lists the market portfolio and risk-free asset return measures and the wealth index
values. Returns from holding the market portfolio have an average compound return
measure of .03 percent, and .54 percent as measured by the arithmetic mean. Holding the
risk-free asset would have yielded a return of .39 percent as measured by the arithmetic
mean and the average compound return.

You can compare these values with the actual returns from the portfolios. Obviously,
portfolio returns greater than the market are preferred, and the greater the better.

In this example, the wealth index indicates that if you had invested $1 in the market
portfolio at the beginning of the year, it would have grown to $1.0034 over the year. If you
had invested $1 in the risk-free asset, it would have grown to almost $1.05 over the year.
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Calculating Actual Portfolio Return Measures

You can calculate the actual (ex post) returns for the portfolios in a DATA step, similar to
the one that produced Output 7.5. Then, you can merge the data sets containing the actual
returns in another DATA step. However, if you are calculating returns for many portfolios,
the IML procedure is much more efficient.

Intuitively, you proceed by multiplying the actual returns by the portfolio weights to
obtain the month-by-month portfolio returns; then, the arithmetic and geometric measures of
portfolio return can be calculated in a DATA step.

Using PROC IML
You can use PROC IML to calculate the actual monthly portfolio returns by performing the
following steps:

O Read in the data set of portfolio weights (P_FOLIO1 from Output 7.1) and the data set
of the actual returns (RETURN4). These data sets become matrices that can be
manipulated in PROC IML.

For this example, the P_FOLIO1 data set has 5 rows and 10 columns, while the
RETURN4 data set has 12 rows and 10 columns. The P_FOLIO1 data set is read in as
the XX matrix, while the appropriate columns of the RETURN4 data set are read in as
the RR matrix.

O Orient the matrices for the appropriate matrix operations. For this example, the matrix
of portfolio weights is transposed.
The (5 X 10) XX matrix can be transposed to form the (10 X 5) XT matrix.

0 Multiply the conforming matrices to obtain the monthly portfolio returns, RX.

RX = RR x XT

Note that the (12 X 10) RR matrix times the (10 X 5) XT matrix yields the
(12 X 5) RX matrix.

o Transpose the matrix of monthly portfolio returns for ease of use in the DATA step
calculations.

RXT = T(RX)

Selected PROC IML Operators
You use the following list of PROC IML operators in the PROC IML statements to calculate
the actual portfolio returns. These operators perform the following tasks:

O  matrix = t(matrix) creates a transposed matrix. In this example, the (5 X 10) XX matrix
is transposed to create the (10 X 5) XT matrix.

O matrix = matrix*matrix multiplies conforming matrices. In this example, the (12 X 10)
RR matrix is multiplied by the (10 X 5) XT matrix to create the (12 X 5) RX matrix.
Note that the RX matrix is later transposed for ease of use in the subsequent DATA
step.

O name = namel name2 . . . nameN creates a column vector of variable names. For this
example, the column vector of variable names is VARNAME], and the column vector
names are R_ACT1 through R_ACTS.
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Explanation of syntax
The following PROC IML statements calculate the actual portfolio returns:

PROC IML
invokes the IML procedure.

USE
makes the listed data set an active data set.

READ
reads observations from the active data set into a PROC IML matrix.

For this example, the P_FOLIOL1 data set is the first active data set and all
numerical variables are read in as the XX matrix. Each row of XX represents the
portfolio weights for one of the comparison portfolios. Each column of XX represents
the portfolio weights for one of the ten stocks.

Later, the RETURN4 data set is made the active data set and the 10 columns
containing the monthly stock returns are read in as the RR matrix. Note that the RR
matrix has 12 rows and 10 columns. That is one row for each of the 12 months, and one
column for each of the 10 stocks.

CREATE SASdataset FROM matrix
creates a SAS data set from the designated matrix. For this example, two data sets are
created. The first data set, ACTUALL, is created from the RX matrix and is used in later
examples. The second data set, ACTUAL?2, is created from the RXT matrix and is used
to calculate the actual monthly returns of the portfolios.

APPEND FROM matrix
adds observations to the data set (created with the CREATE statement) from the
specified matrix.

CLOSE SASdataset
closes the newly created data set; that is, this statement informs PROC IML that all the
observations have been read into the specified data set.

Example code

proc iml;
/* Making P_FOLIOl Current Data Set */
use p_foliol;

/* Reading in the Numerical Obs */
read all var _num_ into xx;

/* Creating the XT Matrix where */
/* XT is the Transpose of the XX Matrix */
XT=T\XX) ;

/* Making RETURN4 Current Data Set */
use returnd;

/* Reading in the Numerical Obs */
read all var {gerber tandy genmil coned weyer ibm dec
mobil tex cpl} into rr;

/* Matrix Multiplication, Returns Times Weights */
rx=rr*xt;
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Output 7.6
Actual Portfolio
Monthly Returns
from PROC IML
Calculations

/* Transposing the RX Matrix to form the RXT Matrix */
rxt=t(rx);

/* Creating a Column Name Vector */
varnamel='r_actl’ : 'r_acth’;

/* Creating the ACTUALI Data Set from RX Matrix */
/* Creating Variable Names for Columns */
create actuall from rx [colname= varnamell];

/* Adding the Obs to the Data Set from RX Matrix */
append from rx;

/* Closing the ACTUALI Data Set */
close actuall;

varname2="tl1’ : 'tl12’;

/* Creating the ACTUAL2 Data Set from RXT Matrix */
create actual2 from rxt [colname= varname2];
append from rxt;
close actual?;

quit;

The ACTUAL?2 data set is printed in Output 7.6 using PROC PRINT.

proc print data=actual?2;

title2 'ACTUAL2, Weights Times Stock Returns’;

run;
Portfolio Evaluation
ACTUAL2, Weights Times Stock Returns

0BS T1 T2 T3 T4 T5 T6

1 0.09689 0.085345 -0.092985 -0.067867 -0.020850 0.050150
2 0.11160 0.047525 -0.026864 -0.044929 -0.003566 0.049234
3 0.11559 0.029769 -0.000766 -0.019441 0.006155 0.043524
4 0.07241 -0.022868 -0.002634 -0.013422 0.024320 0.055286
5 0.06334 -0.024339 -0.023211 -0.005855 -0.004516 0.059631
0BS L) T8 9 T10 T11 T12

1 0.040649 0.032886 0.053421 -0.16176 -0.12452 0.023078

2 0.039546 0.029217 0.008880 -0.16588 -0.09988 0.053632

3 0.039223 0.029096 -0.015106 -0.16810 -0.08555 0.056586

4 0.013319 0.025531 -0.020212 -0.10351 ~0.05919 0.053569

5 0.003465 0.031150 -0.010294 -0.08888 -0.06191 0.032663
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Interpretation of output

Output 7.6 lists the ACTUAL2 data set containing the actual monthly returns for the
portfolios. Each row represents the actual monthly returns for individual portfolios. For
example, the first row represents the monthly returns of the portfolio created in Output 5.2.
Each column represents the actual monthly returns for individual months. For example, the
first column represents the actual monthly returns for January 1987.

Calculating Portfolio Actual Return Measures
You can use a DATA step and the ACTUAL?2 data set (from Output 7.6) to calculate the
portfolio actual return measures. The results from these statements are printed in Output 7.7.

data actual3;

set actual?2;
t=12;
array tt(12) tl-tl2;
array ss(12) sl-sl2;
do i=1 to 12;

ss(i) = tt(i) + 1;
end;
wealth=(sl*s2*s3*s4*s5%s6*sT7*s8%s9*s10*s11*s12);
gm=( (wealth)**(1/t))-1;
gm_pct=gm*100;
am=mean (of tl1-t12);
am_pct=am*100;

if _n_ =1 then name = 'Ex 5.2 ';

if n_ =2 then name = 'Ex 5.5 ’;

if _n_ = 3 then name = 'Ex 5.7 ';

if _n_ = 4 then name = 'Ex_6.13 ';

if _n_ =5 then name = 'Ex_6.17 ';
run;

proc print data=actual3;
var name gm gm_pct am am_pct wealth;
title2 ‘Actual Portfolio Returns’;

run;
Portfolio Evaluation
Actual Portfolio Returns

0BS NAME GM GM_PCT AM AM_PCT WEALTH
1 Ex_5.2 -0.010611 -1.06106 -.0071300 -0.71300 0.87985
2 Ex_5.5 -0.002864 -0.28639 -.0001234 -0.01234 0.96617
3 Ex_5.7 0.000047 0.00470 0.0025820 0.25820 1.00056
4 Ex_6.13 0.000700 0.07002 0.0018840 0.18840 1.00843
5 Ex_6.17 -0.003349 -0.33492 -.0023970 -0.23970 0.96054
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Output 7.8
Concatenation of
Actual Return
Measures

Interpretation of output

Output 7.7 lists the actual returns of the comparison portfolios and a wealth index, labeled
WEALTH. You may want to compare the expected returns (from Output 7.3) with these
actual returns. All of the comparison portfolios have lower actual returns than expected
returns.

Using the arithmetic return measure, the portfolio created in Output 5.7 has the greatest
return of the comparison portfolios. The wealth index indicates the wealth generated (or
lost) by investing in the portfolio. If you had invested $1 in the portfolio at the beginning of
the year, the wealth index indicates the value at the end of the year. For example, if you had
invested $1 in the first portfolio (generated in Output 5.2), by the end of the year, you would
have about $0.88. Only portfolios 3 and 4 (generated in Output 5.7 and Output 6.13) have
greater ending wealth than the initial amount invested.

Concatenating Actual Return Measures

You can use a DATA step to concatenate the RETURN4B daia set (containing the actual
market return measures) and ACTUALS3 data set (containing the actual portfolio return
measures) to create the ACTUAL4 data set. The results are shown in Output 7.8.

/* Merging Mkt and Portfolio Returns */
data actuald;

set actual3 returndb;
run;

/* Printing Mkt and Portfolio Returns */
proc print data=actuals;
var name gm gm_pct am am_pct wealth;

run;

Portfolio Evaluation

Actual Return Measures
0BS NAME GM GM_PCT AM AM PCT WEALTH
1 Ex 5.2 -0.010611 -1.06106 -.0071300 -0.71300 0.87985
2 Ex 5.5 -0.002864 -0.28639 -.0001234 -0.01234 0.96617
3 Ex_5.7 0.000047 0.00470 0.0025820 0.25820 1.00056
4 Ex_6.13 0.000700 0.07002 0.0018840 0.18840 1.00843
5 Ex_6.17 -0.003349 -0.33492 -.0023970 -0.23970 0.96054
[ Market 0.000283 0.02831 0.0054167 0.54167 1.00340
7 Rigk Free 0.003932 0.39321 0.0039325 0.39325 1.04822

Interpretation of output

Output 7.8 lists the actual return measures and the wealth index values for the market
portfolio and the comparison portfolios. Although all of the comparison portfolios had
greater expected returns than the market (as shown in Output 7.4), in actuality, ex post, only
the portfolio created in Output 6.13 had an average compound return (GM) greater than the
market. None of the comparison portfolios had greater arithmetic return measures than the
market nor the risk-free asset.
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Evaluating Portfolio Performance Using CAPM Regressions
You can use CAPM regressions of portfolio returns to evaluate portfolios by

O testing for consistent, nonmarket-related returns as measured by ¢, the intercept of CAPM
regressions in risk premium form. Recall from Chapter 4 that « is expected to be 0. This
approach to evaluating portfolio performance was suggested by Jensen (1968).

(1 comparing return per unit of systematic risk as measured by £, the slope parameter of
the basic CAPM. This is the Treynor index used to compare portfolios by systematic
risk (Treynor 1965).

Testing for Nonmarket-Related Returns

As discussed in Chapter 4, the CAPM in risk premium form relates the risk premiums of an
individual stock (R — Rg¢y) to the risk premiums of the market (Ryg; — Rg), as follows:

R, - R, =a+p X (RM,I - Rf’r) +e,

The slope parameter, f3;, is a proportionality factor of asset i’s dependence on the
market’s rate of return. As the market moves up (or down) by 1 percent, the portfolio returns
are expected to move up (or down) by 3 percent.

The intercept parameter, ¢;, measures the nonmarket portion of returns and over time is
expected to be zero. A portfolio with a positive ¢; indicates the portfolio has had consistent,
positive nonmarket returns, while a portfolio with a negative ¢; indicates the portfolio has had
consistent negative nonmarket returns. In general, portfolios with positive « perform better than
expected, while portfolios with negative & perform worse than expected.

Before testing for nonmarket returns, use a DATA step to:

o merge the RETURN4 data set (containing the market returns and the risk-free returns)
with the ACTUALI data set (containing the portfolio returns)

O create the portfolio risk premiums using array processing.
Example code

/* Merging Mkt and Portfolio Returns */
data returndc;
merge returnd actuall;

/* Using Arrays to Create Portfolio Risk Premiums */
array r_act (5) r_actl-r_act5;
array rp(5) rpl-rp5;
do i=1 to 5;
rp(il) = r_act(i})-r_f;
end;
run;

You can use the REG procedure to fit the CAPM, test if « (the intercept) differs from
zero, and create a data set containing the estimated parameters. The following statements
perform these tasks; the output is not shown.
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/* Fitting Portfolio CAPM Regressions */
proc reg data=returnédc outest=capmest?2;

model rpl=r_mkt;

model rp2=r_mkt;

model rp3=r_mkt;

model rpéd=r_mkt;

model rp5=r_mkt;
run;

The following table lists the fitted CAPM regressions, the individual t-tests of the
estimated parameters, the historical and constrained portfolio s, and the R-squares.

Observed « Observed Expected and

Portfolio (t-statistic) (t-statistic) Constrained 3 R-Sq.

Output 5.2 — .012062 .673561 7 .6305
(= .773) (4.131) (Constrained)

Output 5.5 —.005102 704849 575222 .8796
( — .646) (8.547) (Expected)

Output 5.7 —.002392 .701491 4862172 9426
( — .456) (12.818) (Expected)

Output 6.13 —.002690 432309 No comparable 7427
( — .349) (5.373) value calculated

Output 6.17 — .006866 361384 No comparable 6419
( — .840) (4.234) value calculated

Note the following items of interest from the table:

o0  All of the portfolios have estimated « values less than 0, and none of them are
significant at the .05 level. Although it is not shown in the table, at the .05 level of
significance, the critical ¢-value is 2.201 for 11 degrees of freedom.

O All of the portfolios have estimated  values between 0 and 1, and all of them are

significantly different from O at the .05 level.

Ex ante expectations of portfolio f may not match the ex post realizations. Based
on historical returns (1978-1986), the CAPM fs for the portfolios of Output 5.2, 5.5,
and 5.7 (as calculated in Output 4.11) were .7, .575222, and .4862172, respectively. The
1987 returns generated portfolio fBs of .673561, .704849, and .701491, respectively. The
differences occur partially because expectations of the future returns may differ from
actual returns and partially because the portfolios may not be fully diversified. Note that
no comparable  values were calculated for the portfolios generated in Outputs 6.13 and
6.17.

O  All of the portfolios have larger R-Squares than the individual stock CAPM regressions
of Chapter 4. The individual stock CAPM regressions used data over 108 months, while
the portfolio CAPM regressions used data over 12 months. In general, the more
observations used in the regression analysis, the greater the precision of the estimated
equation. For these portfolio regressions, the variation of the market returns accounted
for much of the variation of the portfolio returns. In particular, note that the portfolio
created in Output 5.7 has an R-Square of .9426, indicating that the model accounts for
over 94 percent of the variation of the portfolio returns.
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Spnl:paring Return per Unit of Systematic
is

Jack Treynor suggests evaluating portfolios based on their level of returns per unit of
systematic risk. He calculates the following measure of return (as measured by the average
portfolio risk premium over time) per unit of systematic risk (as measured by the portfolio
CAPM p) for each portfolio (p):

% - &l

In general, portfolios with the highest risk premium per unit of total risk perform the best. A
portfolio with a Treynor Index value greater than that of the market portfolio has beaten the
market. Note that the market portfolio has f of unity.

You can use a DATA step, the estimated CAPM parameters (contained in the
CAPMEST? data set), and the portfolio returns (contained in the ACTUALA4 data set created
in Output 7.8) to evaluate portfolios by the Treynor Index. The following statements
perform the calculations. The average monthly risk-free asset return for 1987 is .0039325
(from Output 7.5). The variable AM contains the average monthly returns for 1987 for the
portfolios. The results are shown in Output 7.9.

/* Merging Market and Portfolio Returns */
data returndd;
merge capmest2(rename= (r_mkt=beta)) actuald;
r_f=.0039325;
if _n_ = 6 then beta=1;
treynor=(am-r_f)/beta;
run;

/* Printing the Treynor Index Values */
proc print;

var name am r_f beta treynor;

title2 'Treynor Index Values';

title3;
run;
Portfolio Evaluation
Treynor Index Values
0BS NAME AM R_F BETA TREYNOR
1 Ex_5.2 -.0071300 .0039325 0.67356 -0.016424
2 Ex_5.5 -.0001234 0039325 0.70485 -0.005754
3 Ex_ 5.7 0.0025820 0039325 0.70149 -0.001925
4 Ex_6.13 0.0018840 0039325 0.43231 -0.004738
5 Ex_6.17 -.0023970 .0039325 0.36138 -0.017515
6 market 0.0054167 0039325 1.00000 0.001484
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Interpretation of output
Output 7.9 lists the average monthly returns for the portfolios, the average monthly risk-free
return, the CAPM fs, and the Treynor Index values.

For this example, none of the portfolios have a positive value for the Treynor Index. In
addition, none of the portfolios have an index value greater than the market portfolio index
value. Therefore, you can conclude that none of the comparison portfolios performed well
by the Treynor Index.

Evaluating Portfolio Performance Using Total Risk

William Sharpe (1966) suggests evaluating portfolios based on the portfolio risk premium
per unit of total risk (standard deviation). He calculates the following measure for each
portfolio (p):

[R_I’ - R_f] /o,

In general, portfolios with the highest risk premium per unit of total risk perform the best. A
portfolio with a Sharpe Index value greater than that of the market portfolio has beaten the
market.

For well-diversified portfolios, the rankings between the Treynor and Sharpe indexes
will be similar. For poorly diversified portfolios, the rankings may be very different.

To calculate Sharpe Index values, you proceed as follows.

Tasks performed by the program
0 Use a DATA step to merge data sets. For this example, you merge the RETURN4 and

RETURNA4C data sets to create the RETURN4E data set.

0 Use PROC TRANSPOSE to transpose the data sets. For this example, you transpose the
RETURNA4E data set.

o Use a DATA step to calculate the portfolio average risk premiums, the standard
deviations, and the Sharpe Index values.

0  Use PROC PRINT to print the index values.
The results are shown in Output 7.10.
Example code

/* Merging Data Sets */
data returnde;

merge returnd returndc;
run;

/* Transposing RETURNAE Data Set */
proc transpose data-returnde out=returndf;
var rpl-rpb r_mkt;
run;

/* Calculating Sharpe Index Values */
data returndg;



Output 7.10

Sharpe Index Values

set return4f;
mean = mean(of coll-coll2);
std = std{of coll-coll2);

sharpe=mean, std;

if _n_

if _n_

if n_

if _n_

if _n_

if _n_
run;

OY WU = o DO

then
then
then
then
then
then

name
name
name
name
name
name
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"Ex 5.2 ';
'Ex 5.5 ';
"Ex_5.7 ';
"Ex_6.13";
"Ex_6.17";
'Market ’;

/* Printing Sharpe Index Values */

proc print data=returndg;

var name mean std sharpe;
title2 'Sharpe Index Values’;

run;
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Sharpe Index Values

NAME

Ex_ 5.2
Ex_ 5.5
Ex_5.7
Ex_6.13
Ex_6.17
Market

Interpretation of output
Output 7.10 lists the Sharpe Index values for the comparison portfolios and the market

portfolio.

MEAN STD SHARPE
-0.011063 0.084817 -0.13043
-0.004056 0.075145 -0.05397
-0.001350 0.072243 -0.01869
-0.002048 0.050157 -0.04084
-0.006329 0.045101 -0.14034

0.001484 0.099987 0.01484

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE5EEEE55E5EEE5EEEEEEEE%EEEEEEEEEEEEEEEEEEEE;

For this example, none of the portfolios have a positive value for the Sharpe Index. In
addition, none of the portfolios have an index value greater than the market portfolio index
value. Therefore, you can conclude that none of the comparison portfolios performed well
by the Sharpe Index.

Note that the ranking of the comparison portfolios is equivalent for both indexes
(portfolios from Output 5.7, 6.13, 5.5, 5.2, and 6.17).

Learning More

0  For more information on the DATA step, see SAS Language, Reference, Version 6,
First Edition and SAS Language and Procedures, Usage 2, Version 6, First Edition.

0 For more information on SAS/IML software, see SAS/IML Software: Usage and
Reference, Version 6, First Edition.

For more information on PROC REG, see SAS/STAT User’s Guide, Version 6, Fourth
Edition, Volume I and Volume 2.
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o  For more information on PROC PRINT and PROC TRANSPOSE, see SAS Procedures
Guide, Version 6, Third Edition and SAS Language and Procedures, Usage 2, Version
6, First Edition.
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Introduction

This chapter discusses stock options, the binomial valuation approach, the Black-Sholes
valuation approach, and applications of options pricing to other investment decisions. Note
that you cannot value options using discounted cash flow (DCF) analysis because the risk of
an option changes as the stock price changes, and an appropriate discount rate cannot be
selected.

Stock options may be issued by the company itself (warrants) or issued by other
investors (puts and calls). Options and some of their characteristics are listed below:

O A call option gives the holder a right to buy (or “call away”) 100 shares of a common
stock at a specified price before a specified expiration (or maturity) date. Investors
buying calls expect the stock price to rise; they are “bullish” on the stock. Those selling
calls (often called writers) are less bullish on the stock.

O A put option gives the holder a right to sell (or “put away™) 100 shares of a common
stock at a specified price before a specified expiration date. Investors buying puts
expect the stock price to fall; they are “bearish” on the stock. Those selling puts are less
bearish on the stock.

0O A warrant is an option to purchase a stated number of shares of common stock at a
specified price any time before a specified expiration date.

Puts and calls, typically, have lifetimes of three or six months, while warrants may last
for years or have no expiration date. Options designated as “ American” can be exercised at
any time prior to the expiration date, while options designated as “European” can be
exercised only at maturity (the expiration date). Hence, the more flexible American options
are typically more valuable.

Options have the following advantages:

0 Options provide leverage; that is, rather than buying and holding the stock, an investor
can buy a call option at a fraction of the cost. Thus, the percentage gain can be
magnified.
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Table 8.1

IBM Stock Options
on Chicago
Exchange in
mid-February

0 The buyer’s maximum loss is known in advance. Options can be used as insurance
against adverse market movements. For example, an investor can reduce the risk of a

short sale by buying a call option.

o Options expand the possible set of assets investors can buy, hold, and sell.

The following table lists the IBM common stock options for a given day as reported in
the financial pages by major newspapers.

Strike February March April
Price Last Last Last
Option Volume Price Volume Price Volume  Price

Call 40 no option no option 10 13
Call 45 no option no option 26 9
Call 50 1191  213/16 834 33/4 356 41/2
Call 55 3076 1/16 2377 11/16 2866 17/8
Call 60 80 1/16 2247 1/4 1275 11/16
Call 65 not traded 186 1/16 131 1/4
Call 70 not traded no option 204 1/8
Put 45 no option no option 44 3/8
Put 50 465 1/16 856 13/16 780 15/16
Put 55 3597 2 1/4 1952 31/8 709 33/4
Put 60 299 6 3/4 102 7 5 61/2

The first column lists the type of option (call or put); the second column, the striking
price (the specified price at which the stock is to be exchanged, also known as an exercise

price); and the remaining columns list the volume and last price for the appropriate

expiration date (the Saturday following the third Friday of the exercise month). There are no
options for some striking prices and expiration dates, while some options were not traded.

On the previous day’s trading, IBM closed down 1 7/8 at 52 3/4, having traded at a high
of 55 and a low of 52 1/2, while the previous 52-week high and low were 60 and 40 5/8,

respectively. This gives some indication why call options priced at 40 and 45 and put

options for 45 do not exist for the near future. Call options exist for striking prices of 65 and
70, but they were not traded. Given the volume of trading, the majority of investors expect
IBM stock to trade at prices between 50 and 60 in the near future.
The traded options have values ranging from 1/16 of $1 per share (or $6.25 for 100
shares) to a high of 13 (or $1300 for 100 shares). In general, call options are more valuable
the more time prior to their expiration, the higher the stock price, the lower the striking
price, the greater the fluctuation of the stock’s price, and the higher the risk-free rate of

return.
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Valuing Options Using the Binomial Method

Suppose that you are considering buying a call option on a stock that currently sells for $50
per share. In one year, you expect the stock price to either rise to $60 per share or fall to $40
per share. Note that buying the stock at $50 per share yields $10 profit per share (20 percent
return) if the stock increases in value, but $10 loss per share (-20 percent return) if the stock
decreases in value. Also suppose that the striking price of the option is $55 and the one-year
rate of interest is 10 percent. What is the value of the call option?

If the stock is priced at $40 in one year, the call option to buy stock at $55 per share is
worth $0 (because you can buy as many shares as you want at $40). If the stock is priced at
$60 in one year, the call option is worth $5 ($60 minus the $55 striking price).

Now compare these pay offs with that of buying one share of stock (at $50) and
borrowing $36.37 (that is, the present value of the lower value of the year-end stock price,
$40/1.1) from the bank. In one year, the loan and interest must be repaid, $40 total (that is,
$36.37 x 1.1). If the stock is priced at $40, you can repay the loan by selling the share of
stock, and you lose $13.63 overall. (Note that $13.63 is the difference between the current
share price and the amount borrowed.) If in one year the stock is valued at $60 per share,
you can sell the share of stock, repay the loan, and still earn $10.

If you had invested $13.63 in call options, you would have lost the same if the stock
price fell, but you would have earned more if the stock price rose. The $13.63 is a multiple
of the value of the call option, as described in the following equation:

Spread of optionprices _ 5 — 0 _ 1
Spread of share prices — 60 — 40 ~ 4

Multiple =

The multiple is often called delra (and sometimes called the hedge ratio or the option delta),
and for this example, buying one share of stock replicates buying four call options.
Therefore, the value of four call options equals the difference between the value of the share
($50) and the bank loan ($36.37) divided by 4; or $13.63/4 is about $3.41. If the option sells
for more than $3.41, you can profit by buying shares and selling four call options for each
share bought. If the option sells for less than $3.41, you can profit by selling the stock and
buying four calls for each share sold. Note that this logic says little about investors beliefs of
risk concerning this stock.

You can also calculate the value of the option by assuming investors are indifferent
about risk and calculating the expected future value of the option, then discounting it back to
present value at the risk-free rate. If investors are indifferent to risk, the expected stock
return must be equal to the rate of interest. The stock is assumed to either rise by 20 percent
to $60 (the upside) or fall by 20 percent to $40 (the downside). You can calculate the
probability of a price rise (P) as follows:

Expected return = (P X upside % change) + (1 — P) X downside % change = interest rate
Expected return = (P X 20) + (1 — P) x (=20) = 10

_ interestrate — downside % change
" upside % change — downside % change

P_10 - (=20) 3 _

=20 = (=20) - 4=7%
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If the stock price rises, the call option will be worth $5. If the stock price falls, the call
option will be worthless. The expected future value of the call option (in one year) is
calculated as

Call Value = (P x 5) + [(1 — P) x 0] = (.75 x 5) + (.25 x 0) = $3.75

The discounted future value of the option is

_ _ FutureValue  _ $3.75 _
Present Value = 1S orestrate = 1.1 $3.41

This example had only two future prices of the stock, but it could have had a distribution of
future prices. You can use the general binomial method to value options if you know the
standard deviation of (continuously compounded) annual returns of the stock (o) and the
time until expiration of the option, expressed as a fraction of a year (t). The formula uses e,
the base of the natural logarithms (2.718...) and is

i oVt
1 + upside changes = u = e

1 + downside changes = d = %

For the previous example the time period is one year, and the standard deviation of the
discrete distribution of returns is .17321. (You may want to review Chapter 1, “Background
Topics,” for examples of calculating the standard deviation of a discrete distribution of
expected returns.) For additional discussion on the binomial method see Brealey and Myers
(1991) and Elton and Gruber (1987).

A Call Option Using the Binomial Method

You can use the DATA step to perform the binomial method calculations for valuing the
option in the following statements. Note that this example uses the EXP and SQRT
functions (for the exponential and square root transformations, respectively) and that the
mean (MEAN), variance (VAR), and standard deviation (S) are calculated. For discussion of
mean and variance calculations of a discrete distribution, see Chapter 1.

data binoml;
/* Current and Future Prices */
price=50;
price_h=60;
price_1=40;

/* Striking Price of the Option, Fraction of Year, Interest Rate */

sp=b5;
t=1;
r=.10;

/* % Downside Change, % Upside Change, Probability of Rise */
p_down= (price_l-price)/price;
p_up=(price_h-price)/price;
p=(r-p_down) / (p_up-p_down) ;
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Call Option Value
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Valuing Stock Options 0 Valuing Options Using the Binomial Method 221

/* Mear.,, “ariance, Standard Deviation */
mean=p*p_up-{i-o *p_down;
var=p* ((p_up-mean)**2) +(1-p) * ( (p_down-mean) **2) ;
s=sqrt (var);

/* Binomial Calculations */
exponent=s*sqrt (t);
up=exp (exponent ) ;
down=1/up;
up_per=up-1;
down_per=down-1;

/* Gain, Expected Future Return, Present Value of Option */
if price h<sp then gain=0;
else if price_h>sp then gain=price_h-sp;
exp_ret=gain*p;
pv_call=exp_ret/(l+r);
run;

You print variables in the BINOM1 data set with the PRINT procedure. The results are
shown in Output 8.1.

proc print data=binoml;
title ‘Option Pricing’;
title2 ’Binomial Model’;
title3 ’Call Option’;
run;

Option Pricing
Binomial Model
Call Option
OBS PRICE PRICE_H PRICE L SP T R P _DOWN P UP P MEAN VAR S
1 50 60 40 5510.1 -0.2 0.20.75 0.10.03 0.17321
OBS EXPONENT 94 DOWN UP_PER DOWN_PER GAIN EXP RET PV_CALL

1 0.17321 1.18911 0.84097 0.18911 -0.15903 5 3.75  3.40909

Interpretation of output
Output 8.1 lists the values of the input data, the intermediate calculations, and the value of
the call option. The mean of the distribution of the returns is different from 0 because the
interest rate is greater than 0 and risk neutrality is assumed (that is, the return is what
matters). The present value of the call option is about $3.41, or $340.91 for 100 shares.
After calculating the option value based on your expectations of the future stock prices,
you want to compare your calculated value with the market price of the option. If you are
satisfied with your analysis and you believe you have found an undervalued option, then you
want to consider purchasing that option. For example, if the market price of the above option
is $2.00, then you may want to review your analysis; however, if you are satisfied with your
analysis, then you may want to purchase this option. If you believe you have found an
overvalued option, then you may want to consider writing (selling) that option or similar
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options. For example, if the market price for the above option is $4.50 and you are satisfied
with your analysis, then you may want to consider writing similar options.

Multiple Call Options Using the Binomial
Method

You can value multiple call options in one DATA step. For example, suppose there were
several call option striking prices ($52.50, $55, and $57.50), several ranges of high and low
prices ($60-$40, $65-$35, and $70-$30), and all other information remains the same from
the previous example. What are the values for the call options? The following DATA step
calculates the value of the call options. The results are printed with PROC PRINT in Output

8.2.

data binom2;

input price price_h price_l sp @@;
r=,10;
t=1;

/* % Downside Change, % Upside Change, Probability of Rise */
p_downs= (price_l-price)/price;
p_up=(price_h-price) /price;
p=(r-p_down) / (p_up-p_down) ;

/* Mean, Variance, Standard Deviation */
mean=p*p_up+ (1-p) *p_down;
var=p* ( (p_up-mean) **2)+(1-p) * ( (o_down-mean) **2) ;
s=sqrt (var);

/* Binomial Calculations */
exponent=s*sqrt (t);
up=exp (exponent ) ;
down=1/up;
up_per=up-1;
down_per=down-1;

/* Gain, Expected Future Return, Present Value of Option */
if price h<sp then gain=0;
else if price_h>sp then gain=price_h-sp;
exp_ret=gain*p;
pv_call=exp_ret/(1+r);

cards;

50 60 40 52.5 50 60 40 55 50 60 40 57.5

50 65 35 52.5 50 65 35 55 50 65 35 57.5
0 52.5 50 70 30 55 50 70 30 57.5

50 70 3

proc print data=binom2;

var sp price_h price_l p exp_ret pv_call;
title3 'Call Options';

run;
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Call Option Values
with Binomial
Pricing Model
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Option Pricing

Binomial Model

Call Options
0OBS Sp PRICE_H PRICE_L P EXP_RET PV_CALL
1 52.5 60 40 0.75000 5.6250 5.11364
2 55.0 60 40 0.75000 3.7500 3.40909
3 57.5 60 40 0.75000 1.8750 1.70455
4 52.5 65 35 0.66667 8.3333 7.57576
5 55.0 65 35 0.66667 6.6667 6.06061
6 57.5 65 35 0.66667 5.0000 4.54545
1 52.5 70 30 0.62500 10.9375 9.94318
8 55.0 70 30 0.62500 9.3750 8.52273
9 57.5 70 30 0.62500 7.8125 7.10227

Interpretation of output

Output 8.2 lists the option striking prices (SP), the high price (PRICE_H), the low price
(PRICE_L), the probability of a stock price rise (P), the expected return from the call
options (EXP_RET), and the present value of the call options (PV_CALL). As the striking
price increases, the expected return and the present value of the call option decreases. As the
range between the high and low stock prices increases, the probability of a price rise
decreases, while the expected return and the present value of the call options increase.

A Put Option Using the Binomial Method

You can also use the DATA step to calculate the value of a put option. The value of a
European put (which can only be used at maturity) is

Value of put = value of call — value of stock + present value of striking price

The value of American put options depends on when they are exercised. Sometimes it pays
to exercise an American put option before maturity. For an extreme example, if the stock
price falls to 0, the option can be used and the proceeds invested to earn additional returns.

Using the above equation, the previous example of valuing a call option can be
modified to also yield the value of a put option. Suppose you were considering the purchase
of a put option with a striking price of $55 and all other information remains the same as in
the example producing Output 8.1. The following DATA step performs the calculations
using the BINOM1 data set. The results are printed in Output 8.3.

data binoml;
set binoml;
pv_sp=sp/ (1+r);
if sp<price_l then pv_put=0;
else pv_put=pv_call-price+pv_sp;
output;

run;

proc print data=binoml;
var pv_put;
title3 ’Put Option’;
run;
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Output 8.3

Put Option Value
with Binomial
Pricing Model

Output 8.4

Put Option Values
with Binomial
Pricing Model

Option Pricing
Binomial Model
Put Option

0BS PV_PUT

1 3.40909

Interpretation of output

In Output 8.3, the put option value is printed. In this example, note that the put option has
the same value as the call option. This is because the present value of the striking price
($55/1.1 = $50) is equivalent to the current price of the asset ($50). Typically, these values
differ.

Multiple Put Options Using the Binomial
Method

You can calculate the value of multiple put options in one DATA step. The following
DATA step calculates the value of put options with the same striking prices as the call
options in the BINOM2 data set. The results are printed with PROC PRINT in Output 8.4.

data binom2;
set binom2;
pv_sp=sp/ (1+r);
if sp<price_1 then pv_put=0;
else pv_put=pv_call-price+pv_sp;
output;

run;

proc print data=binom2;
var sp price_h price_l p pv_call pv_put;
title3 ’Put Options’;

run;

Option Pricing
Binomial Model
Put Options

0BS SP PRICE_H PRICE_L P PV_CALL PV_PUT
1 52.5 60 40 0.75000 5.11364 2.84091
2 55.0 60 40 0.75000 3.40909 3.40909
3 57.5 60 40 0.75000 1.70455 3.97727
4 52.5 65 35 0.66667 7.57576 5.30303
5 55.0 65 35 0.66667 6.06061 6.06061
6 57.5 65 35 0.66667 4.54545 6.81818
7 52.5 70 30 0.62500 9.94318 7.67045
8 55.0 70 30 0.62500 8.52273 8.52273
9 57.5 70 30 0.62500 7.10227 9.37500
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Interpretation of output

Output 8.4 lists the option striking prices (SP), the probability of a stock price rise (P), the
present value of the call options, (PV_CALL), and the present value of the put options
(PV_PUT). As the striking price increases, the present value of the put option increases.
This makes sense because the buyer of the option is purchasing the right to sell the stock at
the specified price. As the range between PRICE_H and PRICE_L increases, so does the
value of the put option.

Extending the Binomial Method to Other
Investments

You can extend the binomial option pricing method to other investments. Suppose you are
considering two sets of machinery to produce a product, and the demand for the product
may be high or low. For simplicity, assume that the initial costs are the same for the two
sets, $20 million. The first set of machinery, set A, is specific to the product, producing
lower individual cost items. The second set of machinery, set B, is less specific to the
product, but it has the flexibility to produce other products. The pay offs in one year are
listed in the following table:

Pay offs Set A Set B

High demand  $40 million  $35 million

Lowdemand  $10 million  $ 5 million

For any positive interest (discount) rate, the present value of Set A is greater than the
present value of Set B. So, if you are committed to continuing production, no matter how
high or low demand is, then Set A is chosen. If you also know that the salvage value of Set
B is $16 million while the salvage value of Set A is nil, then you realize that Set B offers a
put (sell) option with a striking price of the equipment’s salvage value, $16 million.

Now the comparison appears very different. With Set A, if demand is high, you earn
$40 million; if demand is low, you continue producing and you earn $10 million. However,
with Set B, if demand is high, you earn $35 million; if demand is low, you can sell the assets
for $16 million (as opposed to continuing to produce and earn $5 million). The put option
acts like an insurance policy. In general, any set of pay offs that depend on the value of
some underlying asset can be valued as a mixture of options on that asset.

You can use the DATA step and the binomial method to value the put option on the Set
B machinery. The following DATA step performs this task, and PROC PRINT is used to
print the results in Output 8.5.

data binom3;
/* Current and Future Prices */
price=20;
price_h=35;
price_l1=5;

/* Striking Price of the Option, Fraction of Year, Interest Rate */
sp=16;
t=1;
r=.10;



226 Valuing Options Using the Binomial Method 0 Chapter 8

Output 8.5

Put Option Value of
Alternative
Technology Use
with Binomial
Pricing Model

/* % Downside Change, % Upside Change, Probability of Rise */
p_down=(price_l-price)/price;
p_up=(price_h-price)/price;
p=(r-p_down) / (p_up-p_down) ;

/* Mean, Variance, Standard Deviation */
mean= (p*p_up+ {1-p) *p_down) ;
var=p* ( (p_up-mean) **2) + (1-p) * ( {p_down-mean) **2) ;
s=sqrt(var);

/* Binomial Calculations */
exponent=s*sqrt (t};
up=exp (exponent) ;
down=1/up;
up_per=up-1;
down_per=down-1;

/* Gain, Expected Future Return, Present Value of Option */
if price_h<sp then gain=0;
else if price_h>sp then gain=price_h-sp;
exp_ret=gain*p;
pv_call=exp_ret/(l+r);
pv_sp=sp/ (1+1);
if sp<price_l then pv_put=0;
else pv_put=pv_call-price+pv_sp;
output;

run;

proc print data=binom3;

/* var pv_put; */
title2 'Binomial Model’;
title3 'Alternative Use Technology Put Option’;

run;
Option Pricing
Binomial Model
Alternative Use Technology Put Option
OBS PRICE PRICE_H PRICE_L sP T R P_DOWN P_UP P -
1 20 35 5 16 1 0.1 -0.75 0.75 0.56667
OBS  MEAN VAR S EXPONENT UP DOWN UP_PER

1 0.1 0.5525 0.74330 0.74330 2.10287 0.47554 1.10287

0BS  DOWN_PER GAIN EXP_RET PV_CALL PV_SP PV_PUT

1 -0.52446 19 10.7667 9.78788 14,5455 4.33333
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Valuing Options Using the Black-Scholes Method

The binomial approach to pricing options was used in previous examples to value options
that expired after one year and had only two outcomes. The binomial approach can be used
for shorter time periods; for example, six months, and then at the end of a year, there are
four possible outcomes. If the stock prices are allowed to rise or fall every three months,
then there would be eight possible outcomes at the end of a year. As the time periods
become smaller and smaller, a continuous distribution of outcomes are possible, and the
binomial options pricing method approaches the Black-Scholes method. See Black and
Scholes (1973).

The Black-Scholes formula states that the present value of a call option is the product of
the option delta times the share price minus the present value of a bank loan to purchase the
share (at the end of the time period), or

Option Value = (delta X price) — (bank loan)
Option Value = [N(d]) X Price] - [(Striking Price) x ¢ x N(d 2)]

Note that the bank loan is discounted (continuously for the time period of one year) at the
risk-free rate (r). The option delta is defined as the cumulative normal probability of d;:

2
_ log (Price [ Striking Price) + rt + ot /2

dl oVt

The remaining term, (d ,), is defined as d; — o1

Lastly, note that the Black-Scholes method of pricing options is appropriate when the
stock offers no dividend. For stocks paying dividends you should use the binomial method
and value the option at each decision point (that is, just prior to the dividend payment date
and at the end of the time period of interest).

A Call Option Using the Black-Scholes
Method

The following DATA step calculates the value of the call option for the same conditions as
the call option valued by the binomial method in Output 8.1. Note that the cumulative
normal value is calculated by the PROBNORM function of the DATA step, while the LOG
and EXP functions are used to make the natural logarithmic and exponential
transformations. The results are printed with PROC PRINT in Output 8.6.

data optionl;
/* Current and Striking Price of the Option */
price=50;
sp=55;
/* Standard Deviation, Fraction of Year, Interest Rate % */
s=.17321;
t=1;
r=.10;
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Output 8.6
Black-Scholes
Method Option
Values

/* Black-Scholes Option Pricing Calculations */
dl=(log(price/sp)+(r*t)+(s**2*(t))/2)/(s*sqrt(t));
d2=dl-(s*sqrt(t));
delta_c=probnorm(dl);
delta_p=delta_c-1;

pv_sp=sp*exp((-r)*t);
loan=pv_sp*probnorm(d2) ;

pv_call=(price*delta_c)-loan;
pv_put=pv_call+pv_sp-price;

output;
run;

proc print data=optionl;
title2 ’'Black-Scholes Model’;

title3;
run;
Option Pricing
Black-Scholes Model

0BS PRICE SP S T R D1 D2 DELTA_C

1 50 55 0.17321 1 0.1 0.11368 -0.059529 0.54525
0BS DELTA_P PV_SP LOAN PV_CALL PV_PUT

1 -0.45475 49.7661 23.7018 3.56088 3.32694

Interpretation of output

Output 8.6 lists the input data, intermediate calculations, and the Black-Scholes values for
put and call options. Given the current price of the stock ($50), the striking price of the
options ($55), the variation of stock prices (standard deviation, labeled S, .17321), the time
period involved (one year), and the annual interest rate (10 percent), the call option is worth
about $3.56 per share, or $356.09 for 100 shares. The call option delta is .54525. Each call
option is equivalent to a controlling 1/.54525, or about 1.8 shares.

Given the input information, the put option is worth about $3.33 per share, or $332.69
for 100 shares. The put option delta is -.45475. Instead of buying a put option, you sell
45475 shares of stock and buy a treasury bill (the risk-free asset) with the proceeds.

Note that the call option and the put option are no longer equivalent in value. This is
because, with the continuous discounting used in the Black-Scholes method, the present
value of the striking price ($49.7661) no longer equals the current price of the stock ($50) as
it did in Output 8.1 and Output 8.3.
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Valuing Multiple
Options Using the
Black-Scholes
Method
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Multiple Options Using the
Black-Scholes Metho

You can value multiple call options in one DATA step. The following DATA step calculates
the value of call and put options in the BINOM?2 data set. The results are printed with PROC
PRINT in Output 8.7.

data option2;
set binom?;

/* Black-Scholes Option Pricing Calculations */
dl=(log(price/sp)+(r*t)+(s**2*(t))/2)/{s*sqart{t));
d2=dl-(s*sqrt(t));
delta_c=probnorm(dl);
delta_p=delta_c-1;

pv_sp=sp*exp{{-r)*t);
loan=pv_sp*probnorm(d2) ;

pv_call=(price*delta_c)-loan;
pv_put=pv_call+pv_sp-price;

output;
run;

proc print data=option2;
var sp price_h price_l delta_c delta p pv_call pv_put;
title3 'Call Options’;

run;

Option Pricing
Black-Scholes Model
Call Options

0BS SP PRICE_H PRICE_L DELTA_C DELTA_P PV_CALL PV_PUT

1 52.5 60 40 0.64887 -0.35113 4.75810 2.26207
2 55.0 60 40 0.54525 -0.45475 3.56078 3.32684
3 57.5 60 40 0.44316 -0.55684 2.59865 4.62681
4 52.5 65 35 0.62645 -0.37355 6.81981 4.32377
5 55.0 65 35 0.56277 -0.43723 5.72773 5.49379
6 57.5 65 35 0.50034 -0.49966 4.77933 6.80748
7 52.5 70 30 0.62774 -0.37226 8.79837 6.30233
8 55.0 70 30 0.58151 -0.41849 7.77703 7.54309
9 57.5 70 30 0.53625 -0.46375 6.85983 8.88798

Interpretation of output

Output 8.7 lists the striking prices (SP), the high and low prices (PRICE_H and PRICE_L),
the call option deltas (DELTA_C), the put option deltas (DELTA_P), and the present values
of the call and put options (PV_CALL and PV_PUT), respectively. As the striking price
increases, the option deltas decrease, and the present value of the call options decrease,
while the present value of the put options increase. As the range between the high and low
prices increases, so do the option values.
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Note that all of the deltas for the call options are all positive and less than 1, indicating that
each share of stock purchased would represent more than one call option, specifically,
1/DELTA_C. Also note that all of the deltas for the put options are all negative, indicating
that instead of buying the put options, you sell DELTA_P shares of stock and buy U.S.
Treasury bills (the risk-free asset) with the proceeds.

Learning More

O For more information on the DATA step, see SAS Language: Reference, Version 6,
First Edition; SAS Language and Procedures: Usage, Version 6, First Edition, and SAS
Language and Procedures, Usage 2, Version 6, First Edition.
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