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Preface

This book is written for the logistician who is concerned with one or
more systems or end equipments and with the percent of time that they
are operational. We develop the mathematical modeling techniques to
determine the optimal inventory levels by item and location for any specified
system availability or total spares investment. The optimizations consider
trade-offs between stock at the operating locations and the supporting
depots, known as the multi-echelon problem; between stock for an item and
its sub-items, known as the multi-indenture problem.

In addition, this book is written for the graduate student in operations
research who is interested in the mathematics of inventory theory and its
application to real problems. The theoretical foundations of the requisite
inventory theory are covered in detail. As the sub-title indicates, multi-
echelon (and multi-indenture) techniques are an important part of the book.
We believe this is the first text to consider these topics in depth.

However, this is not primarily a book on multi-echelon inventory theory.
We restrict our attention in the optimization theory to the case where the
stock level is s and a reorder or repair of one unit is initiated whenever the
level falls to s - 1. This is the only policy that we consider, because it is the
optimal policy for the high-cost, low-demand repairable items of which
systems are composed. We do calculate order quantities that can be larger
than one for low cost, high demand items. However, because these
items appear at lower indentures in the parts hierarchy, we are content to use
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approximations to the optimal policy, knowing that the impact on system
availability and system cost will be slight.

The reader who is primarily interested in the mathematics of
the general multi-echelon problem should refer to other sources. The classic
reference is Clark and Scarf (1960), and there is an excellent anthology by
Schwarz (1981). Several of the papers in the Schwarz anthology deal with
the multi-echelon problem, including over 200 references. Other more recent
works of note include Federgruen and Zipkin (1984) and Svoronos and
Zipkin (1988). Due to the complex iterative nature of the solution
techniques for these optimal, multi-echelon policies, there have been
few applications to date. An important exception, Cohen et al (1990), is
discussed in Chapter 10.

In the past twenty years there have been two important, conflicting
developments in the management of inventories. The manufacturing sector
has tended to place more emphasis on better planning and “just-in-time”
methods to reduce investment in in-process inventories. At the other
extreme, logisticians who are responsible for the support of complex
equipments such as ships, telecommunications networks, electric utilities,
computer systems, space shuttles and orbiting vehicles are making use of
ever more sophisticated inventory models. This is due in part to the
increasing complexity of these equipments, and the need to meet specified
availability targets. Central to both developments has been the tremendous
increase in computing power, computer literacy and widespread user access.

Demand forecasting and inventory modeling are becoming less important
to the former group, while they are becoming more critical to the latter.
Between the extremes there are many other applications, such as those for
retailers in the commercial world. In some cases retailers have been able
to shorten lead times, and depend on greater responsiveness from their
suppliers; in others, the variability of lead times and the number of
wholesale suppliers has been increasing. Inventory theory and forecasting
may still be important for them, but there is less of a need for new and
better techniques.

Our objective in this book is to address the problem of supporting high-
technology equipments. Though many of the most natural applications are
in the military sector, the techniques that we develop are appropriate for
complex civilian programs, too. Rather than talk in abstract terms about
high-technology equipments and retail sites, it will be convenient in our
discussions to adopt military examples and refer to aircraft, operating
bases, supporting depots, etc. We hope this will make the context clearer
and less academic without causing the reader to ignore other applications.

The stimulus for writing this book was a four-day (now three day) course
on spares management and modeling that I first presented in April 1989.
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The course has now been presented over fifty times in various locations in
the United States, Europe, and the Far East. Before each subsequent
course, the material was revised to reflect students’ comments and the
author’s experience. The current form owes much to the feedback from
hundreds of students.

The attendees have ranged from logisticians and engineers with extensive
experience and doctoral degrees to managers with limited mathematical
training. The book is intended to appeal to a similar audience with a range
of interests and ability. Many of the mathematical proofs are placed in the
Problems and Appendices to make the text easier for the reader who has less
mathematical facility. (Calculus is unavoidable in a few sections of
Chapters 4, 5, and 7, however).

I have taught inventory theory courses in graduate schools of operations
research - usually using Analysis of Inventory Systems by Hadley and Whitin
(1963) as the principal text. That book contains some excellent
material, though it is out of date and out of print. However, students
complained that Hadley and Whitin and other texts had few real examples,
and they wanted to know more about whether the models had been
implemented. Consequently, this book includes actual data from field tests
of the techniques, demand prediction studies, and from work for Space
Station Freedom wherever possible. Furthermore, every model discussed in
the book has been programmed on personal computers, and most are being
used today.

It is important to emphasize that the models developed in this book
are all analytic. Simulation is used to verify the accuracy of the analytic
models, but the models themselves consist of mathematical equations that
can be solved for optimal stockage policies in an efficient manner. The
analytic nature of the models is essential for practical application on personal
computers or even mainframes.

The book includes a careful development of the mathematical
foundations of the theory, appropriate for a one-semester graduate
course. It is the author’s hope that the book will be used both by practicing
logisticians who want to keep up with the state of the art in inventory
modeling, and by graduate students of operations research who are
interested both in theory and practice.

A large part of the material in the book is based on my research. Much of
it has been published in journals such as Operations Research, Management
Science, and the Naval Research Logistics Quarterly. However, the
modeling of periodic resupply for Space Station Freedom, where there is
redundancy at both the system and item levels, is too recent to have
appeared in print. Much of the demand prediction work has been described
only in Logistics Management Institute publications.
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The material in this book begins with research performed in the early
1960s. The research showed that it was possible to operate an Air Force
base and achieve higher performance at significantly less cost for spares.
Subsequently the research findings were validated in a field test in which
the recommended stocks were actually implemented at the base, resulting
in the same performance at about half the inventory cost. The
philosophical basis for this new approach is given in Chapter 1,
and the mathematical techniques in Chapter 2. It is shown that minimizing
the sum of base backorders is equivalent to maximizing availability.

In Chapter 3 the mathematics is extended to the joint optimization of
stock levels at bases and at the supporting depot. Chapter 4 treats
demand rate estimation, and suggests techniques to model demand rates that
do not stay constant. We show that this results in larger variance-to-mean
ratios than the value of 1 that characterizes the Poisson distribution.
The negative binomial distribution is used to model this effect as well as
the larger variance-to-mean ratios that occur because the pipeline delays
between echelons and indentures are not independent. This is
illustrated with a two-indenture example. We describe demand prediction
studies using actual Air Force data, and present methods for dealing
with items whose failures are dominated by wear out. In Chapter 5 we
develop the mathematics for the combination multi-echelon, multi-indenture
optimization problem.

Chapter 6 and 7 are concerned with the periodic resupply problem for
repairable items, and its application to Space Station Freedom. One of the
new results presented in this book for the first time is an optimization
technique where redundancy is modeled at both the system and item level.
This has important implications in the design of systems. The same model
can be used for long-term procurement problems and for short-term
resupply manifesting of the space shuttle; in the latter case the age of
installed units subject to wear out can be used to improve the set of items
resupplied in a given shuttle flight.

In some applications, maintenance performs cannibalization: consolid-
ation of item shortages on the smallest number of end-items. The
mathematics for cannibalization is different; this is the subject of Chapter 8.
We show that it is possible to use the same objective function, expected
availability, though the results are only quasi-optimal. We note that
regardless of the procurement model used, it is possible to achieve
better short-term performance if information on the location and condition of
assets at each point in time is used in decision-making. The DRIVE
(Distribution and Repair in Variable Environments) model for distribution
of serviceable assets from depot to bases and for prioritization of repair at
depot is such a model. We describe some of the benefits and problems of
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implementing such a technique. Chapter 9 is new in the second edition,
describing a dozen problems that can be modeled with the same theory,
including modifications for commercial airlines, variations in the resupply
and repair assumptions, treating sites that operate aircraft and support other
sites.

Finally, Chapter 10 is concerned with many of the real-world problems of
using models. What are the advantages and what are the limitations?
Implementation experiences by several different user groups are presented.
The appendices provide mathematical proofs of Palm’s theorem, and
discussions of special topics such as lateral supply between bases and
demand prediction studies. Appendices D-F are new in the second edition.
Appendix D is concerned with predicting spares demand in a wartime
environment, based on observations from Desert Storm. Appendices E and F
describe implementations of the optimization theory (VMetric) and the
demand prediction theory (Demand Analysis System).

This book differs from other books on inventory theory in several
important ways. We use the system approach, whereby we focus on the
availability of the end-items such as aircraft, and then determine the
appropriate inventory policies. We believe that logisticians should provide
management with cost-availability curves, from which an optimal system
target can be chosen. In fact, the system approach is used in several ways -
not just in the determination of stockage levels but in demand prediction and
in the evaluation of alternative policies.

Repairable items are the central focus here, because they most directly
relate to aircraft availability, whereas consumable items are the focus in
most books. We devote a lot of time to multi-echelon, multi-indenture
inventory theory, though these are only given a couple of summary pages in
most texts

Although only four chapters and appendices are totally new in this second
edition, I have made extensive revisions in all chapters, adding numerous
worked-out examples. The first edition was published twelve years ago, and
many things have changed since that time as reflected in the new edition. For
example, the personal computer models in 1992 did not use Windows, now
the standard; the original book was done in WordStar, not Word, requiring
an archaelogical project on the part of my son, Evan, to reconstruct the
original manuscript.

I can be reached by email at csherbro@alum.mit.edu.

CRAIG SHERBROOKE
Camarillo, CA.
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Chapter 1

INTRODUCTION

Finally we shall place the Sun himself at the center of the Universe. All this
is suggested by the systematic procession of events and the harmony of the
whole Universe, if only we face the facts as they say “with both eyes open”.

–Nicolas Copernicus

1.1 Chapter Overview

We introduce the fundamental notion of the system approach and contrast
it with the older, traditional method of calculating spares known as the item
approach. We show that for high technology equipments, repairable items
are more important than consumable or non-repairable items.1 This makes
for some simplification, because there is only one decision variable on each
item: when to order or, equivalently, the stock level. On the other hand, the
problem is more complicated, because the support of complex systems

We use the term repairable to signify items that have some possibility of being repaired.
The military services use the term reparable to mean an item that may be repairable,
depending on the nature of the failure. Nonmilitary readers are apt to think that the
military term is a misspelling, so we prefer not to use it or the word recoverable, which
means the same thing.

1
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requires us to be concerned about many items and stock levels at both bases
and depots. This is known as a multi-echelon context. Furthermore, we want
to optimize the mix of items and the sub-items of which they are composed,
known as the multi-indenture problem.

The terms “failure” and “demand” are used interchangeably. We assume
that when there is a demand a spare is needed. If no spare is on hand, some
system has a “hole” and the “end item” is unavailable until a spare can be
supplied. Instead of using the term end item we will use aircraft as a typical
example, and a military context where these models first arose. But, it is
important to realize that the models we develop in this text have many
commercial applications including commercial airlines, power plants, radar
installations, space station. In fact, the theory is applicable to any complex
system where it is meaningful to talk about availability (the percent of time
that the system is operational). The system of interest may not be the aircraft,
say, but a sub-system of the aircraft such as the guidance, the propulsion, or
the avionics. We use the term “item” to designate a specific type of part and
“units” for the quantity of the item. We will show that the stock level on any
item at any location can be thought of as the average number of units of the
item in repair or resupply plus some safety level to protect against variability
in the demand and repair processes. But the optimal stock level depends on a
number of other variables also including item cost, location (base or depot),
and indenture (item or sub-item) as well as system variables such as the
desired availability. In later chapters we develop the theory necessary to
include all of these factors.

We summarize field test experience using a variable protection level that
demonstrated as much as fifty percent reduction in inventory cost to obtain
the same performance level, even at a single base. Last, the chapter shows
with a simple example what optimal item policies look like. We show that
the optimal stock levels are different when there is cannibalization -
consolidation of aircraft “holes” or backorders to the smallest number of
aircraft possible by remove-and-replace maintenance

1.2 The System Approach

In the system approach, questions are asked such as: How can we insure
that 95% of our scheduled aircraft flights will not be delayed for lack of
spare parts? How much more money do we need to spend to move from 95%
to something higher? More generally what can we do to change our logistics
support structure to achieve a desired availability more efficiently? Is it
economic to have more repair capability at the operating sites?

The perspective of a retailer such as Sears Roebuck is very different.
Retailers are interested in measures of customer satisfaction such as fill rate,
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the fraction of demands that are met from stock on the shelf. If the customer
demand can not be met, there are two possibilities: 1) the customer goes
away, perhaps to another supplier; 2) the customer returns at a later time
when the Sears stock has been replenished. The former is the lost sales case
in inventory theory literature; the latter creates a backorder on the supplier.
Sears will keep track of customer backorders by logging them and notifying
the customer when the item is back in stock. Other retailers will only tell the
customer that the item is backordered and that he should reorder after a
certain date. In high-technology equipment, any demand that can not be
filled is backordered; there are no lost sales and thus we will not treat that
case in this book. Like Sears, we will be interested in “supply system
performance” measures such as fill rate and number of backorders, but only
indirectly. Such measures are used internally in the inventory theory we
develop below, but from the point of view of the manager or decision-maker,
they are irrelevant. The manager’s perspective should be at the system level:
What does the optimal system cost-effectiveness curve look like? We
describe this in the following section.

1.3 The Item Approach

Traditional inventory theory uses the item approach, where the spares for
an item are determined by simple formulas that balance the costs of holding
inventory, ordering, and stockout. The item approach has been used for
years, and it is simpler because decisions on the number of spare units of
stock to buy on an item are made without considering other items.

The disadvantage of the item approach is that the availability and total
investment in the system of items are uncontrolled outputs of the item
decisions. The system availability or investment may be inappropriate. What
does the decision-maker do if the item decisions lead to a 35% availability
for a fleet of aircraft? Or, if the budget for spares exceeds the money
available?

The availability and investment targets should be inputs to the decision-
making process. The system approach presents the manager with an
availability-cost curve of his ‘efficient’ system alternatives as illustrated in
Figure 1-1. Any points below the curve are “inefficient” in that it is possible
to find solutions on the curve with more availability or less cost; points
above the curve are unobtainable. The manager chooses the point on the
curve that meets the availability requirements within budget limitations. The
slope of the availability-cost curve at any point shows the marginal cost of
obtaining higher (or lower) availability.

The system approach and the item approach are related in the sense that
every point on the system availability-cost curve is computed from an item
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approach solution for a particular set of parameters: inventory holding cost,
order cost, and stockout cost. Thus, to generate the system curve, it is
necessary to solve a series of item approach problems. Fortunately there are
efficient techniques for generating these curves, and these are described in
detail in this book.

In 1964 I had the opportunity to visit a military supply depot where all
spares were ordered automatically by computer. It was hard to believe that
all of the decisions were made automatically and that manufacturer orders
were placed from the computer without human intervention. After much
probing, the managers finally admitted that the humans had not been
replaced completely. “As a matter of fact,” they said, “we don’t have enough
money to do what the computer says, so we buy the projected demand for six
months on every item. But, when we get enough money, it will all be
automatic.” We asked them to call us when that time came, and we’re still
waiting forty years later. The mismatch between item-level decisions and
system resources such as money or system performance requirements does
not exist when the system approach is used. Each point on the optimal
system cost-effectiveness curve corresponds to a set of stockage policies - a
stock level for every item. In the depot experience quoted above, a computer
model based on the theory in this book would have obtained better system
performance for any spares budget.

1.4 Repairable vs. Consumable Items

Most books on inventory theory begin with consumable or non-repairable
items; only later and in a cursory way do they discuss repairable items. They
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are concerned with two basic questions on each item: (1) when to order, the
optimal reorder point (R); (2) how much to order, the order quantity (Q).

Figure 1-2 shows the typical saw-tooth pattern with orders of size Q
placed at reorder point R so that the resupply arrives a lead time later, just as
the on hand inventory is becoming depleted, as seen in this example where
demand is constant and known. (We will generalize this example to
probabilistic demand later.)

This simple example illustrates the fundamental formula of inventory
theory, known as the Wilson lot-size formula for the optimal order quantity,
which arose in the early part of the twentieth century1:

The earliest derivation of this formula appears to be by Ford Harris of the Westinghouse
Corporation (1915).

where Q = the economic order quantity
m = the mean annual demand

= the cost to place an order
= the annual holding cost rate (e.g. .2 is a common choice for the

sum of interest rate, warehousing, and obsolescence)
c = the unit cost of the item

1
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This value of Q minimizes the sum of annual order and holding costs.
When we order a lot that has size Q, there are m/Q orders per year and the
annual cost is The average amount on hand is Q/2 times the unit
annual holding cost, The reader is asked to verify Equation 1.1 in
Problem 1; it is a special case of a more general formula we derive in
Section 5.13.

There are several observations we want to make about Equation 1.1 here.
Since our interest is spare parts, and one can’t order a fractional number of
units of an item, the smallest value of Q is 1. A Q equal to 1 means that we
order whenever there is a demand. Our interest is the support of systems, and
it turns out that the availability of these is dominated by repairable items.
When an aircraft engine develops a malfunction, we don’t throw it away - we
try to fix it. These repairable items tend to be expensive, and the demand at a
base for any particular item tends to be low. As a group the repairable items
comprise the largest part of the spares budget; in 1990 the Air Force had
over $31 billion invested in repairables. Another reason to pay special
attention to repairable spares is that they tend to have longer lead times. If
we buy an insufficient quantity, it will take longer to rectify the error.

A small value for m in the numerator of Equation 1.1 and a large value for
c in the denominator both tend to make the value of Q approach 1. In effect
the repairable item problem has become simpler, because if Q = 1 we need to
worry about only one “decision variable” on each item - when to reorder.
Thus, repairable items are simpler to model than consumable items in this
sense; in other respects we will find repairable items are more complicated
to model.

As a historical note, the economic order quantity of Equation 1.1 played
an important part in our decision to build an optimal spares model. In 1963
Col. Vernon Taylor of the Headquarters USAF staff asked the RAND
Corporation to explain why so much attention was paid to unit cost in the
EOQ formula used for low-cost items, whereas cost was virtually ignored in
the policies for high-cost repairable items. It didn’t make much sense to us
then, and it still doesn’t.

1.5 “Physics” of the Problem

It is important to describe the “physics” of the problem, before we attempt
to develop theory. The simplest version of the problem is as follows: When a
malfunction is diagnosed on an aircraft, the malfunctioning item is removed
from the aircraft and brought into base supply. If a spare is available, it is
issued and installed on the aircraft; otherwise a backorder is established for
that user. We call this a first indenture item, because it is installed directly on
the aircraft. Note that a base backorder on a first indenture item implies that
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there is a “hole” in an aircraft that causes it to be grounded. Later we discuss
backorders at the depot and on lower-indenture items at the base. These
supply system shortages are important and must be considered in our
models, but they do not impact the aircraft directly, e.g. a base backorder for
a second indenture item does not necessarily result in a “hole” in an aircraft.

The malfunctioning first indenture item is taken to a base maintenance
shop and a determination of repairability is made. If the item can be repaired,
it is scheduled into base repair and at some later time, when fixed, it is sent
to base supply, where it is used to satisfy an outstanding backorder, if any, or
is added to serviceable supply on the shelf. If not base-repairable, it is sent to
the depot and a resupply request is levied on the depot. After some resupply
delay, the length of which depends on the situation at depot supply, a
serviceable unit is received by base supply. Note that usually a different unit
of the item is received from the depot than the one sent to the depot. One of
the complications of the repairable item theory is that these repair and
resupply delays are not fixed; there is a probability distribution for the time
to repair an item at the base, depending on the complexity of the repair and
the availability of personnel, shop equipment, and spare parts. The order-
and-ship time is defined to be the time from placing a request on depot until
the time when the item is received at the base if there was stock on the shelf
at the depot. There is a probability distribution for this time as well. There is
also a probability distribution for the waiting time at the depot until an item
is available to ship to a base. All of these probability distributions must be
taken into account by our theory.

1.6 Multi-Item Optimization

We explained above why the system approach is an important perspective
for high-technology equipments. One implication of the system approach is
that we will be determining stockage policies on a large number of items. In
fact the optimal stockage for different items is not independent of the total
number of items. For example, if we want 95% availability on a system with
2000 items, we will need more stock on each item than for a similar system
of only 1000 items.

In developing our theory it is important to strike a balance. On the one
hand it is important that we not fall into the trap of developing more elegant
“exact” solutions that have simplified unduly the “physics” of real-world
problems. On the other hand the theory is useful only if it is possible to build
efficient computer programs. We have attempted to maintain that balance,
and all of the theory in this book has been implemented on personal
computers.
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1.7 Multi-Echelon Optimization

Another way in which repairable items are more complicated than
consumables is that we are typically interested not just in how many spares
we need at each operating base, but how many we need at the supporting
depot as well. The latter obviously affects the probability distribution that a
spare will be on the shelf at the depot to resupply a base. The bases are
referred to as the first echelon, and the depots as the second echelon. The Air
Force is considered to be a two-echelon supply system for most purposes.
Sometimes there are more echelons. For example, in the support of deployed
submarines, some spare stock is kept on each submarine (the first echelon);
some is kept on second-echelon supply ships that are periodically accessible
by the submarines; these in turn are supported by the third-echelon home
port facilities; and finally there are fourth-echelon Navy depots such as
Mechanicsburg, Pennsylvania. This multi-echelon picture is more typical of
the Army as well. The theory to be developed below is valid for any number
of echelons, although the computation takes longer and the computer
programs become more complicated as the number of echelons increases.

There is one important assumption in the echelon structure of these
models: an “arborescent” or tree structure is assumed wherein each first-
echelon base has a specific second-echelon supplier for any given item (the
second echelon supplier need not be the same for all items). If there are more
echelons, the same type of arborescence is assumed between adjoining
echelons, as shown in Figure 1-3. This is an example of “ragged” echelons
where the number of echelons may vary; from the viewpoint of the first three
bases, there are three echelons whereas from that of the last two, there are
only two echelons.
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This type of arborescence is not unusual in most inventory systems. But it
does imply some operating constraints. For example, suppose a base finds
that there is no spare on the shelf at its usual supporting depot; if it is able to
go to other depots in search of that spare, it is violating the arborescence
assumption. Or if the base can go to other bases to effect a “lateral”
shipment, it is violating the assumption.

Some model assumptions are bound to be violated at least occasionally in
the real world. The modeler’s art is to incorporate in the theory as much of
the “physics” of the problem as possible. Thus, we will not prevent lateral
shipments from taking place in the real world, but if they become a
significant part of the physics they should be included in the theory. (We
relax the assumption of no lateral supply in Appendix B).

1.8 Multi-Indenture Optimization

Echelons describe how the supply system is organized. We will also be
concerned with the engineering parts hierarchy, referred to as the indenture
structure. In Air Force terminology a first-indenture item that is removed
from the aircraft is called a line-replaceable unit (LRU), because this
activity takes place on the flight line. When the first-indenture item is taken
apart in the maintenance shop, second-indenture items are replaced and these
are called shop-replaceable units (SRUs). The Navy uses the terms weapon-
replaceable assembly (WRA) and shop-replaceable assembly (SRA) for
first- and second-indenture items respectively.

Of course, we can have third-, fourth- and lower-indenture parts as well
and a good inventory policy should be concerned with the optimal stockage
of these as well. We noted above in Section 1.6 that the optimal stock levels
of different items are not independent. This is even more true when we
consider trade-offs between items of different indentures. There is a
substitution effect because a malfunction of an electronic device (first-
indenture item) may be fixed by a circuit card (second-indenture item) or the
appropriate computer chip (third-indenture item).

Since an item at a particular indenture is composed of several lower-
indenture items, the cost of each lower indenture item is less than that of its
“parent”. Furthermore, the lower-indenture items, such as computer chips,
are more likely to be common items, that is, used in several different
“parents”. For these reasons, there is an incentive to stock the lower-
indenture items rather than their higher-indenture “parents”.

On the other hand, when an item fails, it takes time and expertise to
diagnose and replace the lower-indenture items that are responsible. It may
take specialized test equipment, and it may require sending the item to the
depot or next-higher echelon. This extra time translates into system
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downtime, and for this reason it is preferable to stock the higher-indenture
items.

The appropriate mix of different indenture spares, and their optimal
allocation between different echelons, is a complicated problem that is best
approached with a computer model. That is the subject of this book.

1.9 Field Test Experience

When we use the term “system approach,” some logisticians think that all
we mean is a different perspective on the problem. In fact, we show in this
book that the stockage decisions are significantly different than those that
would be made under the traditional item approach.

How different is “significantly different”? We mean the same level of
system effectiveness at a spares cost on the order of half as large. It is
possible to demonstrate this with computer analyses, and several will be
presented in the book. But, there is nothing quite like a field test experiment.
If the model has ignored some important physics, it will never be detected by
the model itself, but the real-world has ways of educating the careless
modeler.

The mathematics of the new approach is the subject of Chapter 2. This
approach was tested in several computer simulations and a field test at
Hamilton Air Force Base (AFB) where there was one tactical aircraft type.
In the six-month test from March-August 1965 the objective was to improve
both the performance level of an 82.8% fill rate and lower the investment
cost of $1.84 million. The results were a 91.2% fill rate at a cost of $1.45
million. Furthermore, the average number of times per month that an aircraft
became not operationally ready for supply dropped from 33 to 19, a 42%
reduction.

This gave Air Force decision-makers (and the modelers) greater
confidence in the new approach. But there were skeptics who said that only a
full field test at a typical, but complex base with several aircraft types would
be meaningful. Furthermore, they didn’t want a paper test of what would
have happened with the stock levels recommended by the model - they
wanted a test of what would happen if those levels were actually
implemented. Consequently, George AFB with three major aircraft types (F-
4C, F-104, F-106) was selected and the stockage system performance under
the old policy was monitored for six months by a test team. At the end of this
period several freight cars left the base loaded with material that the model
said was not needed; several arrived with spares that the new Base Stockage
Model (BSM) recommended. Then the test was run for another six months
and the performance was compared. The field test was reported on by the
Air Force Logistics Command (1967).
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The Air Force could have used the model to obtain either better system
performance at the same inventory investment, the same system performance
at less cost, or some intermediate combination of better performance and less
cost as at Hamilton AFB. It chose the second alternative.

In the next chapter we show that backorders are a better performance
measure than fill rate, because availability can be computed from
backorders. But, in 1965 the Air Force measure of performance was fill rate
- the percent of demands that are met when placed. Consequently, that is the
measure we use here. Over the group of 3673 repairable items at the base
and the stock levels in place during the pre-test period from September 1,
1965 to February 28, 1966 the average fill rate was 75 percent. That was the
target that was used in the optimal model for the next six-month period.
Table 1-1 compares the results for the pretest and test periods. During the
test period from March 1, 1966 to August 31, 1966 the measured fill rate
was 76 percent, slightly higher than our target, but the required inventory
investment was almost cut in half.

How good was the Air Force policy used in the pretest period? In addition
to being much more expensive, there were 167 items, 12% of the 1414 items
with demand in the first six months, on which the Air Force policy would
have stocked an inadequate number of spares in the judgment of experienced
personnel. Thus, supply managers had obtained permission for special
augmented levels on these items in the pretest period. The stock levels from
a model should not be treated like the Ten Commandments. No model
embodies all of the day-to-day knowledge of experienced personnel. Thus,
there will be occasions when the model output should be adjusted. On the
other hand, if it is necessary to revise a substantial amount of the model
output on a regular basis, the model needs to be improved.

Thus, we were not surprised that the Air Force felt the model stock levels
needed to be increased for 28 items during the second 6-month period. This
was, however, a dramatic 83% reduction in the number of special levels that
had been used before. Of the 28 items, 9 were in the pre-test group of 167
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items with special levels and 19 were high-cost items for which the model
had allocated either a zero or low-stock level.

Unfortunately, the antiseptic purity that one would like in a field test was
compromised, because of the Vietnam war and the transfer of 16% of the
aircraft to Southeast Asia. Even more importantly, the flying hours/month
and the sorties/month, the primary factors that influence demand, decreased
by averages of 37% and 32%, respectively. The measure most closely related
to operational performance is the average number of backorders or aircraft
“holes”. The actual aircraft availability percentages were not tracked during
the test. That is unfortunate, as it would seem to be a better criterion.
However, availability percentages are affected by the cannibalization policy.
When availability rates fall below targeted levels, maintenance does more
cannibalization. The advantage of looking at backorders is that they are
unaffected by the cannibalization policy which could change significantly
over a test lasting a year.

Although the average backorders declined 44%, more than the sorties or
flying hours, we would not claim an improvement in performance. On the
other hand, there is no evidence that the 46% reduction in inventory
investment has led to a decrease in performance.

Due to the changes in flying hours and sorties between the pretest and test
periods, the Air Force simulated what would have happened during the test
period under standard Air Force policy and using the Base Stockage Model
(BSM). The actual daily demand data and repair times were used in the
comparison of the two policies. No special levels were used, resulting in an
Air Force (AF) investment of only $4.3 million. The same budget was
allocated by the BSM with the results shown in Table 1-2.

We think the results summarized in Tables 1.1 and 1.2 are very
impressive. Had the improvement been 5% or 10%, it might be possible to
dismiss it as a chance phenomenon or due to the field test methodology.
However, these results have been duplicated elsewhere so they are clearly
not a fluke. Furthermore, we remind the reader that these improvements
were obtained at a single base. As we consider multi-echelon, multi-
indenture systems in the chapters to come, the percentage improvements are
usually even larger.
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Although these field tests were performed almost 40 years ago, they are
still among the best in the sense of actual implementation of the
recommended levels and careful monitoring of both the pre-test and test
periods. Other tests of the theory are described in the book: 1) Airline results
in Section 9.2; 2) Space Station tests in Section 6.13; 3) Demand Prediction
Experiments in Appendix C; 4) a C-5 study for the Air Force in Section
10.6; and 5) Coast Guard studies in Section 10.9. The problems of making
valid comparisons between the system approach developed in this book and
any other procedure for stock leveling are discussed in Section 10.2.

1.10 The Item Approach Revisited

How did we achieve such impressive results in the field test? In the next
chapter we develop the theory for the single-site model. Chapter 4 describes
the Bayesian analysis procedures that were used to obtain better estimates of
demand. In this section we describe the policy then used by the Air Force.
The policy is still used for some items by the Defense Logistics Agency and
others, and can be characterized as the item approach, which has been used
traditionally to determine the required number of spare parts. We begin with
a single item at a base where we assume that the item can always be
repaired. Let the average demand over the lead time be denoted as where
in this case the lead time equals the repair time. Then the traditional policy
has been to buy enough spares to cover the lead time demand plus some
safety level to protect against demand variability:

where s = units of spare stock
= average demand over the lead time
= standard deviation of lead time demand

k = positive constant for the amount of protection

The standard deviation of lead time demand is the square root of when
the lead time itself is constant and demand has a Poisson distribution. The
Poisson will be described in detail in the next chapter, but it is the common
choice for modeling random demand, as contrasted with wear-out
phenomena. A typical value of k used by the Air Force is the square root of 3
= 1.73. (The values on the right-hand side of Equation 1.2 may be non-
integers, so the result is rounded to obtain an integer value of s).

It turns out that the protection level, k, should not be a constant across all
items. We will prove this formally in Chapter 2, but it is important that the
reader understand why a variable protection level makes sense. Suppose
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there are two items that have exactly the same demand characteristics and
each is equally important to the operation of the aircraft. One costs $100 and
the other $10,000. If we are attempting to allocate a fixed budget to obtain
the highest availability possible for a fleet of aircraft, we should buy a little
more of the inexpensive item. An additional unit of either item produces the
same increase in availability, but the expensive item costs one hundred times
as much as the inexpensive item. Twenty-five years ago when we were first
using this argument, there was a lot of resistance. The logistician would say
that if he needs the item, it doesn’t matter how much it costs - it is still
cheaper than an aircraft. He is right. When a “hole” in an aircraft occurs, we
do anything to fill it; expedite maintenance, priority shipment, lateral supply,
cannibalization. But that is after the failure occurs. Our problem is like
placing bets on an upcoming horse race; we want to allocate our spares
budget across a group of items before any failures occur, and at that point in
time the unit cost of the item should be considered. Thus, k should be
smaller for high-cost items, other things being equal. We will provide an
example in the next section.

In Chapter 3 we will discuss multi-echelon stockage and in Sections 4.4
and 4.5, multi-indenture stockage. It turns out that the optimal value for k
should be different by echelon. Not surprisingly, the first-echelon or base
level, where aircraft are flown, is the most important. By contrast, the stock
level at the depot affects the time to resupply the bases, but the impact on
aircraft availability at the bases is indirect. It will turn out that the k value
should be larger for the base than for the depot. Similarly, the first-indenture
items at the base have a more direct impact on aircraft availability than
second-, third-, or lower-indenture component parts. Again the optimal k
should decrease as we move down the indenture structure.

All of this may seem very complex, but in fact we need never worry about
those k values. They are implied by the mathematics, but never computed
directly. We need, however, to understand why k should not be a constant
across all items, echelons, and indentures for a point on the optimal cost-
effectiveness curve. This in turn helps to explain why simple inventory
policies with a constant protection level, k, on all items, such as the policy at
George AFB in 1965, produce dramatically inferior results.

1.11 The System Approach Revisited

In this section we contrast the results from the item approach and the
system approach when there are a small number of items. To facilitate
comparison we assume there are 22 first-indenture items, each of which is
critical to the operation of the aircraft. Item demand is Poisson with costs
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and demand rates as given in Table 1-3. We assume that each item can be
repaired in an average of 10 days and consider a single base.

We will use the term “pipeline” throughout the book to denote the number
of units of an item in repair at a site or being resupplied to the site from a
higher echelon. The number of units in the pipeline varies probabilistically,
but the pipeline can be measured at any point in time by counting the
number of units in repair and resupply. The average pipeline for a site or the
average lead time demand is the average number of units in repair/resupply.

Suppose that we have a fleet of 100 aircraft and our objective is to
maximize the availability of the fleet. Assume that a spares budget of
$22,000 is allocated across the items using: a) the item approach of Equation
1.2; b) the maximization of availability when there is no cannibalization; and
c) the maximization of availability when there is cannibalization. We want to
look at both the system performance and the underlying stock levels for each
method. The item demands and costs have been chosen purposely to
facilitate our comparisons.

The budget of $22,000 is only enough to buy the average pipeline on
every item using the item approach of Equation 1.2. This is called the
Constant k (Const. k) policy in Table 1-4, where k = 0. Using the methods to
be derived in Chapter 2, we obtain the optimal stock levels for no
cannibalization in the next column of Table 1-4 (No Cann.). Finally, using
the theory for cannibalization from Chapter 8, the last column with optimal
cannibalization stock levels (Cann.) is obtained.
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One of the advantages of the system approach is that we can evaluate the
availability of any set of stock levels. Thus, the model of Chapter 2 is used
not only to find the optimal allocation of $22,000 and the corresponding
availability of 92.21% (assuming a fleet of 100 aircraft). It is used to
evaluate the availability achieved with the Constant k and Cannibalization
policies, also. Note that the Constant k policy yields an availability of
83.61% if no cannibalization is practiced, and the policy optimized under the
assumption of cannibalization yields 85.13% if no cannibalization is
practiced. The policy that is optimized under the assumption of no
cannibalization must have the highest availability when evaluated under the
same assumption. That is why we have underlined the 92.21% availability as
the optimum in the first row of evaluations with no cannibalization in Table
1-4.

Similarly when the cannibalization model of Chapter 8 is used to evaluate
the three policies in the last row of Table 1-4 (Availability with
cannibalization), the policy that was optimized under the same assumption
must be best. We have underlined 96.04% for this reason.

What can we conclude at the system level? 1) The Constant k approach is
inferior to both optimal policies, regardless of whether or not maintenance
cannibalizes; 2) If maintenance does not cannibalize, we should plan for that
and optimize assuming no cannibalization; 92.21% is significantly higher
than 83.61% and 85.13% in the same row; 3) If maintenance does
cannibalize, our availability will be slightly higher if we optimize
accordingly. But, the best availability of 96.04% is not dramatically larger
than either 94.64% or 95.34% in the last row.

Of course, we cannot make sweeping conclusions from a single example,
but it turns out that this phenomenon is often observed: stockage policies
that are optimized for no-cannibalization tend to perform well even if
maintenance does cannibalize, but not vice versa. To understand why, we
must examine the stock levels.

Note that the stock levels in all three policies are most strongly affected
by the demand rates. For a specific cost, the demand rate has the greatest
impact on the Constant k policy - a factor of ten in the demand rate translates
to a factor of ten in the stock level. For a specific demand rate, a factor of ten
in the cost translates to a factor of two or less in the stock levels for the no-
cannibalization and cannibalization policies. Comparing these two optimal
policies, we see that demand rate is more important in the latter case. This is
because we assume that we can consolidate “holes” with cannibalization,
and therefore depth of stockage on high demand items is more important
than breadth.

Before leaving this topic we should recall that Poisson demand was
assumed in Table 1-4. In later chapters, we consider the problems of demand
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rates that do not stay constant, but “drift” up or down over time. This leads
to more variability in the demand process, and greater differences in the
availabilities and stockage policies. Table 1-5 shows the results when
demand has a negative binomial distribution, and variance-to-mean ratios
that increase with the mean, as described in Chapter 4.

All of the availabilities in Table 1-5 are much lower, and the Constant k
policy looks even worse than before. Suppose that maintenance does decide
to practice cannibalization and the stockage policy was optimized under the
assumption of no cannibalization. There is a modest degradation from the
91.63% availability that could have been achieved to 90.65%. Thus, the no
cannibalization policy is quite “robust.” However, if maintenance does not
cannibalize and the stockage policy was optimized under the assumption of
cannibalization, there is a larger degradation, from the 84.62% availability
that could have been achieved to 79.90%. The cannibalization policy is less
robust. Of course, the differences between availabilities will increase
dramatically as we move from 22 items to the hundreds or thousands of
items that compose a typical complex system.

The cannibalization and no cannibalization policies in Table 1-5 are more
sensitive to item cost than the corresponding policies in Table 1-4; both are
about equally sensitive to differences in demand rates.

1.12 Summary

The system approach is superior to the item approach for managing
support of equipments. Not only does the system approach provide
management with some assurance about the availability levels that should be
attained, but any specified availability is achieved at dramatically lower
investment. This has been demonstrated repeatedly both in computer
simulations and actual field tests over a period of 40 years.

We have seen that the explanation for these improvements is that the
protection level, k, should be a variable. It depends on unit cost, echelon, and
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indenture. It also depends on whether cannibalization is practiced or not.
However, we need never calculate the k values, because the optimal stockage
policies are determined directly from the algorithms derived in this book.

1.13 Problems

1. In the case of known, constant demand discussed in Section 1.4, write
an expression for the total annual costs due to ordering and holding
inventory. Find the minimum cost by differentiating with respect to Q (the
economic order quantity) and setting the result to zero, thus deriving
Equation 1.1 for the optimal Q. Plot the two cost terms (annual costs of
ordering and annual costs of holding inventory) as functions of Q; then plot
the sum of the two costs, the total cost. What is the relationship of the two
cost terms at the optimal value of Q? Suppose that c (the cost of the
item) = $1500, and m (the mean annual demand) = 1. Since any optimal Q
up to 1.49 will round to 1, use that Q to determine the maximum value of
order cost, under which the optimal policy is one-for-one replenishment.
Use several larger values of m as well. (See Problem 12 of Chapter 2 for the
impact of probabilistic demand).

2. The Constant k policy in Table 1-4 corresponds to a k = 0. Show that
the k values for the no-cannibalization policy are -1, 1, -1.26, and 1.26 for
the four groups of items. Thus the protection levels are higher for the lower-
cost items. Find the implied k values for the cannibalization policy in Table
1-4.



Chapter 2

SINGLE-SITE INVENTORY MODEL FOR REPAIRABLE
ITEMS

It is better to know nothing than to know what ain’t so.
-Josh Billings

2.1 Chapter Overview

In this chapter we develop the basic model for a single operating base.
Our objective is to develop a curve showing system availability for a fleet of
aircraft as a function of optimal spares investment over a group of items. Our
assumption here is that each item is equally important, and that a backorder
for any item is equally serious in that an aircraft is grounded. Remember that
a base backorder implies there is a “hole” in an aircraft when the items
needed are all first-indenture items. We assume that cannibalization is not
performed to consolidate backorders onto the smallest number of aircraft. (In
Chapter 4 we relax the assumptions that all items are first-indenture and in
Chapter 8 cannibalization is considered.)

We begin by presenting formulas for the mean and variance of any
probability distribution. Then the Poisson probability distribution is
introduced. This is followed by Palm’s theorem, which is crucial to
estimating the probability distribution for the number of units of an item in
repair at a random point in time. We define expected fill rate and expected



backorders, two measures of item performance, and show how these can be
calculated from the probability distribution of the number of units in repair.
This material was originally presented in Feeney and Sherbrooke (1966).
System performance measures such as availability are defined also. Then we
develop the single-site model and show how to compute an optimal curve
relating investment cost to expected system backorders. It is shown that the
maximization of availability is obtained by the minimization of expected
system backorders using a derivation by Smith, Fisher, Heller (1972). Thus,
the optimal curve for investment cost versus expected backorders can be
transformed immediately into an optimal curve for investment cost versus
expected system availability. Each point on the optimal system availability-
cost curve corresponds to a set of stockage policies - a stock level for every
item.

2.2 Mean and Variance

Let X be a random variable and Pr{X = x} designate the probability that
the random variable X takes on a specific value x from some unspecified
probability distribution. A requirement for a probability distribution is that
Pr{X = x} is non-negative for any x and the sum of probabilities over all x
equals one. In this book we shall be concerned primarily with probability
distributions where X is a discrete random variable taking on values 0, 1, 2...
We use the notation E[X] to represent the expected value or mean1 of the
random variable X, and it is defined as:

We will need a measure of the spread of the X values around their mean
as well. The expected value of this dispersion around the mean is called the
variance:

We use the term expected to indicate the probabilistic weighting of all possible outcomes;
the expected value of a quantity is also called the mean. The term average is used for an
observed or measured quantity, but it is also a synonym for mean.

1
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where the first term on the right-hand-side, is the expected value of
also known as the second moment of X, defined similarly to Equation 2.1

as

and the second term is just the square of the mean from Equation 2.1. From
the definition of the variance in Equation 2.2 as a sum of squares, it is easy
to see that the variance is always non-negative for any probability
distribution.

2.3 Poisson Distribution and Notation

The Poisson distribution, p(x), is given by:

where the mean, E[X], from Equation 2.1 is found to equal mT. We will find
it convenient in this book to define m as the average annual demand and T as
the average time period measured in years. Of course, the Poisson
distribution is unaffected by the time unit used for m and T, because the
mean depends only on their product. The variance, Var[X], from Equation
2.2 is mT, also. It is shown in Section 4.1 that when the time between
demands is given by an exponential distribution (also called a Poisson
process), the number of demands in a time period of any fixed length is
given by the Poisson distribution. The exponential distribution is the
“memoryless” distribution in which the time of the last demand has no
influence on the time of the next demand. Since random failures are the
primary type for which our models are designed, we shall use the Poisson
extensively. Later we will consider Poisson processes whose mean changes
over time1, as well as items whose failure is related to wear-out phenomena.

1 This is called a Poisson process with non-stationary increments or a non-homogeneous
Poisson process in the literature. We will use the former term to indicate cases where the
mean changes; when we refer to a Poisson process without qualification, this indicates a
process with stationary increments. A process refers to how something evolves over time.
We also use the term state probabilities to refer to the number of demands over a specified
period of time (states of 0, 1, 2, . . . etc.). There is some confusion because a Poisson
process leads to Poisson state probabilities; a Poisson process with non-stationary
increments leads to state probabilities that can be approximated by a negative binomial
distribution, as shown in Section 4.8.

Single-Site Inventory Model for Repairable Items 21



Because the Poisson distribution is fundamental to much of our analysis
throughout the book, we use the mnemonic p(x) for the Poisson probability
density function. When we need to differentiate between Poisson
distributions with different means, we use the notation p(x|mT) to indicate
that the Poisson distribution (or other probability distributions to be defined)
is “conditional” on the parameters to the right of the vertical bar. A complete
list of variables is provided on pages xv-xviii.

2.4 Palm’s Theorem

The cornerstone of repairable item inventory theory is a queueing theorem
of Palm’s (1938). Its importance is that it enables us to estimate the steady-
state probability distribution of the number of units in repair from the
probability distribution of the demand process and the mean of the repair
time distribution.

PALM’S THEOREM. If demand for an item is a Poisson process with
annual mean m and the repair time for each failed unit is independently
and identically distributed according to any distribution with mean T
years, then the steady-state probability distribution for the number of
units in repair has a Poisson distribution with mean mT.

This is sometimes called the infinite channel queueing assumption,
because there is really no queueing or interaction in the repair times of the
several items. Nevertheless, the theorem is remarkable in that it is
unnecessary to measure the shape of the repair distribution. For any
specified mean time T, regardless of the distribution, the steady-state
probability distribution for the number of items in repair is Poisson with
mean mT. The theorem is proved in Appendix A.

From the logistician’s viewpoint this is an extremely important result,
because there is no need to collect data on the shapes of the repair
distributions.

2.5 Justification of Independent Repair Times and
Constant Demand

How can we justify the modeling assumption that there is no interaction
in the repair times of the several items? Obviously the modeling is simplified
by this assumption because it lets us use Palm’s theorem, but is this
reasonable?

Let’s consider the “physics” of the repair process. When an item is
brought into the repair shop, a common procedure is to take it to a test stand
for diagnosis. The test stand and the repairman are capable of handling a
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number of different items, so that if we really want to measure the repair
queueing that may take place, we must consider the entire group of items
that compete for the test stand and the repairman. The problem is
complicated by the fact that different types of failures on a given item may
require a different test stand/shop and a repairman with different skills. Was
it an electrical system failure? Or was it related to a mechanical problem
such as a broken connector pin? Perhaps the failure is in the hydraulics
system rather than in the electrical system.

The problem is further complicated by the fact that items are not
necessarily fixed on a first-come, first-served basis. An item that is
grounding an aircraft is going to be put at the head of the repair line. In
effect, we need to model the repair shop management process as well. Thus,
if we want to model the shop in detail, we have a very complex problem.

Even if we can’t model the repair queueing exactly, can we determine
whether our assumptions of independence of repair times lead to optimistic
or pessimistic results? In the real world some queueing does take place, and
our model would understate the real repair delay. On the other hand in those
cases of greatest interest where there is a “hole” in an aircraft for the item,
maintenance management is going to expedite repair and our model will
overstate the repair delay.

While these phenomena tend to offset each other, it is probable that the
net result of the independent repair time assumption is to understate
backorders. Simulation is of limited utility in estimating the error, because it
is difficult to replicate management behavior in a computer. Furthermore,
different managers will behave differently. In fact our model does include
delay, because the actual man-hours spent repairing an item are usually a
small fraction of the average repair time. Most of the time the item is waiting
for something: parts, test equipment, maintenance personnel. What we have
not modeled are the detailed queueing interactions. While it might be nice to
have a more sophisticated model, we must keep in mind that the data are
estimated values with substantial error - not physical constants like the speed
of light which can be measured with great precision. We believe that the
assumption of independent repair times is a reasonable approximation, and
this is reinforced by over forty years of usage.

Gross (1982) does model the queueing process for finite servers when
repair times have an exponential distribution. He derives expressions for
expected fill rate and expected backorders, and makes comparisons with the
infinite channel assumption. His theory will be more accurate than ours in a
case where there are a fixed number of test stands, and they are dedicated to
a particular item. In effect the finite server model assumes there is no need to
model maintenance management, because the only delays are for test
equipment. This implies that once an item is on the test stand, it stays until it
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is repaired, regardless of the type of failure or broken parts. These
assumptions and the restriction to exponential repair times seem less realistic
in our application than that of independent repair times. For these reasons we
will not embed the Gross theory in our modeling below.

Another important assumption of Palm’s theorem is that the average
annual demand, m, stays constant. But, when aircraft are grounded, the real
demand rate decreases; for example, if 25% of the aircraft are grounded, the
demand rate will be 25% less. Although this is a mathematical difficulty, it
does not affect the logistics application significantly. This is because we will
be interested in stockage policies that produce high availabilities, such as
90%, for the fleet of aircraft. Thus, the error in assuming a constant demand
rate will be on the order of 10%, well within the accuracy limitations of
logistics data.

The assumption of a constant demand rate will tend to overstate
backorders, tending to counteract to some extent the independent repair time
assumption which probably understates backorders.

2.6 Stock Level

Our inventory theory objective is to compute optimal stock levels for
each item. What is a stock level, anyway? It can be thought of as the total
number of spare units of the item that we want to procure in initial
provisioning. Consider one item at a single base where we assume each
failed unit of the item can be repaired in a time drawn from a probability
distribution with mean T. Assume for the moment that the item can always
be fixed (no condemnations).

How does the stock level, s, relate to the quantity on the shelf at the base?
There will be times when all s spares are on the shelf in good condition. At
other times there will be units undergoing repair, which results in less than s
on the shelf. There may be times when there is nothing on the shelf, and we
have outstanding backorders for customers who could not be satisfied. At
these times we will have even more than s in repair. (Sometimes the stock
clerk with limited experience is misled into thinking that a stock level of s
indicates that there should always be s units on the shelf).

Since all s spare assets must be somewhere, we can write a stock balance
equation that is the basis for all of our analysis to come.1

1 The quantity s in Equation 2.5 is called the inventory position in many texts. The inventory
position is not a constant unless the order quantity, Q, equals one.
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The stock level, s, is a constant when the order quantity is one and the
reorder point is s - 1. The number of units of stock on hand, (OH), the
number of units of stock due in from repair and resupply, as generalized
below, (DI), and the number of backorders, (BO), are non-negative random
variables. Any change in one of these random variables is accompanied by a
simultaneous change in another. For example, when a demand occurs, the
number due in from repair increases by one. If the stock on hand is positive,
it is decreased by one; otherwise, the backorders increase by one. In either
case the equality is maintained. When a repair is completed, reducing DI by
one, the backorders are reduced by one or, if there are no backorders, the on
hand balance is increased by one. Again the equality is preserved.

The simplicity of Equation 2.5 is due to the fact that the economic order
quantity, Q, for the batch size to repair equals one. This is because these
repairable items tend to be high-cost, and low demand at a base as discussed
in Chapter 1. Because of this one-for-one repair, the reorder point (or the
asset position at which we send an item to repair) is s - 1. In this chapter we
assume that all units of each item are repairable at base, and thus the due-ins
equal the number of units in base repair; later when we generalize to multi-
echelon, the due ins are the sum of units in base repair and those in resupply
from the depot, but Equation 2.5 is still valid.

The literature on inventory theory sometimes uses the notation (s, s)
inventory policy to indicate that when the inventory position (on hand plus
on order minus backorders) drops to s, an order should be placed for s - s
units. That is why the repairable item inventory policy is called (s-1, s).

Equation 2.5 is critical to the theory to be developed. We will derive the
probability distribution for the number of units in repair. That knowledge in
combination with a specified stock level, s, determines both the probability
distribution for stock on hand and the probability distribution for backorders.
We are able to determine both distributions, because when the number in
repair is less than s there is stock on hand; when it is more than s, there are
backorders.

2.7 Item Performance Measures

As mentioned in Chapter 1, there are two principal measures of item
performance: fill rate, the percentage of demands that can be met at the time
they are placed; and backorders, the number of unfilled demands that exist at
a point in time. Whenever we are unable to fill a demand, a backorder is
established. The backorder lasts until there is a resupply or a failed item is
repaired (a due in, DI, is satisfied). These two measures are related, but
differ in very important ways. Fill rate is concerned only with what happens
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at the time a demand is placed. Backorders measure the number of demands
that have not been satisfied at any point in time.

Our interest is in the expected values of these measures. Thus we want to
estimate these quantities from the stock level, s, and the steady-state
probabilities for the number due in (in repair or resupply). Regarding fill
rate, there will be a fill if the number due in is s - 1 or less, because that
implies there is stock on hand. Whenever the number due in is s or more,
there is no stock on hand. Thus, if we designate the expected fill rate as
EFR(s):

where the Pr{} terms are the steady-state probabilities for the number of
units of stock due in. (For the time being, think of these as Poisson
probabilities with mean mT as given by Palm’s theorem. Later we use other
probability distributions as well.) Note that if s = 0, the expected fill rate is
zero. As s increases the fill rate approaches one. Typically the expected fill
rate is multiplied by 100 and given as a percentage.

A similar exercise will be used to estimate the expected backorders.1

Suppose that there are s + k units of stock due in at a random point in time;
then from Equation 2.5 there are k backorders. The expected number of
backorders, EBO(s), is thus:

The expected number of backorders is a non-negative quantity. Note that
when s = 0, Equation 2.7 becomes identical to Equation 2.1 for the mean of a
distribution. Thus, EBO(0) = E[X].

1 The number of backorders is defined as: B(X|s) = (X - s) if X > s
= 0 otherwise

where X is the random variable for the number of units due in and s is the stock level. We
are concerned only with the expected number of backorders, where the expectation is
taken over the variable X, E[B(X|s)], as given by Equation 2.7. Since this is no longer a
function of X, we use EBO(s) to simplify the notation in the text. We used a similar
simplification for expected fill rate, EFR(s) and later for the variance in backorders,
VBO(s).
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It is important to appreciate the differences between fill rate and
backorders. If the stock level on an item is increased, the fill rate will
increase and the backorders decrease, but it is possible to have a system with
a low fill rate and low backorders. This could happen if the stock levels are
low, but the repair facility is very responsive.

The converse situation of a high fill rate and high backorders doesn’t
arise. If backorders are high on average, then stock on hand will tend to be
low, and a low on hand balance produces a low fill rate.

Fill rate measures only what happens when demands occur, whereas
backorders measure the duration of shortages. A comparative example over a
period of a year is shown in Figure 2-1. Fill rate is the number of downward
transitions from a positive on hand to a positive or zero on hand (fills)
divided by the total number of downward transitions (demands). In Figure 2-
1 there was a unit of stock on the shelf when the first demand occurred at .15
years, resulting in a fill. There was nothing on the shelf at .25 years when the
second demand occurred, and one backorder at .5 years when the third
demand occurred. Since the last two demands could not be filled, the
average fill rate over the year was 33%. The average backorders of 1 are
computed from the shaded (negative) area, divided by the length of time, in
this case one year. (The term “average” is used rather than “expected” in
Figure 2-1, because these are computed over a year rather than over the
probability distribution of demand. As the length of time increases, the
average becomes a better estimator for the expected value.)

In fact the average backorders can be calculated in either of two
equivalent ways: (1) consider a long period of time, add up the number of
days that each backorder has been unfilled, and divide it by the total length
of the time period under consideration (as in Figure 2-1); (2) pick a number
of different times at random and average the number of backorders observed
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at these times. Note that the backorder measure weights one backorder of t-
days duration as equivalent to t backorders each lasting a day.

Inventory managers tend to like fill rate, because it is easy to measure.
They need only consider what happens at the time each demand is placed -
was it filled or not. Furthermore, the numerical value has meaning to them.
They may know that a 95% fill rate is acceptable in their application, but
lower values result in a lot of customer complaints.

Backorders are harder to compute, because it is necessary to keep track
of the number of customers who still have a shortage (imagine Sears trying
to estimate this quantity). The numerical value is less meaningful to the
manager, e.g. how satisfactory is an average of .1 backorders per item?

Even though backorders tend to be less intuitive for the inventory
manager, they turn out to be more useful to us because system availability is
maximized when the sum of backorders across items is minimized. This is
shown below in Section 2.14. From the perspective of the system manager
who is trying to fly airplanes, availability is the most meaningful measure.
The fact that the model uses backorders internally in the calculation is
irrelevant to the system manager. Though we minimize backorders in the
process of maximizing availability, we can and will calculate fill rate also, so
that inventory managers can monitor inventory performance with a more
familiar measure.

Are there other item measures of interest to us? The terms service rate,
ready rate, and probability of sufficiency are sometimes encountered.
Service rate is usually the fill rate, but it some applications it measures
something else; we will not employ the term in this book, because of its
ambiguity. We defined the term ready rate in Feeney and Sherbrooke (1966)
to be the probability that an item observed at a random point in time has no
backorders. Equation 2.6 is the computational formula, except that the
summation is from 0 to s. When s = 0 the ready rate is positive, even though
the fill rate is zero. Since the ready rate is seldom used as a logistics
measure, we will not employ it below.

The probability of sufficiency is mathematically identical to ready rate,
and we do use it in Section 6.5, but in a context where there is no repair and
resupply is periodic. In that situation, the probabilities are calculated for the
number of demands during the resupply cycle, not for the steady-state
probabilities for the number of units in repair. (Note that expected fill rate or
expected backorders could be used as measures in a problem with no repair,
also. Equations 2.6 and 2.7 respectively would be correct if demand
probabilities are used.) If demand is Poisson and there is no repair, the mean
is computed over the resupply cycle time. If demand is Poisson and Palm’s
theorem applies to the repair process, the mean is computed over the average
repair time.
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2.8 System Performance Measures

Our primary measure of system level performance is availability, the
expected percentage of a fleet of aircraft that is not down for spares at a
random point in time. If there is only one aircraft or end item, the availability
is the percent of time that the aircraft is operational. As in the item measures
of performance, we will be interested in the expected value of availability in
the steady-state where it does not vary. In Chapter 6 we will consider an
application to the space station, where resupply is periodic and availability
declines between resupply missions. Even though the availability is different
at each time t in the cycle, the availability we calculate for a specific value of
t is an expected availability in the sense that it is the percent of cycles where
the station is not down for spares at time t.

Another measure of system performance that is sometimes used is the
probability of y or fewer aircraft down, where y is a specified parameter. The
probability of y or fewer aircraft down is more concerned with the ability to
do specific things with the aircraft than with a general capability. For
example, it has been used to a great extent in wartime scenarios where the
operational planners have a fleet of N aircraft and they want to be able to
launch a wave with at least N - y of the fleet. This performance measure is
particularly convenient analytically in applications where cannibalization is
practiced, as discussed in Chapter 8. This has sometimes been called the
confidence level approach or the direct support objective (DSO). We will not
use these terms.

2.9 Single-Site Model

We are now ready to develop the theory for a single site to obtain the
optimal curve for system availability versus investment cost. This is done by
developing an optimal curve for total backorders versus system cost, and
then showing that minimization of the sum of the backorders on all items is
equivalent to maximizing availability.

To simplify the exposition we start with an example comprising two
items, both with Poisson demand as defined in Equation 2.4. The items are
shown in Table 2-1, together with the expected backorders for various stock
levels, as computed from Equation 2.7.

The term pipeline was introduced in Chapter 1. It is a measurable
quantity, the number of units of the item in repair. Note that m is the average
annual demand and T is the average repair time in years, so that the average
pipeline, is dimensionless and Because of Palm’s theorem, we
know that the average pipeline is the mean of the Poisson distribution used
to calculate the expected backorders.
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Let’s begin by computing a single point on the optimal backorder-versus-
cost curve. Suppose that this should be .2 or fewer total backorders. By trial
and error we can find a couple of admissible combinations of stock levels on
item 1 and item 2 as is shown in Table 2-2.

The upper line in Table 2-2 is a better solution, because it has fewer
backorders and costs less. It is easy in this case to verify by trial and error
that there is no cheaper combination of the two items that has system
backorders of .2 or less.

2.10 Marginal Analysis

The trial-and-error procedure is not an efficient way to develop an
optimal backorder-versus-cost curve. Instead we will use a technique called
marginal analysis, and prove that it produces an optimal curve. The
technique is called marginal analysis because at each step in the algorithm
we need look only at one number for each item to determine the next item
that should be bought. The marginal or incremental value provides all the
information necessary on each item. While it is likely that the technique has
been used for many years, the earliest published reference appears to be O.
Gross (1956).
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Sometimes a name impedes communication. The late Murray Geisler, an
active logistician for many years, tells the story of briefing an Air Force
general in the Strategic Air Command (SAC) about the marginal analysis
technique. The general objected to the technique saying that SAC would
never accept anything that was “marginal”. Recent references sometimes
refer to the technique as the “greedy heuristic”, hardly an improvement.

We will illustrate the use of marginal analysis, and then justify its
optimality. Table 2-3 repeats the expected backorder columns from Table 2-
1 plus an additional column for each item - the marginal decrease in
expected backorders divided by the item cost (in thousands of dollars).

This is the increase in system effectiveness per dollar (“bang per buck”),
obtained when an additional unit of that item is selected for stockage. We
will call it the delta value to emphasize that it measures the change.

The marginal analysis technique for generating the optimal system
backorder-versus-cost curve starts at the top number in each of the delta
columns and selects the item with the larger value. It then moves to the next
lower value in the delta column of the selected item and compares that with
the original delta value for the other item. At each step we buy another unit
of that item with the larger value, and move to the next lower value from that
column for the next comparison. The total system backorders at each point is
the sum of the two backorder values next to the last delta values selected.

Thus, in Table 2-3 the total expected backorders EBO(s) before any stock
is purchased are 1.000 + 4.000 = 5.000. The deltas for the first spare of item
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1 and item 2 are .126 and .982 respectively, so we select item 2 and our total
backorders drop to 1.000 + 3.018 = 4.018. We move down to the second
spare of item 2 and now compare deltas of .126 and .908. Again item 2 wins
and after adding the second spare of item 2 the total backorders are now
1.000 + 2.110 = 3.110. The first six comparisons all result in the selection of
item 2, after which the delta of .126 for item 1 exceeds .111 for the seventh
spare of item 2, so the first unit of item 1 is added next. The result is the
system backorder versus cost curve as displayed in Figure 2-2. Note that at a
cost of $17,000 the total backorders of .189 agree with the trial-and-error
solution that we found in Table 2-2.

Figure 2-2 is not a continuous curve, but a set of points. The horizontal
distance between adjoining points is determined by the cost of the item that
is selected at that step of the iterative procedure. Sometimes the step size is
1, sometimes it is 5. How do we find the points in between?

We don’t. This is a crucial distinction between solving a mathematics
problem and a logistics problem. A mathematician would use a technique
like dynamic programming, discussed in texts such as Hillier and Lieberman
(1980), to find solutions for costs of 7, 8, 9, 10 and the other integral values
(even the mathematician can’t find solutions for non-integral values such as
7.3 and 9.8). We show below that all of our solutions are identical with those
generated by the mathematician, but the mathematician will find solutions
for intermediate points as well.

The logistician is a more practical character who realizes that we aren’t
really interested in two items, but many - perhaps thousands that comprise
our system. Management may have said, “Don’t spend more than a million
dollars on spares”, but that doesn’t mean that an optimal solution costing
$5000 less is non-responsive. Or if the logistician is told to achieve an
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availability of 95%, will he or she be chastised for determining the optimal
spares that are expected to produce a 95.2% availability? In logistics
applications we know that all of our data are estimates: demand rates, costs,
lead times, repair times, probability of local repair capability (versus depot
repair), scrap or condemnation rates, etc. We know that we will never hit the
projected availability or cost precisely in the real world, regardless of the
degree of mathematical sophistication that we employ.1

2.11 Convexity

Now we need to prove that marginal analysis produces optimal solutions.
Note that in each of the two delta columns in Table 2-3, the numbers
decrease steadily. Mathematically a function with this property is called
convex, because that is the shape when viewed from the x axis.

A function h(s), defined for discrete nonnegative s, is said to be convex if
the first difference,

is less than or equal to zero and the second difference

is greater than or equal to zero. To prove that expected backorders is
convex for any probability distribution, Pr{.}, and any argument s, we need
only substitute Equation 2.7 into the definition:

1 If an expensive item is bought at the last iteration, there may be a large overshoot of the
target. This can be reduced by taking the stock levels on that item after the overshoot as
minimum stock levels and rerunning the computation. The procedure can be repeated.
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Since the expected backorder function is convex, the marginal analysis
values {EBO(s - 1) - EBO(s)}/c, where c denotes the cost of the item, are
non-increasing. The system backorders in Figure 2-2 are convex also; it is
easy to show that the sum of convex functions is convex. (Problem 7).

Suppose that the backorder functions were not convex. The marginal
analysis procedure of looking at the next improvement in backorders per
dollar for each item could not guarantee an optimal solution. Consider
Figure 2-3 and some arbitrary function h(s). As drawn, h(s + 1) is not a
convex point, because it lies above the line segment When the stock
level is s and we examine the improvement of moving to s + 1 using
marginal analysis, it is only If we had looked two steps ahead and
considered moving directly to s + 2, this item would have looked more
attractive. We would have done the right thing, but only because we
modified the marginal analysis.

The problem with marginal analysis that looks only one step ahead is that
there may be other items whose are between and Those item stock
levels will be augmented prematurely. Of course, after we have moved from
s to s + 1 on this nonconvex item, the next improvement to s + 2 will look
very attractive because is very large. At this point the overall solution
has returned to optimality, though we cannot guarantee optimality at all
intermediate points.

2.12 Mathematical Solution of Marginal Analysis

Now we proceed to the formal justification of the marginal analysis
procedure. Its purpose is to show that a standard mathematical approach to
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this problem yields the same solution we discussed above. The mathematical
statement1 for two items is:

subject to:

for a series of total system cost targets, C = 1, 2, 3, . . .
The standard procedure for minimizing a function subject to a constraint

is to write the objective function from Expression 2.10 plus a Lagrange
multiplier, times the left-hand side of the constraint equation (Equation
2.11). Then if and were continuous variables, we would take the partial
derivative with respect to and set it equal to zero; and with respect to
and set it equal to zero. These are the necessary conditions for a minimum.

The analogue of the derivative for discrete variables is when the first
difference satisfies:

or, equivalently

and a similar equation for But, these are precisely the quantities used in
the marginal analysis. For any specified value of the stock level that
satisfies Equation 2.12 and for an analogous equation yield a point on the
cost-backorder curve of Figure 2-2.

The conditions underlying Equation 2.12 are shown in Figure 2-4. For a
fixed value of the optimal stock level for each item i has the property
that the slope of the dashed line is less than or equal to the

and the slope of the dashed line is greater. (All slopes
are negative). is a positive quantity and as it gets smaller, the stock levels
increase. By contrast, the traditional item approach is to estimate as the

1 There are two subscripts on each term; the first refers to the parameters of the underlying
probability distribution for the item and the second refers to the stock level of the item.
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annual holding cost rate divided by the annual cost of a backorder and find a
single solution (see Problem 12).

These are the necessary conditions for a minimum. The sufficient
conditions are satisfied by the convexity of the expected backorder functions
(this is analogous to a continuous variable’s second derivative being positive
everywhere).

Note that the problem statement in Equations 2.10 and 2.11 could have
been written for an arbitrary number of items, I. At each step of the marginal
analysis there would be I quantities to compare, but the optimization
procedure is still very efficient.

It is important to understand the graphical interpretation of Figure 2-2
and its relationship to the marginal analysis procedure. The absolute values
of the slopes of line segments connecting adjacent solutions in Figure 2-2 are
the delta values selected in the marginal analysis. These lines form the
“convex hull” of the solution. The optimal solution for total cost of $7000,
$8000, $9000, or $10,000 cannot be obtained with marginal analysis, and
therefore must lie above the lines – i.e., not on the convex hull.

For example, in the problem discussed in Table 2-3 the optimal solution
for a cost of $7000 is easily found by trial and error to be 7 units of item 2.
The system backorders for that solution are found from Table 2-3 to be
1.085. This is larger than the value of 1.067 obtained for a cost of $7000 by
interpolating on the line segment that would connect costs of $6000 and
$11,000 in Figure 2-2.
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In summary, the mathematician may want a solution for every integral
value of cost. The logistician realizes this is unnecessary for his problem
with thousands of items. Furthermore, the logistician knows that his
marginal analysis procedure will find all of the “efficient” solutions on the
convex hull.

2.13 Separability

One characteristic of the problem is key to the marginal analysis solution
method. The objective function that we minimize is separable. In particular,
the objective function is the sum of the backorders on all items. Thus when
we take first differences on each decision variable, the optimal conditions
involve only the backorders on item i. Had the objective function been more
complicated, the optimal conditions for item i from Equation 2.12 might
have involved other items and prevented us from using marginal analysis.

A function is said to be additive separable if
where is a function of only and is a function of only. In the

next section we consider an objective function that is not additive separable,
but which can be converted into such a function by a logarithmic
transformation.

2.14 Availability

Logisticians combine the word “availability” with three different
adjectives -inherent, achieved, and operational - to measure different things.
In order to understand availability in this book, it is critical to understand
these usages.

where MTBF is the mean time between failures and MTTR is the mean time
to repair. Note this is a measure of hardware reliability and maintainability
and has nothing to do with spares.

where MTBM is the mean time between maintenance, MCMT is the mean
corrective maintenance time, and MPMT is the mean preventive
maintenance time. The MTBM may be smaller than the MTBF, because it
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makes allowance for periods when the system will not be available due to
preventive maintenance activities. While achieved availability is an
improvement over inherent availability, it is a similar measure that relates to
hardware considerations and excludes spares delays. Let us turn to the third
type of availability, operational availability.

where MDT = mean downtime due to spares, maintenance (corrective and
preventive), and other delays resulting from maintenance action.
Operational Availability is what this book is about. A system is operational
if it is not down for either maintenance or supply. For calculational purposes,
we will find it convenient to compute operational availability as the product
of two availabilities, maintenance availability (identical to achieved
availability in Equation 2.14) and supply availability where

where MSD is the mean supply delay. The mean delay time in Equation 2.15
is the sum of the delay times in Equations 2.16 and 2.17, i.e. MDT = MCMT
+ MPMT + MSD.

If either maintenance availability or supply availability is high, then the
product is a good approximation to operational availability. For example, if
maintenance availability and supply availability are each 95%, the product is
90.25% (after division by 100). A more precise calculation of operational
availability use Equation 2.15. This requires an estimate of the components
of MDT from Equations 2.16 and 2.17. Thus, using the maintenance
availability of 95% in Equation 2.16, we find (MCMT + MPMT)/MTBM as
.0526. Similarly, we use the supply availability of 95% in Equation 2.17 to
estimate MSD/MTBM as .0526. Then the operational availability from
Equation 2.15 is 1/(1 + .1052) = 90.48%. The product of Equations 2.16 and
2.17 understates operational availability by a larger amount as the
availabilities decrease. Thus, if maintenance availability and supply
availability are each 90%, the product is 81% (after division by 100),
whereas the more precise calculation yields 81.8%. The more precise
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computation is easy to perform and is recommended if at least one or the
availabilities is low.

We break operational availability into these two availability components,
because it simplifies computation. Once the maintenance manning, test
equipment, and preventive maintenance policy have been defined, the
maintenance availability can be calculated. It is a single number that depends
on the mean time between maintenance, MTBM, but is independent of the
stockage policy. The calculation of maintenance availability is addressed in
Section 5.16 for the case of continuous resupply and in Section 7.3 for
periodic resupply.

Supply availability is independent of the maintenance policy, but it is not
a single number. We compute supply availability as a function of the
stockage policy, and it is this optimal availability-cost curve that we
compute below. Whenever we use the term availability in this book without
a qualifying adjective, it is supply availability to which we refer.

In Chapter 1 we defined cannibalization to be the consolidation of any
line-replaceable unit (LRU) “holes” onto the smallest number of aircraft.
Now we show that the minimization of total backorders is almost equivalent
to maximization of availability when cannibalization is not practiced. Note
that logisticians use the term “availability” to denote an expected value (over
the probability distribution of demand), so we will not use the term
“expected availability” here1. Availability, A, the expected percent of the
aircraft fleet that is not down for any spare is given by the following product:

with the understanding that A = 0 if for any item i. is the
number of occurrences on an aircraft of the ith LRU (quantity per aircraft)
and N is the number of aircraft. The logic is that there are locations of
LRU i in the fleet of aircraft, the probability of a hole in any of these
locations is (the probability cannot exceed one). An aircraft
will be available only if there is no hole for any of the occurrences of LRU
i (which accounts for the exponent), or for any other LRU (which accounts
for the product over i).

Note that Equation 2.18 was computed on the assumption of
independence of failures across aircraft and no cannibalization. When the

1 In Chapter 6 we consider periodic resupply. Availability is still an expected value over the
demand probabilities, but availability decreases over the cycle between resupply missions.
We use the term “average availability” in that section to denote an expectation over time.
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fleet size N is greater than one, the availability is the expected percentage of
the fleet that is operational; we can also think of the availability as the
expected percentage of time that any aircraft in the fleet is operational.
Taking logarithms in Equation 2.18, and remembering that the logarithm of a
product equals the sum of the logarithms yields:

where the last approximation comes from the power series expansion of
ignoring terms in and higher powers of a since a

will be small in the cases of interest.1 For example, if a is less than .1, the
error of dropping all the terms in and higher is only about .005. Usually
we are interested in availabilities of at least 80%, which implies that the
value of a will be much smaller than .1; a value of a = .1 on a single item
brings the availability down to 90% even before the impact of other items is
taken into account.

Thus the logarithm of availability is a convex, additive separable function
of the item backorder functions. Since a function and its logarithm achieve
their maximum at the same point, we can maximize the logarithm of
availability in Equation 2.19 and this is equivalent to maximizing availability
itself. Furthermore, Equation 2.19 shows that this maximization is
accomplished by minimizing the sum of item backorders. Figure 2-5
showsthe optimal availability vs. cost curve, which is obtained from the
optimal backorder vs. cost curve of Figure 2-2 by substituting the expected
backorders into Equation (2.18), where we have assumed that N = 10 and
each For example, at a cost of 0 the availability in Figure 2-5 is just
the product 100(1 – 1/10)(1 - 4/10) = .54.

It is important to emphasize that each discrete point on the optimal
availability vs. cost curve in Figure 2-5 is the maximum availability for the
specified cost, and equivalently the minimum cost for that availability.

The power series expansion is valid for a<1 when the logarithm is taken to the base e =
2.718. The logarithm of a number is the exponent to which the logarithmic base is raised.
Thus to find the logarithm of 100 to the base e, we need the value a satisfying It
is clear that any number B larger than 100 must have a logarithm, b, larger than a, showing
that a number and its logarithm achieve their maxima at the same point. Furthermore,
since or log (100B) = a + b, the logarithm of a product is the sum of
the logarithms.

1
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2.15 Summary

We have shown how Palm’s theorem can be used to calculate the steady-
state probability distribution for the number of units of an item due in from
repair. Note that this distribution does not depend on the probability
distribution for the time to repair an item, but only the mean of the
distribution. Knowledge of the steady-state distribution for the number of
units in repair enables us to estimate the probability distribution for stock on
hand and that for backorders. It allows us to compute the fill rate also.

It was shown that minimization of total backorders is approximately
equivalent to maximization of availability. Furthermore, due to the convexity
and separability of the backorder function, we are able to use marginal
analysis to generate the optimal availability vs. cost curve.

The marginal analysis procedure finds all of the efficient solutions on the
“convex hull”. However, there are interior points for intermediate cost
values which can only be obtained by combinatorial procedures such as
dynamic programming. Though these solutions may be of interest to the
mathematician, they have limited significance to the logistician whose
systems may comprise thousands of items.

We showed that operational availability can be computed from
maintenance availability and supply availability. Maintenance availability is
a single number that depends on the maintenance resources, but is
independent of the supply policy. Supply availability is independent of
maintenance resources, but it is not a single number. It is a function of the
supply policy, and it is this optimal availability vs. cost relationship that we
focus on in this book.
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Finally, it is important to remember that each discrete point on the
optimal availability vs. cost curve in Figure 2-5 is the maximum availability
for the specified cost, and equivalently the minimum cost for that
availability.

2.16 Problems

1. Use the Poisson definition from Equation 2.4 and the formulas for
mean and variance in Equations 2.1 and 2.2 to compute their values for the
Poisson distribution.

2. Typically when probabilities are needed to evaluate backorders or fill
rates, we need a series such as Pr{X = x}, Pr{X = x + 1}, etc. Instead of
calculating each probability from the formula in Equation (2.4), find a
recursion formula for the Poisson which for any x expresses Pr{X = x + 1} in
terms of Pr{X = x} and some multiplicative factors. Use the recursion to
show that the Poisson is unimodal, and the relationship of the mode to the
mean.

3. Recalling that EFR(s) is the expected fill rate as in Equation 2.6,
develop the recursion formula for EFR(s + 1) in terms of EFR(s) and
multiplicative terms; and for EBO(s + 1) in terms of EBO(s) and
multiplicative terms. Use the latter recursion to compute the first four values
in Table 2-1 for an average pipeline of 1.

4. Show that fill rate is not convex for small values of s when the average
pipeline exceeds one, by examining EFR(s - 1) - EFR(s). For the Poisson
distribution, find the limiting value at which s becomes convex as a function
of the average pipeline value.

5. Use trial and error to find expected backorder solutions for costs of
$8000, $9000, and $10,000 in Figure 2-2, and show that these are larger than
the values on the line segment of the convex hull in Figure 2-2 at the
corresponding costs.

6. Suppose that there has been a price decrease to $1000 for item 1 in
Table 2-1. Show what changes this produces in Table 2-3 and then obtain a
new cost vs. backorder curve to replace Figure 2-2. Now take these optimal
system backorder values and plot them on a copy of the original Figure 2-2
using the original cost of $5000 for item 1 (this is equivalent to ignoring unit
cost in the marginal analysis, since both items had a cost of $1000). Show
that when unit cost is ignored in the marginal analysis, the new “solution” is
never better and sometimes worse than the original.

7. Show that the sum of two convex functions must be convex. (Hint:
apply the definition of a convex function)

8. Use the table for expected backorders with a mean of 1 from Table 2-3
and the expected backorders with a mean of 10 given below to verify the
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optimality of the no-cannibalization policy in Table 1.4 and the availability.
Also evaluate under the assumption of no cannibalization the availability of
the other two stockage policies.

9. Instead of requiring that each demand be met at the time it is placed to
count as a fill, define a “delayed fill” as a demand that is met within a
specified time interval t or less. Determine if Palm’s theorem can be
modified to accept this change, and the effect on the fill rate and backorder
Equations 2.6 and 2.7. Is this result still independent of the shape of the
repair time distribution? Does this affect the infinite-channel queueing
assumption? As t gets larger what does the delayed fill rate measure begin to
resemble? The answers are given in Feeney and Sherbrooke (1966) and
Section 9.8. See also Chapter 6 where models based on periodic resupply are
considered.

10. The purpose of this problem is to illustrate that unit cost should affect
the stockage policy even when demand is not probabilistic. Suppose that
there are two items, each of which has one demand at the beginning of every
week and each requires four weeks to repair. The unit costs of the two items
are $10 and $100 respectively.

Suppose there are 20 aircraft, each having only one unit of each item. If
we had a budget of $440, we could have 100% availability by filling the
average pipelines. Assuming that cannibalization is not allowed, develop the
optimal cost vs. availability curve for spares budgets between 0 and $440.

11. Develop the optimal cost vs. availability curve up to an availability of
95% for Problem 10 (above) under the same assumptions, except that
demand is Poisson.

12. Schultz (1990) has derived the conditions under which the (s - 1, s)
inventory policy is optimal. Suppose the demand is Poisson with average
demand mT over the lead time, the annual holding cost per item is (the
annual holding cost rate times the cost of the item), and the annual cost of a
backorder is Then one must solve the following inequality for the smallest
value of s satisfying:
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Then the solution s* must be plugged into a second inequality, where the
(s- 1, s) policy will be optimal for any order cost, that satisfies:

For example, if mT = 1, and then s* = 1 from the first
inequality (Equation 2.20). When m = 1, we find from the second inequality
that the (s - 1, s) policy is optimal if

What is the largest admissible value of if and
What is the value of if mT = 10 and m = 10? Contrast
these probabilistic results to the deterministic demand case of Problem 1 in
Chapter 1. In Chapter 5 we develop approximate methods to generalize the
(s – 1, s) assumption.
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Chapter 3

METRIC: A MULTI-ECHELON MODEL

Science is a first-rate piece of furniture for a man’s upper chamber, if he
has sense on the ground floor.

– Oliver Wendell Holmes

3.1 Chapter Overview

In 1966, while at the RAND Corporation, the author developed the
Multi-Echelon Technique for Recoverable Item Control (METRIC) for the
Air Force (Sherbrooke 1968). It extends the single-site model discussed in
Chapter 2. First-indenture items (i.e. parts that are installed directly on
aircraft) are usually repairable (or recoverable), and they tend to be
expensive, with low demand at any particular base. Thus, there is little
batching of repair at the base level or batching of resupply requests on depot
for multiple units of a given item. The one-for-one repair at base or resupply
from depot simplifies the mathematics of the base-depot joint optimization
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problem. It turns out that the inventory problem can be addressed with
results from the queueing theory literature.

The METRIC theory is the basis for a large number of multi-echelon
models used by the several military services. In Chapter 4 we show how to
model the multi-indenture problem (where the repair of first-indenture line
replaceable units (LRUs) can generate demands for lower indenture parts),
and how this can be made more accurate by taking into account the
dependencies between indentures using VARI-METRIC theory. Then in
Chapter 5 the VARI-METRIC theory is applied to the combined multi-
echelon, multi-indenture problem. The mathematical details underlying
METRIC are kept to a minimum in this chapter, because these are provided
in Chapter 5, when we derive the more accurate VARI-METRIC theory.

There are some applications where a repair/resupply request can not be
initiated when a failure occurs. We consider the case of resupply that can
take place only at certain points in time in Chapter 6 when we consider
Space Station Freedom.

3.2 METRIC Model Assumptions

The METRIC theory calculates for every item on a system the optimal
stock level at each of several bases, which may be different in terms of item
demand rates and other characteristics, and the supporting depot. The
objective function is the sum of backorders across all bases, and we know
from the previous chapter that minimization of base backorders is equivalent
to maximization of availability when there is no cannibalization. As in
Chapter 2, we use the system approach where management is presented with
the optimal availability-cost curve.

Before developing the mathematics of METRIC, we want to list the key
assumptions. These assumptions will be violated occasionally in practice,
but they should be true most of the time or a different model should be used.

1. The decision as to whether a base repairs an item does not depend on
stock levels or workload. The assumption is that some fraction of repairs on
each item are within the base capability to repair, because they have the test
equipment, personnel, and other resources. Whenever the base has the
capability, repair is accomplished there regardless of the maintenance
workload. If the necessary spare parts are not available at base, the base is
supposed to requisition the parts from the depot.

2. The base is resupplied from the depot, not by lateral supply from
another base. This appears to be appropriate for setting stock levels, because
the number of lateral shipments is typically small and they are apt to induce
special expediting costs. When lateral supply is ignored, transportation costs
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between depot and bases are not needed, because the total transportation cost
is not a function of the stockage policy. In Appendix B we develop
procedures to evaluate the reduction in backorders that occurs when lateral
supply is allowed. This is employed in the VMetric model of Appendix E.

3. The (s - 1, s) inventory policy is appropriate for every item at every
echelon. The demand rates are sufficiently low and the costs are sufficiently
high that the economic order quantity of Equation 1.1 is close to one. This
means that units of an item are not batched for repair, and that any scrapped
units are reprocured on a one-for-one basis.

Naturally some deviation from these assumptions is allowable. In the
case of repair at the depot, there may be some setup time to install the
adapter on automatic test equipment for the item to be fixed. If the item
demand at depot is moderately high, maintenance management will want to
repair several units of the item in a batch. In such a case the average repair
time used in the model should include the average waiting time before depot
repair is initiated.

Typically the condemnation or scrap rate for first-indenture items is quite
low. The condemnation rate must be considered for procurement purposes,
but we assume in this chapter that an (s - 1, s) policy is used at depot
whereby one unit is procured to replace each condemnation as it occurs. In
Chapter 5 we relax the assumption of the (s - 1, s) inventory policy, and this
is particularly important at depot for lower cost, lower-indenture items with
appreciable condemnation rates.

4. Optimal steady-state stock levels are determined. The assumption is
that over some period of time in the future the number of aircraft or flying
hours will remain fairly consistent. If the factors that contribute to demand
are changing, we may want to compute for the “peak program”, but the stock
levels that emerge are steady-state levels. As discussed in Chapter 4, this
does not mean that the demand rates for each item must be constant.

The original METRIC paper discussed compound Poisson demand, a
generalization of the Poisson where demands occur in clusters. The number
of demands in a cluster is given by a probability distribution such as the
geometric; the probability distribution of time between clusters is
exponential. The Poisson can be thought of as the special case of compound
Poisson where the cluster size is always one.

We do not use compound Poisson processes in this book, because their
“physics” is inconsistent with what we observe in applications. This is
described in more detail in the next chapter, where we note that the
probability distribution for the number of demands in time T, known as the
state probabilities,1 has an observed variance-to-mean ratio that tends to

The term state probabilities is used because the states have discrete values corresponding to1

0, 1, 2, . . . demands
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increase with T. By contrast, the variance-to-mean ratio is constant for
stationary Poisson and compound Poisson processes.

3.3 METRIC Theory

The theory will be developed in two steps: 1) for a single first-indenture
item we develop the theory for optimal allocation of stock levels between the
several bases and supporting depot, i.e we show how to construct an optimal
cost-backorder curve for a single item; 2) we combine all items on a system
using marginal analysis in a manner precisely analogous to the methods used
in Chapter 2. This optimal system cost-backorder curve can be converted
into an optimal system availability-cost curve in the same manner also.

We define the following variables for a single item:

= average annual demand at base j

= average repair time (in years) at base j

= average pipeline at base j

= probability of repair at base j

= average order and ship time from depot to base j

and we use the convention that positive subscripts refer to bases, a 0
subscript refers to the depot. The pipeline at base consists of due ins from
both repair and resupply. At the depot the the due ins are assumed to be in
repair; in Chapter 5 this assumption is generalized to allow for
condemnations and procurement.

As noted earlier, the order-and-ship time is defined to be the time from
placing a resupply request at the base until the item is received from the
depot, if the depot had stock on hand when the resupply request was
received.

Of course, the depot does not always have stock on hand when a resupply
request is received. METRIC computes this depot delay in resupplying
bases, which depends on the depot stock level. Then we can compute the
backorders at each base which depend on the resupply delay from depot and
the base stock level.

First we must calculate the average demand on the depot, and this is just
the fraction of demand that is not repairable at each base, summed over the J
bases:
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We are assuming that the demand is given by a Poisson process, and
using the fact that a sum of Poisson processes is a Poisson process. The
average depot pipeline is and the expected backorders at depot1,

are the expected number of base resupply requests that are
outstanding at the depot at a random point in time. Another way of looking
at this quantity is that it is the average delay added daily to resupply
requests, resulting from the fact that the depot does not always have stock on
the shelf.

Now we can compute the average pipeline for each demand at base j as:

If the item is always base repairable, the average pipeline for base j is
the average number of units in base repair; otherwise, the average pipeline is

because of the order-and-ship time, plus the expected backorders for
base j at the depot due to the fact that the depot does not always have a unit
on the shelf. Note that when the depot stock level is very large, the depot
backorders are zero; when the depot stock level is zero, the average delay
time added to each demand is because failed unit must be received from
a base and repaired. (The depot repair time is assumed to include a time
allowance for shipment from base to depot of the failed unit).

Before leaving METRIC theory, we should note that there are a number
of variables that are not needed in the optimization. Order costs and holding
costs are not needed, because one-for-one replenishment is assumed and this
defines the number of orders and the average stock on hand. Repair costs are
not needed, because we assume that if an item can be repaired, its repair cost
is less than its purchase cost.

3.4 Numerical Example

We illustrate this theory with an example. Suppose that are five identical
bases with Poisson demand and the following parameter values for all

1 Note that this expression for expected backorders is an alternative to the form used in
Equation 2.10 where a subscript on expected backorders was used to indicate the item;
here the vertical line means that information to the right is the given information, namely
the mean of the Poisson distribution.
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= 23.2 demands/year

= .01 years

= .2

= .01 years

= .02531 years

Of course, each data element for a base could differ, but the computation
of the example is simplified when they are identical. From Equation 3.1 we
determine that and                      We start with a depot stock level
of 0 and compute for any base from Equation 3.2:

From this we can calculate the expected backorders, EBO(s), and the first
differences, EBO(s - 1) - EBO(s), in Table 3-1, which is precisely analogous
to Table 2.3. A backorder table for stock levels of 0-2 at any base is shown
in Table 3-1.

The only change from Table 2.3 is that we do not need to divide the first
differences by unit cost to apply marginal analysis, because we are
considering only one item whose cost does not vary by base. In this
particular example where all the bases are identical, the marginal analysis is
even easier to apply because of symmetry. After marginal analysis we find
the first eight points to be as shown in Table 3-2.

The expected backorders with no stock is just the sum of the backorders
at each base with no stock (5 x .7017 = 3.5087). Then the stock level at each
base successively is increased to one, then to two, etc. For example, the sixth
unit of stock optimally allocated goes to base 1 and results in total
backorders of 0.8309. We know this procedure will produce an optimal
solution, because it was shown in Chapter 2 that the backorder function is
always convex.



METRIC: A Multi-Echelon Model 51

In this manner we compute the expected backorders at bases when stock
is optimally allocated to them, conditional on the fact that the depot stock
level was assumed to be zero. We keep track also of the optimal policy that
led to these backorders by noting the base to which each successive
allocation is made.

Now we must repeat the procedure for a depot stock level of 1, which
means recalculating from Equation 3.2. The only change in Equation 3.3
is that EBO(1|2.349)] = 1.444 replaces EBO(0|2.349)] = 2.349 as the last
numerator. We compute the new pipelines,       corresponding to this depot
stock level of one and an expected backorder table similar to Table 3-1,
apply marginal analysis and obtain the next row in Table 3-2. Continuing
this procedure for larger values of depot stock level yields Table 3-3.

Our objective is to compute the optimal allocation of stock across bases
and depot. Since each entry in Table 3-3 is the expected backorders for a
specified level of depot stock and a specified level of stock optimally
allocated to bases, we need only pick the minimum backorders on each
diagonal running from upper right to lower left. Each value on a given
diagonal is for the same amount of total stock, divided between the depot
and the bases (optimally). For example, with a total stock of 2 the optimal
backorders for depot stock levels of 0, 1, and 2 are 2.5002, 2.1983, and
1.9240 respectively in Table 3-3. Since 1.9240 is the smallest value, it
appears in Table 3-4.
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The optimal allocations of stock for each policy in Table 3-4 were
determined during the marginal analysis. Since the optimal allocation to
bases of a given total stock at bases is obvious from symmetry, we have not
shown that breakdown in Table 3-4. We show the total backorders at all
bases for each optimal policy and the reduction in total backorders at each
step.

3.5 Convexification

Note that the backorder reductions are not monotonically decreasing,
which means that the backorder function is not convex at those points. We
have indicated this by omitting the corresponding asterisks in the convexity
column. Why does this non-convexity occur and what do we have to do
because of it?

Each row of Table 3-3 is convex, because the marginal analysis
procedure is identical with Chapter 2. But as we move from one level of
depot stock to another in the optimal solutions, there is no assurance of
convexity. In fact that is why we chose an example with several identical
bases, because it is more likely to occur in such a case.

The nonconvexity is easily identified by scanning the Backorder
Reduction column in Table 3-4. These points are easily dealt with by
excluding them as potential solutions. The points that remain are similar to
Figure 2.2 in that the line connecting adjoining solutions has a slope that
always flattens out as the total stock optimally allocated increases.

The reason we need to check for non-convexity and discard such interior
points is that the marginal analysis procedure for combining items will be
misled otherwise. As exemplified in Figure 2.3, when we reach a non-
convex point the slope will be flatter than if we look at the next convex
point. Thus, the backorder reduction per dollar for that item will be
understated. By dropping the interior points, the marginal analysis will jump
to the next convex point at the correct time (buying at least two more units
of stock of the item because of the eliminated interior point or points). It is
easy to check for these nonconvex points for total stock of 4 and 5 units in
Table 3-4 and eliminate them in the computer algorithms.

Once we have eliminated the nonconvex points for each item, as in Table
3-4, we can use marginal analysis again as in Chapter 2 to optimize across
items. Note that when we combine across items, the backorder reductions
(first differences) must be divided by unit cost.

The last column of Table 3-4 concerns solutions obtained by marginal
analysis used in a different manner. Suppose that instead of generating a
complete table of solutions such as Table 3-3, we move sequentially from
one solution to the next by either allocating a unit of stock to the depot or
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one to each base (since the bases are identical). Note that after the solution
with 3 at depot and none at bases, such a marginal analysis procedure would
next find the solution with 3 at depot and 1 at each base, missing the
intermediate solutions.

This simple marginal analysis solution produces efficient solutions here,
but a less dense set then generated by the exhaustive search procedure (the
pattern repeats at larger values of total stock). It is possible to construct
examples where some of the solutions are not optimal. However, one nice
feature of the simplified procedure is that by construction the solutions must
be convex.

The phenomenon observed concerning optimal stockage policies in Table
3-4 is referred to as flushout. After three units of stock have been allocated
optimally to depot and more stock is available for allocation, it becomes
optimal to take some of that depot stock and flush it out to the bases. (In this
case the optimal depot stock drops to one when there are a total of six units
to be allocated). Another reason for using an example with identical bases
was to illustrate the flushout phenomenon which is more common in that
situation.

3.6 Summary of the METRIC Optimization Procedure

Now to summarize the optimization procedure:

1. Start with a depot stock level of zero.

2. Compute the average resupply delay at the depot due to the fact that
the depot does not always have stock on the shelf, and the average
response time to each base from Equation 3.2.

3. Calculate the expected backorders for each level of base stock. Repeat
for each base. (Table 3-1)

4. Use marginal analysis to combine the base backorder functions and
obtain the minimum backorders for each number of units at bases. (Row
in Table 3-3 corresponding to the depot stock level).

5. If the level of depot stock is large enough, go to step 6; otherwise,
increase the depot stock level by one and go to step 2.

6. Find the minimum value on each diagonal representing the same
number of units of stock. (Table 3-4) Drop any non-convex points.
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7. Repeats steps 1-6 for each item.

8. Use marginal analysis to combine the item solutions (Table 3-4),
where the first differences must be divided by the item costs.

3.7 Availability

We have developed procedures for minimizing backorders across bases
and items. Now the relationship to availability, A, must be demonstrated. In
Chapter 2 we maximized the availability at a single base; here we maximize
the availability across all bases. First we modify Equation 2.18 for the
availability at a single base by appending a subscript j to indicate the specific
base. Then the overall system availability, A, is just the percentage of
aircraft that are operational at all bases.

Unfortunately, this objective function is the sum across bases of several
product functions, one for each base. Thus we cannot take logarithms and
expect the calculation to break into separable pieces. However, as a practical
matter we can get a good approximation to the optimal allocation sequence
by finding the maximum across bases and items of the following: the
increase in availability times the number of aircraft divided by the cost of the
item. Thus we can use marginal analysis again.

The availability at each base that results from this procedure will differ
somewhat from one base to another. If it is desired to have nearly the same
availability at each base, it is possible to achieve this by multiplying the
availability at the bases that were below the average by weights that are
larger than one. Or more generally it is possible to approach any desired set
of availabilities that may differ by base. Of course, it will be necessary to try
several sets of weights to achieve a particular set of base availability goals,
and because the number of items and stock levels are discrete, the goals
cannot be met precisely.1

The procedure described above produces an optimal solution. The weights are Lagrange
multipliers whose magnitudes represent the difficulty in meeting the constraints at the
corresponding bases. However, adjusting the set of weights and rerunning the optimization
can be tedious.

In the VMetric model, described in Appendix E, it is possible to specify availability targets by
base and/or by aircraft type, when there are multiple aircraft types. This is due to an
ingenious procedure developed by John Millhouse, TFD Group, which automatically

1
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3.8 Summary

In this chapter we have extended the theory from Chapter 2 to cover the
multi-echelon problem. The same formulas for expected backorders are
used, based on Palm’s theorem that says we do not need to know the shape
of the repair/resupply distribution.

Since the sum of backorders at bases is an additive separable function of
the items, we can focus on one item at a time. For an item, the formulas are
applied first to the depot where the average delay to each base is computed
as a function of the depot stock level. Marginal analysis is used to determine
the optimal allocation of stock levels to bases for each specific level of depot
stock. Then the minimum value of total base backorders is selected from
each diagonal representing the alternative allocations of a given number of
units of stock.

The resulting backorder function may not be convex, but it can be
convexified by dropping solutions that are not convex. The analysis is
repeated for each item, and then marginal analysis is applied a second time
to find the optimal allocation of investment across items.

3.9 Problems

1. Calculate Table 3-1 for a depot stock level of 1, use marginal analysis,
and show that the second line of Table 3-3 is obtained.

2. Outline the logic for a three-echelon calculation. Consider the number
of calculations if all bases are identical and the number of bases supported
by each intermediate site is the same. Compare this with a case where both
assumptions are relaxed.

3. Instead of using an availability or cost target for the optimization, it is
sometimes possible to determine the optimal point on the cost-availability
curve. For example, if the end-item is a commercial aircraft, it may be
possible to estimate the cost of the aircraft being down (e.g. the rental cost of
a replacement). Suppose that the next optimal allocation of investment is to
buy an item costing c dollars for a particular base or depot, where the annual
cost of that investment is the holding cost times the item cost. Let the
corresponding increase in availability of end-items be denoted and the
number of end items be denoted by N.

Write an expression for the marginal annual cost saving in aircraft down
by buying the next spare and equate it to the marginal annual cost of buying

reduces the desirability to the marginal analysis of a base or aircraft type when it
approaches its target. This procedure, though elegant and easy to use, can be improved to
an optimal constrained solution by iterating on base essentialities as illustrated after Figure
E-6.
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the spare. (A fundamental theorem of economics is that profit is maximized
when marginal cost equals marginal revenue). Solve for the increase in
availability per dollar (the slope of the cost-availability curve) at this optimal
point. Assume that there are N = 100 end-items, and the imputed
cost of an aircraft down for a year is $200,000. Show that the optimal point
on the availability-cost curve is where the slope equals .00000001 = 1.0E-
08.

It should be noted that aircraft may be down due to maintenance as well
as supply. The fraction of the time down due to maintenance is described in
Section 5.15, but for simplicity assume that the downtime cost D used above
is for downtime due to supply.

Is this approach still valid when the end-items are military systems?
What is the role of sunk cost?

Note that the annual cost of used above, assumes that the aircraft will
be in service for many years. However, if the system has a life of 15 years or
less, it is necessary to use a larger annual cost which amortizes the
investment. Consider how an amortization formula might be used.



Chapter 4

DEMAND PROCESSES AND DEMAND PREDICTION

Take calculated risks. That is quite different from being rash
– Patton

4.1 Chapter Overview

When the George AFB field test, described in Chapter 1, was conducted,
several people asked us why an inventory model was needed at all. They
suggested that to find out what is needed all one has to do is ask an expert,
the supply sergeant. There was one particular sergeant who had kept a little
black book after a thirty day deployment exercise. In his words, “We took a
lot of stuff we didn’t need, and we needed a lot of stuff we didn’t take. But I
know exactly what we need next time, and that’s all we’re taking.”

The sergeant’s data could certainly be useful, but his understanding of the
problem was flawed because he did not recognize the importance of
variability. If items with demand during the previous exercise are the only
ones taken on the next exercise, it is certain that there will be demands for
other items.

Expert judgment may provide many important inputs to a stockage
model. But experts tend to be very poor at processing probabilistic
information intuitively, or even recognizing whether a stream of data is from



a random process. When it comes to making decisions about the next item to
buy and where to put it in a multi-echelon, multi-indenture problem where
demand is probabilistic and the mean may be changing, a model is
indispensable.

In the early 1960’s there were few inventory modeling projects underway
and a lot of demand prediction studies. Now the situation seems to have
reversed, with very little attention to demand prediction. This is partially
because of the success we have had in building ever more complicated
inventory models and implementing them on personal computers. But it is
important to spend a portion of our overall effort in demand prediction
studies. After all, the best inventory model in the world isn’t going to be
much help if the demand estimates are garbage.

In the simplest case of random demands with a constant mean, an
exponential probability distribution for the time between demands leads to
Poisson (state) probabilities for the number of demands during any specified
time period, T. This is called a Poisson process.

The Poisson distribution can be generalized to the negative binomial
whose variance exceeds the mean. The negative binomial has two
parameters, allowing us to fit a mean and variance separately to observed
data. This is useful for two reasons: (1) the number of units of an item in the
pipeline in Chapter 3 was treated as if it were a Poisson variable, but the
observed variance usually exceeds the mean, often substantially; (2) when
the demand rate changes or drifts with time leading to a Poisson process
with non-stationary increments, the variance will exceed the mean.

The multi-indenture problem is used to illustrate the improvement in
accuracy when variances in pipelines are taken into account. This is the
foundation of VARI-METRIC theory, the subject of Chapter 5. (The VARI
prefix is used because the calculation includes pipeline variances).

From earlier demand prediction studies we know that over very short
periods, demand for most items tends to be Poisson with a constant mean,
and that the variance-to-mean ratio for a particular item tends to increase as
the period of observation lengthens. This implies that the demand process for
most items is Poisson with non-stationary increments where the mean is not
constant but drifts with time. The probability distribution for the number of
demands in any time period can be modeled with the negative binomial
distribution.

In order to estimate this drift, we performed several demand prediction
experiments where the mean and variance for each item were estimated.
Prior to that discussion, it is necessary to describe the “objective” Bayes
technique that was tested, along with an important, related procedure known
as James-Stein estimation. The demand prediction experiments provide
some empirical evidence for the drift in demand rates and recommended
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estimation techniques for item variance-to-mean ratios as a function of time
and mean demand.

Finally, we consider items whose failure is dominated by wear out
phenomena. Here the variance is less than the mean, but the binomial
distribution can be used to model the number of demands in a period.

4.2 Poisson Process

The exponential distribution of time until the next demand is given by:

which has mean 1/m and a variance of Note that m was defined as the
average annual demand before, so 1/m is the average time between demands,
measured in years. We want to show that if the time between demands has
an exponential distribution, then the probability distribution for the number
of demands in any specified time period, T, is Poisson.

The probability of no demands in time T is the probability that the next
demand occurs after T:

where the last equality is Equation 2.4. Now we show that if the probability
of x demands in any time t is Poisson for any x and the time between
demands is exponentially distributed, the probability of x + 1 demands in
any time T, where is Poisson.

The first expression in Equation 4.3 is the Poisson probability of x
demands in time t, one demand at time          and no demands during the final

Since we have shown that the exponential time between demands
leads to Poisson state probabilities for x = 0, and that if it is true for any
arbitrary x it is true for x + 1, the result is true for all x by induction.

Now we want to consider the probability distribution for the time to the
next demand, t, conditional on the fact that there has been no demand up to
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some time T. This is just the probability that the time to the next demand is t,
divided by the probability that there has been no demand through time T:

This is still an exponential distribution with a new time origin of T instead of
zero. This is the reason that the exponential distribution is called
“memoryless”, and why it is so useful in modeling. The demand rate at time
T is obtained by substituting that value for t in Equation 4.4, showing that
the demand rate is a constant, m, for any arbitrary T.

It is important to distinguish between the demand rate, the probability
distribution of time to the next demand, and the probability distribution for
the number of demands during an arbitrary period of time.

4.3 Negative Binomial Distribution

The negative binomial distribution is given by:

where a > 0 and 0 < b < 1. In elementary statistics courses the negative
binomial is frequently introduced as the probability that it takes a + x trials
to achieve exactly a successes where each trial has a probability of success
equal to (1 - b). This is just the binomial probability for a - 1 successes in the
first a + x - 1 trials times the probability that the next trial is a success.

The first term on the right-hand side of Equation 4.5 is called the number
of combinations of a + x - 1 things taken x at a time. When a is integral the
number of combinations equals (a + x - 1)!/[x!(a - 1)!]. The justification is
that the number of sequences of successes and failures is (a + x - 1)!. But
each sequence contains x successes in specific locations, and these can be
rearranged in x! ways that are indistinguishable. Similarly the a - 1 failures
can be rearranged in (a - 1)! ways that are indistinguishable. The reader who
is not familiar with combinations is referred to Problem 1 at the end of this
chapter.

By dividing factorials the number of combinations can be written
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which is well defined and easily computed even when a is non-integral.
From Equation 4.5 it is clear that x must be a non-negative integer.

Using the definitions in Equations 2.1 and 2.2, the mean, and variance-
to-mean ratio, V, are found to be

(See Problem 3). From the formula for V it is clear that it must exceed one.
Since there are two parameters to the negative binomial, we can derive the
parameters a and b to represent any m and any V greater than one. After a
little algebra, we find:

This will be the most useful form for the parameters, because we want to be
able to take an observed mean and variance-to-mean ratio (greater than one),
calculate the parameters a and b, and generate the probability distribution.
As in the Poisson, it will turn out that the most convenient computational
procedure is to calculate neg(x + 1) by recursion from neg(x) (see Problem
4).

As b approaches 0, V approaches one as for the Poisson. In fact, it can be
shown that the negative binomial approaches the Poisson probabilities as b
gets smaller, even though the negative binomial can never have a V = 1 (see
Problem 5). This is important, because we would not want a discontinuity
between any Poisson probability, p(x), and the corresponding negative
binomial probability, neg(x), as b approaches zero.

In summary the important characteristics of the negative binomial are:

Discrete distribution for non-negative arguments

Generalization of the Poisson

Distribution with two parameters that are easy to estimate for a
specified mean and variance-to-mean ratio greater than one

Recursion formulas that are easy to compute

In the previous section we showed that Poisson state probabilities for the
number of demands in any time period T are equivalent to an exponential
distribution for the time between demands. This is what we mean by a
Poisson process. It is natural to suppose that we will now consider the
distribution of time between demands that is equivalent to a negative
binomial distribution for state probabilities.

Such a distribution for the time between demands does exist. It consists
of an exponential distribution for the time between clusters of demand, and a
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logarithmic distribution for the number of demands in each cluster. It is
called a logarithmic Poisson process, a member of the compound Poisson
family of processes, which are generalizations of the Poisson process. Much
of our research in the 1960s assumed compound Poisson demand, because
we kept observing variance-to-mean ratios greater than one in our data.

If demand were compound Poisson, the variance-to-mean ratio for an
item would be constant, regardless of the length of the time period over
which demand is observed. Instead, the empirical data that we discuss below
show variance-to-mean ratios that increase with time. Also, there would be
clusters of demand, and this is not observed either. For these reasons we will
not discuss the compound Poisson further in this book. The reader who is
interested in pursuing the compound Poisson should see Feller (1958).

However, there is an important fact about the compound Poisson shown
by Feller that we will use. The compound Poisson is the most general
“independent increments” process, by which we mean that the number of
demands in two non-overlapping time periods is independent. In other words
for any non-negative values of y (discrete), and

where x demands are observed in time period 1 with mean and y - x
demands are observed in period 2 with mean The practical implication of
this is that if demand over any time period has a negative binomial
distribution with variance-to-mean ratio V, and demand has a negative
binomial distribution over another time period with the same variance-to-
mean ratio, then the probability distribution over is negative binomial
with that variance-to-mean ratio and a mean that is the sum of the two period
means.

This is true for the negative binomial, the Poisson, and the binomial
(which is described below in Section 4.17). It is most easily shown with
generating functions, which we have not used in this book. But the property
can be demonstrated arithmetically as in Problems 12-14 at the end of the
chapter.

The negative binomial will be used below to represent the probability
distribution of demand over a specified time period. As the time period
lengthens, the variance-to-mean ratio will tend to increase. This is not
consistent with a compound Poisson process, as noted above, but it is
consistent with a Poisson process with non-stationary increments.
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4.4 Multi-Indenture Problem

As noted in the overview, one of the reasons we use the negative
binomial is to model the mean and variance for the pipelines where the
variance exceeds the mean. We will illustrate this by showing how the
accuracy of the METRIC theory can be improved in the multi-indenture
case.

The multi-indenture problem for a single base was addressed by
Sherbrooke (1971), and for multi-echelon by Muckstadt (1973) in a model
called MOD-METRIC. In this section we discuss the single base case with
two indentures.

When a demand for a first-indenture, line-replaceable unit (LRU) occurs
at the base, a spare LRU is issued if one is on hand. If no spare LRU is
available at the base, a backorder is established. In either case the LRU is
repaired at the base, and during this process one second-indenture, shop-
replaceable unit (SRU) is identified as having failed. If a spare SRU is
available, the failed SRU is removed and replaced and the LRU repair is
completed; otherwise an SRU backorder is established. In either case the
SRU is repaired at the base.

The important assumptions are that the SRU repairs are not delayed for
spare parts, and that each LRU failure is due to one and only one SRU
failure. The first assumption applies only to the lowest indenture level
considered, and thus becomes less important as more indentures are
modeled. The second assumption has been discussed at some length by
Muckstadt (1982). Approximations for the case of multiple SRU failures
have been developed by Sherbrooke (1988).

We will use the subscript i to indicate the item as before, with i = 0 for
the LRU and i > 0 for the SRUs. The subscript i = 0 should not be confused
with j= 0 in the previous chapter, which indicated the depot. (In Chapter 5
we will need both subscripts for VARI-METRIC.)

If the demand process for the base is Poisson with average annual
demand the demand rate for SRU i must be Poisson with average annual
demand and

Assume that the repair times for the LRU and for the SRUs are
constant. Then the number of LRUs in repair at a random point in time
t can be written

Demand Processes and Demand Prediction 65



The number of LRUs in repair equals the demand in the time period
and this is independent of the LRU delays due to SRU backorders

because they arose from LRU demands in an earlier segment of the Poisson
process prior to Furthermore, the LRU delays due to different SRUs
are independent of each other, because of our assumption that each LRU
failure is due to one and only one SRU failure and because a probabilistic
split of a Poisson process results in independent Poisson processes.

Thus, the expected pipeline for the LRU can be written:

and the expected LRU backorders at base are
It is easy to generalize this result from constant repair times to arbitrary

probability distributions of repair. Consider the SRUs first. Since the input to
each SRU repair process is Poisson and independent, Palm’s theorem can be
applied.

Now consider the LRU and suppose that there are two possible repair
times and and corresponding probabilities such that the overall
average repair time is still The original Poisson process is divided into
two independent Poisson processes, and the arguments of the previous
paragraph still apply. This result can be extended by induction to any
discrete repair distribution.

For continuous repair distributions we can use the queueing analogy
where the LRU and any SRU correspond to two infinite channel queues in
series. The number of units of the LRU in repair is Poisson from Palm’s
theorem. The output of the first queue is Poisson, since the input was
Poisson and the repair process is independent of the input.1 Since the output
of the first queue is the input to the second, we can apply Palm’s theorem
again.

1
This is a special case of a result of Erlang proved in Syski (1986), but a formal mathematical

proof is not required. The inductive argument above is sufficient here.
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4.5 Multi-Indenture Example

In this section we want to take the multi-indenture result for the expected
LRU backorders at base and compare its accuracy with a simulation of the
multi-indenture problem.

Consider an example such that when the LRU fails, there is a .5
probability that it is because of SRU 1 and a .5 probability of SRU 2. We
assume an LRU demand rate of 2/day, stock levels and average repair times
as shown in Table 4-1, from which we calculate the average number of units
of the LRU in repair. Substituting these values into Equation 4.12 yields the
expected pipeline for the LRU:

and the expected LRU backorders at base are:

However, a simulation of this problem with 50,000 simulated years of
experience shows that the expected LRU backorders are .202, with a 95%
confidence interval of ±.005. Thus, in this example the MOD-METRIC
procedure understates the expected backorders by nearly a factor of four.

4.6 Variance of the Number of Units in the Pipeline

The difference between the MOD-METRIC solution and the simulation
is very large. In fact, the difference is atypically large in the example,
because we purposely chose a combination of demand rates and stock levels
that would produce a dramatic difference.

Why does this difference arise? When we compute the expected LRU
backorders, based on the pipeline we are assuming that the number of
units in the pipeline has a Poisson distribution. In fact, the number of units in
the pipeline has a variance-to-mean ratio greater than one, as we shall now
show.

In Equations 2.1 and 2.2 we provided formulas for the expected value
(mean) and variance for any demand distribution. Then in Equation 2.7 the
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expected value of backorders, EBO(s), was defined, where this expectation
was a function of the demand distribution and the stock level, s.

Now we need to estimate the variance of the backorder function, VBO(s),
where we use the abbreviated notation discussed in the footnote following
Equation 2.7. The formula is obtained by substituting the definition of
backorders in that footnote into Equation 2.2:

We already know how to compute the last term on the right of this
equation as it is the square of Equation (2.7). The first term on the right is
the second moment of the backorder function which is analogous to
Equation (2.3) as applied to Equation (2.7):

Note that when s = 0, Equation 4.14 reduces to Equation 2.3 and
Equation 4.13 reduces to Equation 2.2. When the probability distribution is
Poisson, the ratio VBO(s)/EBO(s) equals one for s = 0, but for any positive
value of s the ratio exceeds one as shown by Svoronos (1986). The typical
behavior is for the ratio to increase as a function of s to a maximum at a
value of s slightly larger than the mean and then decrease asymptotically to
one, as shown in Figure 4-1.

Thus, even though the LRU demand is Poisson and the SRU demand is
Poisson, the probability distribution of backorders for SRUs is not Poisson
unless each SRU stock level s = 0. The pipeline for the LRU is the
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composition of the SRU backorder distributions, so it is Poisson only when
each SRU stock level s = 0, also.

A comparison of the Poisson and negative binomial distributions is
shown below in Table 4-2 for a mean of one. The Poisson has a variance-to-
mean ratio of one always; the negative binomial we have chosen has a
variance-to-mean ratio of 3. Thus, the negative binomial parameters from
Equation (4.8) are

and

Since the means of the two distributions are each one but the variance-to-
mean ratio of the negative binomial is three, the latter probabilities must be
larger both near 0 and for large values of s.

We have shown the mean, variance, and variance-to-mean ratio of the
backorders for both distributions as well. Note that the mean backorders, not
just the variance, are larger for the negative binomial than for the Poisson at
each stock level, s, greater than zero. Also, the variance-to-mean ratio of
backorders for the negative binomial remains high for values of s well in
excess of the mean.

For computational purposes it is useful to have recursion formulas. The
reader was asked to derive the recursion formula for EBO(s) in Problem 3 of
Chapter 2. The following formula for the second moment was originally
derived by Michael Konvalinka of the Logistics Management Institute and is
easily verified (see Problem 6):

Note that these recursion formulas for the mean and second moment of
backorders are valid for any state probability distribution, not just the
Poisson. Now we are in a position to compute the variance of the pipeline,
which looks very similar to the formula for the expected value from
Equation 4.12:

The justification for this formula is straightforward. Each term on the
right-hand side is independent of each other, and the variance of a sum of
independent variables is the sum of the variances. From the discussion at the
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end of Section 4.4, we know that even when there is a probability
distribution for repair time, the number of units of the LRU in repair is
Poisson and the variance of a Poisson equals the mean.

4.7 Multi-Indenture Example Revisited

Let’s calculate the pipeline variance for our example, whose data were
given in Table 4-1:

The pipeline variance-to-mean ratio, V = 3.468/1.852 = 1.873, so the
Poisson distribution with a variance-to-mean ratio of one is clearly a poor
approximation for the number of units in the pipeline. Suppose we substitute
the pipeline mean and variance-to-mean ratio into Equation (4.8) to estimate
the parameters of a negative binomial. Then we find that

where the notation has been expanded to show the conditioning on the mean
and variance of the state probability distribution. This estimate of the
expected base backorders is a lot closer to the simulated value of .202, even
though it does fall outside the 95% confidence limits of .197 - .207.
However, we selected stock levels for the example to produce an atypically
large difference between MOD-METRIC and simulation. In most cases the
agreement between them will be closer.

The negative binomial was employed by Michael Slay and later by Steve
Graves and this author. How do we know that the negative binomial is the
right probability distribution to use? The answer is that we don’t know the
right distribution, but we do know that a probability distribution whose mean
and variance agree with the values for the pipeline will do a lot better than
the Poisson. Even though the probability distribution we use is somewhat
different from the true distribution, our interest is not the probabilities
themselves, but in a function of these probabilities. And the difference
between the values of the true and approximate function will be smaller then
the corresponding differences between the individual probabilities.

We should include a historical note that the VARI-METRIC
improvements were first made in the multi-echelon problem, rather than in
the multi-indenture problem. For pedagogical reasons the VARI-METRIC
idea is introduced here in the simpler multi-indenture context. VARI-
METRIC for the combined multi-echelon, multi-indenture problem is
developed in Chapter 5.
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In summary, the negative binomial has several properties that
recommend it for our purposes: 1) discrete distribution for non-negative
arguments; 2) generalization of the Poisson; 3) distribution with two
parameters that are easy to estimate for a specified mean and variance-to-
mean ratio greater than one; 4) recursion formulas that are easy to compute.

4.8 Demand Rates that Vary with Time

The second reason for employing the negative binomial is to model
Poisson demand processes with non-stationary increments (where the mean
may drift over time). Slay and Sherbrooke (1988) showed that over short
periods of time demand follows a Poisson process with a constant mean for
most items. Sherbrooke (1984) showed that the variance-to-mean ratio for an
item tends to increase as the time period over which demand is measured
becomes longer. The only model consistent with these observations is a
Poisson process with non-stationary increments. Let’s consider a Poisson
process with annual mean m. But, during half of the year the mean is m + M
and during the other half it is m - M (where m > M), so that the demand rate
is not constant during the year. Our objective is to see what happens to the
variance-to-mean ratio over the year.

The variance over the entire year is computed from Equation 2.2, using
the fact that the second moment is the square of the mean plus the variance
for each of the two parts of the Poisson process:

The first term is the second moment of the Poisson process with mean m +
M for .5 year, the second term is the second moment of the Poisson process
with mean m - M for .5 year, and the third is the square of the mean for the
entire year. Since the mean is m, the variance-to-mean ratio over the entire
year is greater than one for any M > 0.

Note that the result in Equation 4.17 is unaffected if the demand rate
changes many times between m + M and m - M, provided only that when
totaled the amount of time with each mean is the same. Dividing Equation
4.17 by the mean, m, we see that the variance-to-mean ratio is
Since m > M, the maximum variance-to-mean ratio is m + 1, which implies
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that the Poisson assumption is likely to be a more significant error for large
values of m.

In Table 4-3 below we show the behavior of the variance-to-mean ratio
for a few values of m and M. For a specific value of M, the impact on
variance-to-mean ratio decreases with m. However, when M is a fixed
percentage of m, which is probably more meaningful, the impact on
variance-to-mean ratio increases with m. (As an example of the latter, where
M = .5m, compare the case with m = 1, M = .5, leading to a variance-to-mean
ratio of 1.25 and the case with m = 10, M = 5, leading to a variance-to-mean
ratio of 3.50).

We do not claim that mean demands change in “quantum leaps” from one
level M + m to M – m as above, but it is clear that any change in mean
demand for a Poisson process results in variance-to-mean ratios greater than
one for the number of demands in a given time period (the state
probabilities). Furthermore, these variance-to-mean ratios are likely to be
greater when the mean is larger, a fact of some importance that we will
encounter again below.

4.9 Bayesian Analysis

Our objective is to estimate how these means of different items change or
drift over time. For this purpose we will describe some demand prediction
experiments, but first we want to introduce Bayesian analysis as one of the
candidate prediction techniques.

In the section below on Bayesian analysis and in several subsequent
sections we will use conditional probabilities. Because of their importance it
is appropriate to devote a brief section to them now.

Consider two events a and b that are not independent. From elementary
probability theory we can write

which states that the joint probability of both a and b equals the conditional
probability of a given that b occurs multiplied by the probability that b
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occurs. The joint probability also equals the conditional probability of b
given that a occurs multiplied by the probability that a occurs.

Consider the following inference problem. Assume that as a part of a
routine screening process, your physician tells you that you have tested
positive for cancer. He tells you that the test isn’t perfectly accurate - there is
a 2% false positive rate (a healthy person will be diagnosed as having cancer
2% of the time) and a 2% false negative rate (a person with cancer will fail
to be detected 2% of the time). How depressed should you get? And what
data do you need to evaluate the problem dispassionately?

It turns out that this is an example of a problem that can be systematically
analyzed by using Bayesian analysis, named for the Reverend Thomas
Bayes, a British clergyman whose theorem was published posthumously in
1763. Bayes’ rule is obtained from Equation 4.18 after division on both sides
of the right-hand equality by the probability of b

where we have expanded the denominator for the probability of b into two
terms: (1) where b occurs given a times the probability of a; (2) b occurs
given a does not occur (as indicated by the line over the a) times the
probability that a does not occur. More generally when a can assume more
than two values, the denominator is a sum over all possible states of a.

To analyze the medical inference problem we need to define the events a
and b. Since the objective is to assess the probability of cancer given a
positive test result we assign

The problem data has already supplied some of the values we need:

But, it is clear that we need the probability that an individual tested in a
random screening has cancer, Pr{a}. Suppose that it is known from previous
screenings that this averages about .005. Then substituting into Equation
4.19 yields:
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It seems surprising to individuals unfamiliar with Bayes’ rule that with
only a 2% rate for false positives and false negatives, there is still only one
chance in five that an individual who has tested positive has cancer. Of
course, the results are critically dependent on the rate of cancer in the
population being screened. This probability, Pr{a} is known as the prior
probability, and the probability obtained after applying Bayes rule is known
as the posterior probability (because these probabilities are before and after
using the information from the screening test). In this example, the prior
probability of having cancer of .005 is increased 40 times to the posterior
value of .198, because of the positive test result. If the prior probability of
cancer in the screening population were twice as large, .01, the probability of
really having cancer, given a positive test result, jumps to .33.

In summary, the utility of Bayes’ rule depends largely on whether there is
reasonable agreement over what the prior probabilities are. If different
analysts estimate the prior probabilities very differently, then the posterior
probabilities will usually be very different as well. On the other hand, there
are a number of problems where it is reasonable to assume that all prior
states are equally likely (e.g. games of chance, submarine location).

How does all this relate to the estimation of demand rates and inventory
modeling in general? In the next section we discuss an “objective” Bayes
approach, where the idea is to estimate the prior distribution from data in a
manner such that different analysts will get the same - or similar - results. In
the succeeding section we address the non-Bayesians who don’t believe in
prior distributions of any kind, and show that classical statistics leads to
James-Stein estimators, a Bayes-like procedure anyway.

4.10 Objective Bayes

Suppose that we have observed demand on all first-indenture items for a
particular aircraft type at a base over a period of time, such as six months or
a year. Let’s assume that we don’t have any initial demand estimates made
prior to this period of flying, or any such initial estimates have little
credibility now.

We demonstrate below a procedure for using the demand data on the
group of items to estimate the parameters of a prior distribution. Then we
use Bayes’ theorem to combine the prior distribution on all items with a
Poisson demand process to estimate a posterior distribution of demand for
each individual item. The mathematically challenged reader may wish to
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skip the following derivation of the prior distribution parameters and rejoin
us after Equation 4.26.

First, we rewrite Bayes’ theorem from Equation 4.19:

where the gam denotes a gamma distribution and p a Poisson with mean
and h is the posterior distribution for the mean of an item, conditional on the
observed number of demands x. It should be clear that Equation 4.20 is the
continuous variable analogue for Equation 4.19.

The gamma distribution is given by:

where the parameters a > 0, b > 0. The mean = ab, the variance-to-mean
ratio = b. Note that indicates the gamma function, not to be confused
with the gamma distribution. For any value of a > 1 the gamma function has
the property:

When a is integral, the gamma function of a equals (a - 1) factorial. For non-
integral values of a, it is necessary to use a computer or mathematical tables.

The essence of objective Bayes is to estimate the parameters of the
gamma prior distribution from the demand data. This is done by “moment
matching,” setting the mean and variance of the random variable X in the
denominator of Equation 4.20 to the mean and variance of the observed
period demand across the group of aircraft items. That will provide two
equations for the two parameters of the gamma prior distribution, a and b.
The expected value of the random variable X is the Poisson probability that
X = x for each possible x, multiplied by x, and integrated over the probability
that the Poisson mean is
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This follows easily since the mean of the Poisson is and the mean of the
gamma is ab. Similarly,

where the second moment is the variance plus the mean squared. We
compute the variance by substituting Equations 4.23 and 4.24 into Equation
2.2:

Note that E[X] and Var[X] are computed across the group of all items
from their observed demand during the period. Thus the parameter b can be
estimated from these data as

The parameter a is estimated from Equation (4.23):

Let’s summarize what we have accomplished. We have found a way to
estimate the two parameters, a and b, of the best-fitting gamma prior
distribution from the mean and variance of observed demand across all items
over a six-month or one-year time period. The prior distribution is the same
for all items.

Then a posterior distribution is computed for each item based on its
observed demand, x, during the period. Bayes’ theorem from Equation 4.20
is employed. Note that all items with the same observed demand, x, have the
same posterior distribution.1

1 The negative binomial distribution is ubiquitous. The denominator of Equation 4.20, the
probability distribution for a Poisson variable with a gamma prior distribution, has a
negative binomial distribution. This is not terribly important, but can be shown easily
(Problem 15).
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It turns out that this posterior distribution is gamma as well where the
prior parameter a becomes a + x for the posterior and the prior parameter b
becomes b/(b + 1). (see Problem 9).

Figure 4-2 gives a graphical illustration of how Bayes’ theorem operates
on the prior distribution. If the observed value of x exceeds the prior mean
(ab), the posterior distribution is shifted up toward larger demand rates with
a mean (a + x)b/(b + 1) that exceeds ab. But, the posterior mean is less than
the observed value x.

Similarly an observed value of x less than the mean results in a posterior
distribution whose mean lies between the observation, x, and the prior mean,
ab. Regardless of the value of x we can say that the observed value x is
“regressed toward the (prior) mean” in order to obtain the posterior mean.

What is the real value, if any, of this procedure? Usually an item with no
demand during the period would be assumed to have a zero demand rate.
But, we don’t really believe that zero is the best estimate of the demand rate
for every item that has no demand during six months or a year. The true
demand rates are probably low, but we know from experience that if we
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observe this group of zero-demand items for another time period, some will
have positive demand. The Bayes procedure will result in positive, though
small, demand rates for these zero demand items.

The use of zero-demand-rate estimates for all items in the group becomes
even less sensible if the flying hours or the number of aircraft is increasing
over the next period. Suppose that the number of flying hours is to increase
by a multiple of k greater than one, and flying hours are thought to be a
primary determinant of demand. More of the items with zero observed
demand in the past period are likely to have positive demand during the
period of greater flying. The traditional approach has been largely
judgmental (the logistician estimates positive demand rates for some items),
but in the Bayesian approach we know that an item with gamma parameters
a and b would be converted to an item with gamma parameters a and kb.
This provides a natural mechanism to reflect changes in the flying program
(up or down).

Similar considerations apply to items with very large observed demand.
The Bayes procedure tends to decrease the mean demand rate estimates for
the items with very large observed demand.

For those who wonder if this technique is merely of academic interest,
we point out that this is actually the technique used in the George Air Force
Base Field Test of Chapter 1 that was described in Air Force Logistics
Command (1967). The “objective Bayes” technique was reported on in
Feeney and Sherbrooke (1965).1 The consideration of unit cost in
conjunction with a probability distribution for demand led to positive stock
levels under the new policy for some items that had no demand during the
previous six months. Items with no demand and a high cost would not be
stocked by either policy.

It should be noted that the “objective Bayes” procedure bears some
similarity to empirical Bayes which has been studied at length by Robbins
(1964) and many others. An extensive bibliography is provided in
Sherbrooke (1969). The empirical Bayes problem arises when we have a
sequence of pairs of random variables each
pair being independent of all the other pairs, the having a common prior
distribution, and the conditional distribution of given that being
specified by a known probability distribution The values
are not observed and the prior distribution is unknown. Based on an
additional observation we want to make an optimal decision about
It turns out that in some problems, the empirical Bayes procedure with no
information about the prior converges as to the optimal Bayes decision

3 The log normal distribution was used as the prior in that report, but the results are very
similar to those that would be obtained with the gamma prior.
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if the prior distribution were known and the the optimal Bayes decision
based on the observation were made.

The difference is that in objective Bayes we try to estimate the prior
distribution; in empirical Bayes we never estimate the prior itself, but the
(stockage) decisions that would be made if we knew the prior. The drawback
with empirical Bayes is the large amount of data that is required for
convergence of the decision rules to optimality. In our application empirical
Bayes would be particularly suspect, because the underlying demand rates
seem to change with time.

4.11 Bayesian Analysis in the Case of Initial Estimate
Data

Before leaving the topic of Bayes completely, note that when there are
both initial estimates and demand data by item it is possible to define a
different prior for each item and use Bayes theorem. A number of authors
have used this procedure. The initial estimate anchors the prior mean. But, if
the prior distribution has two parameters like the gamma, some subjective
estimate of the prior variance on each item is still required.

Let’s illustrate this procedure with an example. Suppose that we have
observed demand over some number of operating hours. When we multiply
the number of operating hours, t, by the initial estimate per hour, assume that
the expected demand is However, the observed demand, x =10.

Now if we believe that the initial estimate and the observed data over t
hours contain about the same amount of “information”, it would be natural
to average the two estimates and obtain a best estimate of demand = 15.

As noted in the previous section, the mean of the gamma prior is ab so
one equation for the best-fit gamma distribution parameters would be ab =
20. We also noted that when the observed demand, x, has a Poisson
distribution, the posterior distribution is gamma as well where the prior
parameter a becomes a + x for the posterior and the prior parameter b
becomes b/(b + 1) - see Problem 9.

Thus when x = 10, the posterior mean must satisfy (a + 10)b/(b + 1) = 15.
for the posterior mean. To solve for a and b we substitute the first equation,
a = 20/b, into the second, obtaining:
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or b = 1, a = 20. As noted just above Equation 4.25, the variance-to-mean
ratio of the prior, V = 1 + b. Since b becomes b/(b+1) in the posterior, it is
clear that the variance-to-mean ratio must decrease for any value of b; or, to
put it another way, as we use Bayes theorem over and over we become ever
more certain of our estimate. But, this is at odds with our belief that demand
rates change. Thus, it is important to restrict the time period over which we
apply Bayes.

Of course, if the observed data is thought to contain twice as much
“information”, say, as the initial estimate, then the second equation for the
posterior mean would be (a + 10)b/(b + 1) = 13.3. We recommend that the
analyst attempt to establish the value of t for equal “information” before
collecting data. There may be reasons to revise this later, but it is important
not to let the observed value of x influence the selection of t. Of course, the
same value of t may not be appropriate for all items; it should be smaller for
items whose technology is “pushing-the-state-of-the-art” and for which
initial estimates are “wild-ass guesses” (WAGs).

We reviewed a large amount of early program data from the Air Force as
members of the RAND Corporation Logistics Department in the 1960s. Our
conclusion was that the Air Force used initial estimate data for a longer time
period than warranted at which point they would switch to observed data. In
the large majority of cases a better estimate would have been to use the
initial estimates and modify them with Bayes, giving progressively more
weight to the observed data. Of course, at some point the initial estimates
become meaningless, and as we have suggested earlier it is desirable to
weight recent data more heavily if we believe demand rates change.

4.12 James-Stein Estimation

There are individuals who believe that there is too much subjectivity with
prior distributions to use Bayesian analysis, despite empirical and objective
Bayes procedures. They insist that classical statistics must be used for
inference. For example, in the estimation of a baseball player’s “true” batting
average, classical statistics can be used to show that the observed average is
uniformly better than any other estimator. (In the language of the statistician,
which we shall not bother to explain in detail here, the average is the
maximum likelihood, minimum variance, unbiased, consistent, efficient
estimator). The paradoxical element in James-Stein theory is that if we have
three or more baseball players and we are interested in predicting future
batting averages for each of them, there is a better procedure than simply
extrapolating from the three separate averages. This example and a
particularly lucid, elementary description of James-Stein estimators are
provided by Efron and Morris (1977).
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It turns out that each observed batting average, for player i should be
shrunk toward the overall mean to obtain an estimate

where is a “shrinking” constant in the range [0,1] to be determined below.
The expected value of the sum of the squared errors between the and the
“true” batting average for each player is never more than the corresponding
sum for the and is usually substantially less.

For their example Efron and Morris picked all major league baseball
players in the 1970 season who had batted exactly 45 times on the day the
data were tabulated. There were 18 such players with observed averages
ranging from .400 to .156. The average for the 18 players, was .265 and
the shrinking constant Thus, application of the formula to Roberto
Clemente with the highest observed average of .400 results in an estimate for
the season from Equation 4.27 of .265 + .212(.400-.265) = .294. A player
near the other extreme such as Thurman Munson with an observed average
of .178 receives a James-Stein estimate of .247.

How well did the James-Stein estimator do when evaluated on the “true”
batting averages which we construe as the season averages here? The James-
Stein estimator was closer to the season average for 16 of the 18 players, and
the sum of squared errors was .022 as contrasted with a squared error sum of
.077 from the original observed averages. It can be shown that the
improvement in squared error by a factor of about 3.5 is not just luck, but
close to the expected ratio of the squared errors.

The shrinking constant is critical to the James-Stein procedure. One
formula for is:

where I is the number of unknown means (players), is the variance in a

player’s batting ability1, and is the sum of the squared

deviations of the individual averages from the grand average (In a
logistics application I might be the number of items.)

This is a slight simplification, because a change of variable is made to stabilize the variances
of different players.

1
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We need an estimate of the variance in a player’s batting average. The
binomial distribution, described in Section 4.17 below, can be used to
estimate the number of base hits by a player in n at-bats. The parameter is
the probability that a player gets a hit, is the variance of the
binomial and is the variance in the observed mean (batting
average). It is this latter quantity that we substitute for in Equation 4.28,
using estimates of. and n = 45. For a fixed I and as the
dispersion of the increases around the denominator increases and
becomes larger. This in turn implies that the observed averages will be
shrunk less, because the individual averages are less similar.

As the season progresses (the overall season might comprise 400 or more
at-bats), both the variance in the numerator of Equation 4.28 and the
dispersion of the around will decrease. The value of will tend to
increase so that less weight is given to the overall average as more data
accumulates on each player.

4.13 James-Stein Estimation Experiment

As an illustration of James-Stein we wrote a simulation with ten items.
The application we have in mind is the space station (see Chapters 6 and 7)
where at any point in time the number of years of experience on each item
will vary, because the number of units of each item on the station will differ
and items are installed at different times in the station construction.

We provide the simulation with constant demand rates for a Poisson
process and then use a random number generator to draw the number of
“observed” demands as shown in Table 4-4. For example, the average
annual demand for item 1 is 0.800, and the simulation generates 4 demands
in 4 years. The “usual” estimate is the demand divided by the number of
years, namely 1.000. While the mean is an unbiased, consistent, maximum
likelihood estimator, we know already that it is not the most efficient when
there are three or more quantities to estimate.

The James-Stein estimator for the first item is 0.779, and this is better
(indicated by J in the last column), because it is closer to the true mean,
which is unknown to either estimator. The James-Stein estimator is more
complicated here, because the number of years of data is different by item. It
is necessary to use an iterative procedure to find the best shrinking constant
on each item (see Efron and Morris, 1977, for details).

The result is a tremendous improvement in squared error and a large
improvement in absolute error. Despite these improvements the James-Stein
estimate and the usual estimate are each closer to the true value in 5 cases.
Of course, the amount of improvement depends on the observed demands
drawn by the simulation as well as the extent to which the true demand rates
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are similar. James-Stein will always produce a lower expected squared error,
but in a specific trial it is possible that the error will be larger.

It is instructive to compare the James-Stein estimators for items 6 and 7.
The usual estimate of 0.333 is identical for the two items, but the James-
Stein estimator for item 6 gives more weight to the observed data because
there are 12 years of data as compared to item 7 with only 3 years. This
seems very reasonable.

We used another set of data with lower demand rates and more years of
history in the simulation. The results in Table 4-5 show less improvement in
the errors for James-Stein, but the James-Stein estimator is closer to the true
mean for 8 of the 10 items.

Of course, we have to be a little careful using James-Stein estimators if
we believe demand rates change. In Table 4-5 we have one item with 60



Demand Processes and Demand Prediction 85

years of data (the space station is supposed to last only 30 years). However,
as we noted above, there are multiple applications of the items on the station
so that the effective years of experience are greater than the elapsed time.
We would not recommend the constant demand rate assumptions here for
more than a year or two of elapsed time.

4.14 Comparison of Bayes and James-Stein

We have performed a variety of demand prediction experiments over the
years, including the “objective Bayes” procedure that was field-tested at
George Air Force Base, as described in Section 1.9. In this section we want
to describe a demand prediction experiment that was performed by
Sherbrooke (1987). There are two reasons for presenting this material: (1) a
general method is developed for comparing demand prediction techniques;
(2) a specific prediction technique is shown to perform best on each of the
three aircraft types studied, and thus this prediction technique may be best in
other problems as well.

A demand prediction technique in this context is defined to be procedures
for estimating both the mean demand and the variance-to-mean ratio of
demand over the next year for all first-indenture items on a particular aircraft
type at a base. It is important to stress that there is a fundamental difference
between demand prediction in a spares context and prediction of economic
indicators such as Gross National Product (GNP) or interest rates. In the
latter case the forecaster is trying to predict the quantity with minimum
error; in our case the logistician is not trying to predict mean demand, but
mean demand plus some safety level. That is why it is critical to predict item
variance-to-mean ratios as well as means.

The item data consist of quarterly Air Force demand totals and flying
hours for each of sixteen quarters, average repair time, and unit cost.

It is clear that both Bayes and James-Stein estimators shrink the observed
estimate toward the overall mean. The James-Stein procedure has one
important advantage over Bayes. It can be employed without knowledge of
the prior distribution - one not need even believe that such a thing as a prior
distribution exists. On the other hand, ignorance has a price in that the
James-Stein estimators have a larger expected squared error by an amount
proportional to 3/I, where I is the number of means being estimated. The
additional error is therefore negligible when I is greater than 15 or 20, and it
is tolerable for I as small as 9. For inventory theory applications where we
may be estimating hundreds of means, this difference will be unimportant.

4.15 Demand Prediction Experiment Design
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The basic idea of the experiment is to use the first 12 quarters of data and
a demand prediction technique to estimate the mean and variance of demand
for each item over the next year. Then the optimal availability model of
Chapter 2 is used to allocate a fixed investment across the group of items.
The result of this is a stock level for every item and a predicted availability
over the next year.

The use of an optimal availability model in the assessment of demand
prediction techniques is not a common idea, but it is powerful and we
recommend it highly. The alternative that is used in most demand prediction
studies is to look at error measures by item such as average absolute error,
squared error, or percent error. These must be combined across items to get
an overall measure, but should these errors just be added up or should they
be weighted in some way? There are additional difficulties if a measure such
as percent error is used and the true demand is zero. By contrast, the optimal
availability model takes care of both the problem of the appropriate item
error measure and how to combine across items: (1) the error function is
backorders which we know translates to our criterion of interest, availability;
(2) the combination of errors across items takes into account that we are
likely to have larger backorders on more expensive items.

Then we evaluate the demand prediction technique by seeing how well
those stock levels perform over the last four quarters of the 16 quarter data
base. Unfortunately, we don’t know the day on which each demand occurred,
so we are forced to take the quarterly total for each item and randomly
assign those demands to days within the quarter. Then we simulate the
performance of the supply system and the daily availability by using the
demands and the repair times, keeping track of the balance of stock on hand
or backorders. The result is an “attained” availability averaged over the year,
where the quotes are used to remind us that these availabilities were never
actually observed in the real world.

The effect of randomly assigning demand to days within a quarter will
tend to improve the availability of every demand prediction technique.
Unfortunately there is no good alternative when the data provide only
quarterly totals, but any large changes in demand from quarter to quarter
during the evaluation year will still affect the prediction techniques since the
randomization is done within each quarter subject to the observed quarterly
total. Although the performance of each prediction technique will be
improved somewhat by the randomization, the relative performance should
be affected much less.

The demand prediction experiment is to compare the “attained”
availability from a number of demand prediction techniques for a specified
total investment in spares. Our primary objective is to find the demand
prediction technique that yields the highest “attained” availability. A
secondary objective is to find a prediction technique that is properly
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calibrated in the sense that the predicted and “attained” availabilities are
close. The demand prediction experiment is summarized in Figure 4-3.

4.16 Demand Prediction Experiment Results

The most significant results from the demand prediction studies are:

1. The best estimator of mean quarterly demand from quarterly data is
exponential smoothing:

where indicates an estimated value, is the estimate of demand for the
next quarter, is the most recent quarter of observed demand, is the
previous quarterly observation, etc. and is the smoothing constant. We
recommend that with quarterly data the value of should be 0.4.

2. The best estimator of variance-to-mean ratio, V, is a power function of

the estimated annual mean,
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As noted above, these relationships are consistent with our observations
that demand is Poisson, but the mean changes or drifts over time. The form
of Equation 4.30 guarantees that the variance-to-mean ratio will never be
less than that of a Poisson with a constant mean, namely one. Extensive
details of the demand prediction experiments are provided in Appendix C.
For brevity we mention here that Equations 4.29 and 4.30 performed best on
each of the C-5, A-10, and F-16 aircraft systems. On the other hand there is
no proof that these relations are optimal – there is merely empirical evidence
that they perform well on the systems noted.

Table 4-6 shows that if the best technique for estimating the mean,
Equation 4.29, is used in conjunction with a Poisson assumption for the
variance-to-mean ratio instead of Equation 4.30, the “attained” availability
over the prediction year will be much lower. Also the predicted availability
from the Poisson assumption will be far too optimistic. The results are
shown for two investment levels and the C-5 aircraft, but similar results are
obtained for the other aircraft systems and are discussed in detail in
Appendix C.

In other words, suppose that there is $100 million dollars for spares over
the next year. We estimate demand over the next quarter using exponential
smoothing on the last twelve quarters with a smoothing constant of 0.4. Our
estimate of demand over the next year is obtained by multiplying the
estimate for the next quarter by four.

In Table 4-6 we compare two alternatives for estimating the variance-to-
mean ratio, V. One is to assume that demand has a Poisson distribution with
a constant mean (V = 1); the second is to use the power curve relationship.
These assumptions lead to different stockage policies. If we assume V = 1,
we would predict that over the next year the availability from that stockage
policy would be 99.9%, but in fact the attained availability with simulation is
only 62.2%. If we assume the power curve relationship to develop our
stockage policy, the predicted availability over the next year is only 91.1%,
but the attained availability of 91.3% is much higher than under the V = 1
assumption and it is very close to the predicted availability. Note that the
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simulation makes no assumption about the demand process, because it uses
the demands that were actually observed each quarter.

The objective Bayes techniques, discussed in Section 4.10, did almost as
well as the variance-to-mean ratio from Equation 4.30. However, Bayes is
more complicated, and it cannot be used unless there is demand data,
whereas Equation 4.30 can be applied to initial estimates. An interesting
finding is that the “system approach” to estimating variance-to-mean ratios
given in Equation 4.30 leads to much better estimates of item variance than
the past data on the individual items. This is partly because the item means
are changing over time, and thus computations of variance around a
changing mean are very unstable. It is also because we cannot hope to get
better estimates of demand (and variance) just by going back further and
using more historical data, since these values change with time.

4.17 Random Failure versus Wear-out Processes

The demand process for some items is not random, but results from wear
out. Such items as engine parts, tires, landing gear, gun barrels, batteries,
solar arrays are likely to have demand rates that increase around a service
life. Another way of looking at these wear-out items is that the probability
distribution of time to the next demand does not decrease uniformly like the
exponential. Instead there is a peak value to the right of the origin as in
distributions such as the gamma, Weibull, or log normal.

The gamma distribution was defined in Equation 4.20 above and shown
in Figure 4-2. The exponential is the special case where a = 1. Reliability
engineers tend to like the Weibull distribution (wei), which is another two-
parameter generalization of the exponential:

where the parameters a, b > 0. The mean is and

We prefer the gamma distribution to the Weibull, because we can specify
a mean and variance-to-mean ratio and compute the parameters of the
gamma distribution immediately. By contrast, two nonlinear equations must
be solved to determine the Weibull distribution parameters (see Problem 16).
But, for a given mean and variance-to-mean ratio the shape of the two
distributions is virtually identical as illustrated in Figure 4-4. The Weibull
does have an advantage over the gamma distribution. In a simulation where
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the time to the next failure needs to be drawn probabilistically, the Weibull
is easier to sample.

Our interest is not the time until the next demand, but something related
to it - the mean and variance-to-mean ratio for the number of demands over
the pipeline. Even when the underlying probability distributions are slightly
different, the pipeline means and pipeline variance-to-mean ratios will be
virtually identical. The important thing is that the variance-to-mean ratio for
these state probabilities, the number of demands during some time period T,
has a variance-to-mean ratio less than one. As in the case of the negative
binomial, we want to be able to take any specified mean and variance-to-
mean ratio, estimate the parameters of the best-fitting probability
distribution, and then calculate that probability distribution of demand.

It turns out that a particularly convenient choice of distribution is the
binomial (bin):

where x can be thought of as the number of successes in n trials when each
trial has probability of success. The binomial distribution has mean and
variance-to-mean ratio = where is in the range (0, 1) (see Problem
10). Note that this probability distribution is defined for non-negative
integers ending at n instead of infinity. When the mean, and variance-to-
mean ratio, V, over some time period T are specified, it is easy to solve for
the parameters n and since:
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implies that

However, we must be a little careful, because the ratio is not
necessarily integral, as required by Equation 4.32. Because of the integer
constraint on n, we cannot estimate parameters for arbitrary and V; but, we
can estimate parameters for an arbitrary and a slightly larger V, an
arbitrary V and a slightly larger or a and V that are each a little larger.
(It seems better to overestimate demand probabilities by rounding up rather
than down). We prefer the first of the three alternatives which implies that
the parameter estimation equations are:

where the bracket notation in the definition for n indicates the integer
portion. The addition of .99 inside the bracket insures that if is
integral, that value is used for n; otherwise the value of n is one larger. Thus,
ease of parameter estimation is one advantage of the binomial over other
state probability distributions with variance-to- mean ratios less than one.

A second advantage of the binomial distribution is that the binomial
recursion for x in terms of x - 1 is identical with that of the negative binomial
(Problem 11). Thus, the same computer program can be used for variance-
to-mean ratios less than one or greater than one.

Table 4-7 shows two binomial probability distributions, each with mean
one, and variance-to-mean ratios of .5 and .75. We have calculated the mean,
variance, and variance-to-mean ratio of backorders as well for comparison
with Table 4-2. Note that for any probability distribution, VBO(0)]/EBO(0)
equals the variance-to-mean ratio of demand. As s increases
VBO(s)]/EBO(s)] increases to a maximum and then declines. An example of
binomially distributed demand is provided in Problem 20.

In the next section we consider techniques for testing whether data are
Poisson, negative binomial, or binomial. We defer until Chapter 7 a
discussion of how more general failure rate distributions can be related to the
probability distribution for the number of units of an item that wear out
during a period of time.
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4.18 Goodness-of-Fit Tests

In previous sections of this chapter we have assumed that the probability
distribution of demand for an item is known, and the problem is to estimate
the mean and variance-to-mean ratio. Here we want to consider the inverse
problem of testing a set of observed data to see whether it meets the
hypothesis of binomial or Poisson demand with a constant mean.

We show how to use the chi-square test for goodness-of-fit in the
standard way, which may be familiar to some readers with statistical
training. Then we show how chi-square can be used in another much more
powerful way to construct an index of dispersion, a test of the variance
assumption. Hoel (1962) is the only source we have found for the index of
dispersion, and is also an excellent reference for the standard use of chi-
square.

Let X be a random variable for the number of demands in each of n time
periods of equal length. Let Obs(x) denote the number of these time periods
when X = x demands are observed, as shown in the example of Table 4-8.
(Note that the sequence in which the demands occur is irrelevant). We want
to test whether this data is consistent with the assumption of a Poisson
distribution with constant mean, First, the parameters of the probability
distribution must be estimated from the data, which for the Poisson is the
only the mean. In the example of Table 4-8, we observe 65 periods and a
total of 168 demands, so our estimate of is 168/65 = 2.58.

Next we estimate the expected number of periods with x demands, Ex(x),
for each value of x. Since we are assuming Poisson demand and have
estimated we can calculate shown in the third column of
Table 4-8. For example, Ex(0) = (65)p(0|2.58) = 4.9.

Since the chi-square is only an approximation to the exact distribution,
there are some restrictions on its use. The expected number of demands in
each cell, and the number of cells, If k< 5 then it is best to
have the Ex(x) be somewhat greater than 5. Because of the former reason we
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have combined all cells with 5 or more demands into one cell. It is
permissible to combine cells in any way, provided that the method of
combination is not influenced by the observed demands.

The chi-square test consists of adding up the quantity in the last column of
Table 4-8 over the k distinct values of x, and comparing it with the tabled
value for chi-square with k - 1 degrees of freedom that corresponds to the
desired significance level. Often a significance level of .05 is chosen which
means that if the computed value exceeds the threshold, there is no more
than a 5% chance that the data came from a Poisson distribution.

The test is performed for k -1 degrees of freedom, because one parameter,
the mean, was estimated from the k cells; more generally, when the chi-
square is applied to a problem where several parameters are estimated from
the data, the number of degrees of freedom must be reduced by the number
of parameters estimated.

When the chi-square test is applied in this standard fashion, we are forced
to accept the Poisson assumption because the computed value of 6.66 is less
than 11.07, the .05 significance level value for 5 degrees of freedom.
Looking at the data in Table 4-6, we note that demands of 8, 15, and 20 are
very unlikely from a Poisson with mean 2.58. However, due to the
requirement for the test was unable to discriminate between the
individual values of x in the last cell where observations were combined.

Now let’s turn to a more powerful version of the chi-square test. It is
more powerful than the standard version, because there is a greater chance
that we can reject the null hypothesis of Poisson demand with a given set of
data.

We begin by supposing that demand in each of the n periods has a
binomial distribution where y trials are made in each period resulting in
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successes in period i. Then failures occur in period i. These can be
arranged in the two-way table shown in Table 4-9.

The mean of each cell in the first row is the expected number of
successes

and the mean of each cell in the second row is the expected number of
failures,

Then the chi-square for the contingency table is just

where the probability of success, and the test is called the
binomial index of dispersion. The Poisson index of dispersion is obtained by
letting get very small in Equation 4.37 yielding:
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When the data of Table 4-8 is substituted into Equation 4.38, the estimate
of the mean is and there are n - 1 = 64 degrees of freedom
leading to a value of 243.3 for the chi-square. Since the number of degrees
of freedom, k, exceeds 30, the chi-square is tested using a normal
distribution with mean k and standard deviation 2k. This value of chi-square
is found to be 15.84 standard deviations from the normal distribution mean,
which implies that the probability the data came from a Poisson distribution
is less than .00005.

The increased power of the second chi-square test is due to the fact that
the number of degrees of freedom has increased from 5 to 64. In Table 4-8
the chi-square value for the last cell was quite small, because we had to
combine the observations for all demands of five or more. This is precisely
the part of the observed data that is most significant in rejecting the Poisson
hypothesis in the index of dispersion (Problem 17). However, the Poisson
index of dispersion will sometimes accept data as Poisson that is rejected by
the standard chi-square test (Problem 18).

Suppose that we want to do a goodness-of-fit test to the negative
binomial distribution. It is possible to use the standard approach as in Table
4-8, except that we must subtract two degrees of freedom since the mean and
variance-to-mean ratio are estimated from the data. However, there is no
negative binomial index of dispersion (Problem 19).

4.19 Summary

We have shown that an exponential probability distribution for the time
between demands leads to Poisson (state) probabilities for the number of
demands during any specified time period, T. The Poisson distribution was
generalized to the negative binomial whose variance exceeds the mean. It
has two parameters, allowing us to fit a mean and variance-to-mean ratio
separately to observed data. This in turn is useful for two reasons: (1) the
number of units of an item in the pipeline in Chapter 3 was treated as if it
were a Poisson variable, but the variance usually exceeds the mean, often
substantially; (2) when the demand rate changes or drifts with time, the
variance will exceed the mean.

We discussed Bayesian analysis and suggested that in many problems
good agreement between different analysts can be obtained for the prior
distribution. Sometimes “objective” Bayes procedures can be applied, as in
the field test of the Base Stockage Model at George Air Force Base.
Empirical Bayes techniques can be applied to some Bayes problems if the
sample size is very large. We discussed a standard Bayesian procedure to
combine demand data with initial estimates by item. This requires the



96 Optimal Inventory Modeling of Systems

analyst to estimate the relative “information” in the initial estimate and
demand over a period of time.

An alternative approach that requires no prior distribution is the use of
James-Stein estimators. Bayes and James-Stein proceed from different
philosophical premises, but they tend to produce very similar estimates.

Demand prediction experience was discussed and it was concluded that
exponential smoothing for the estimation of mean demand and a power
formula based on the estimated mean were the best techniques for each of
three different aircraft systems. The objective Bayes technique did almost as
well, but was not recommended because of its additional complexity and its
inapplicability to problems where there are only initial estimates. The topic
of demand prediction is given more detailed attention in Appendix C.

Then we showed that items whose failure is dominated by wear-out
phenomena can be modeled with a binomial distribution which has a
variance-to-mean ratio less than one. The binomial distribution is easy to
use, and has the same recursion formula as the negative binomial.

Finally, we discuss the problem of testing observed data to determine
whether it may be binomial, Poisson, or something else. In addition to the
usual chi-square goodness-of-fit test we derive expressions for the binomial
and Poisson indices of dispersion. These tend to be much more powerful
tests with a greater capability of rejecting the null hypothesis because the
number of degrees of freedom is greater.

4.20 Problems

1. Combinations
Suppose that there are four possible outcomes with
probabilities .1, .2, .3, and .4 respectively. The probability of a particular
sequence of the four distinct outcomes, for example, is just the
product of the probabilities. Show that the probability of getting each
outcome once in a series of 4 trials is .0576. Write out all the possible
sequences and show that there are 4! = 24.

2. Suppose that outcomes and are now indistinguishable and that
and are now indistinguishable. Use the combinatorial formula in Section
4.3 to show that the probability of 2 a’s and 2 b’s is now .2646. Write out all
the possible distinguishable sequences and show that there are 6.

3. Using Equations 2.1 and 2.2, verify the mean and variance-to-mean
ratio of the negative binomial as shown in Section 4.3. Also demonstrate that
the formulas for a and b given in Equation 4.8 are correct.

4. Derive a recursion formula for neg(x + 1) in terms of neg(x) and
multiplicative terms for the negative binomial of Equation 4.5.
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5. Show that as the variance-to-mean ratio of the negative binomial, 1/(1
- b), approaches one, the negative binomial probability of zero, neg(0), of
Equation 4.5 converges to the Poisson probability of zero, p(0), for any fixed
mean. (Hint: Hold the mean, ab(1 - b), constant and show that as b
approaches zero the logarithm of neg(0)/p(0) approaches 0. Use the power
series expansion for log(1 - b) following Equation 2.19.)

6. Verify the recursion formula for the second moment of the backorder
function as given by Equation 4.15. Use this recursion formula to compute
VBO(s) for s = 0, 1, 2, 3 when the mean is one and demand is Poisson. The
answers are given in Table 4-2.

7. Verify the values of EBO(1) and VBO(1) in Table 4-2 for the negative
binomial and in Table 4-4 for the binomial.

8. Since the numerical, multi-indenture example of Section 4.5 gave an
answer outside the 95% confidence interval from the simulation, why not
simulate instead of using an analytic model?

9. Show that the posterior distribution in Equation 4.20 is a
gamma distribution where the prior distribution parameters a and b are
replaced by (a + x) and (b/b + 1) respectively.

10. Using Equations 2.1 and 2.2, verify the mean and variance-to-mean
ratio of the binomial distribution as shown in Section 4.17.

11. Show that the recursion formula for bin(x + 1) in terms of bin(x) and
multiplicative terms for the binomial of Equation 4.32 is the same as that for
the negative binomial derived in Problem 4.

12. Show that the Poisson distribution has the “independent increments”
property of Section 4.3 for any non-negative values of y (discrete), and

This is also called a convolution, and it is easy to evaluate.
13. Show that the binomial distribution of Section 4.17 has the

“independent increments” property of Section 4.3 for any non-negative,
discrete values of y, and and fixed   in the range (equivalent
to a fixed variance-to-mean ratio, V):

Hint: Establish the identity:
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by expanding each bracket of

for arbitrary a, b > 0 and setting coefficients of for each value of
y equal on both sides of the equation. Note that the first identity establishes
that the hypergeometric is a probability distribution, i.e. for fixed and
y the individual probability terms on the right after division by the left-hand
side sum to one.

14. Show that the negative binomial distribution (neg) has the
“independent increments” property of Section 4.3 for any y, and for a
fixed variance-to-mean ratio, V:

15. If a, b are the gamma distribution parameters, show that the
denominator of Equation 4.20 has a negative binomial probability
distribution with parameters

16. Figure 4-4 was generated by selecting Weibull parameters a = 3, b =
3. This resulted in a mean of 2.6802 and a variance-to-mean ratio of .3533.
Then these values were used to estimate the parameters of the gamma
distribution.

Suppose that it is desired to have a Weibull distribution with mean = 4
and variance-to-mean ratio = 1. Using a table of gamma functions (Table 4-
10), make two iterations to attempt estimation of the Weibull parameters.
Compare this with the difficulty of estimating the gamma distribution
parameters.

17. Using the data of Table 4-8, show that the chi-square value for the
Poisson index of dispersion from Equation 4.38 equals 243.3. Note which
observations make the largest contribution to this value of chi-square.

18. The Poisson index of dispersion is usually a more powerful test than
the standard chi-square test because there are more degrees of freedom.
However, it will accept the Poisson hypothesis if the overall variance-to-
mean ratio is about one, regardless of the individual observations which may
be highly non-Poisson. Construct an example that is accepted by the index of
dispersion and rejected by the standard chi-square test. Hint: Suppose that
there are 100 observations, of which 50 are 0’s and 50 are 2’s so that the
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mean and variance-to-mean ratio are each one. The Poisson probabilities are
given in Table 4-2.

19. Show that there is no negative binomial index of dispersion, because
the derivation of Equation 4.37 requires that observations can be
characterized as in Table 4-9. Note that the Poisson index of dispersion can
be defined even though the number of trials y is unknown, because is a
constant.

20. Let M be the average demand rate for an item per location on an
aircraft per flying hour. Suppose the sortie length is t hours. Normally the
expected demands per location per sortie, Mt, is much smaller than one.
However, suppose that because of aerial refueling or other reasons the sortie
duration becomes very long and the product, Mt, is near one. Since an item
in a particular location can fail once or not at all in a sortie, the Poisson
demand assumption is not appropriate. Find a general formula to estimate
the correction factor necessary (due to the fact that after the first demand at a
location during the sortie, there can be no further demands), and show that
when Mt = 1 the mean should be multiplied by .63. Find the general formula
for the impact on the variance-to-mean ratio, and show that it is about .37
when Mt = 1.
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Chapter 5

VARI-METRIC: A MULTI-ECHELON, MULTI-
INDENTURE MODEL

There is no royal road to geometry.
–Euclid

Chapter Overview5.1

In Chapter 3 we presented the METRIC theory for the multi-echelon
problem and demonstrated the optimization procedure. METRIC was the
first practical application of multi-echelon inventory techniques, and it has
formed the theoretical foundation for a number of models used by the
military services of the United States and its allies as well as a number of
private companies.

When we developed METRIC, we knew that it understated base
backorders. In most cases the error was not large, and the simplicity seemed
more important than the lack of precision.

Subsequently other investigators derived exact solutions, usually at the
expense of more restrictive assumptions; for example, Simon (1971)
assumed constant instead of arbitrary resupply times and Poisson instead of
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compound Poisson demand. Kruse (1979) developed an exact solution for
the multi-echelon problem. However, both Kruse and Simon’s models
require substantial computer time, which is an important consideration,
particularly when modeling many echelons or indentures.

Slay (1984) devised an improvement to METRIC that he called VARI-
METRIC, and Graves (1985) more recently published a simple derivation of
this approximation. The advantage of the VARI-METRIC technique is that it
is much easier to compute than previous improvements. Though Graves
found it necessary to assume constant resupply times, he retained the
compound Poisson demand assumption. Graves showed that in 11% of
cases, the METRIC stock levels differ by at least one unit from the optimal
results; the VARI-METRIC levels differ in only 1% of cases.

We demonstrated in the previous chapter that the METRIC approach as
applied to the multi-indenture problem can lead to substantial
underestimation of backorders. It was shown that by taking into account not
only the mean pipeline values, but the variance as well, it is possible to
obtain a much better estimate of backorders. This is an example of the
VARI-METRIC technique, for which we present in this chapter the
combined multi-echelon, multi-indenture theory as published in Sherbrooke
(1986).

Before dealing with the combined problem, we derive the mean and
variance for the number of units in the pipeline in the multi-echelon case,
which requires the proof of a statistical theorem. Then in Section 5.3 we
describe the “physics” of the combined multi-echelon, multi-indenture
problem. The demand at the base for the first-indenture line-replacable unit
(LRU), in combination with the various item parameters such as repair
probabilities, allows us to compute the demand for the LRU at depot and for
the second-indenture shop-replaceable unit (SRU) demand at base and depot.

Then starting with depot demand for the SRU, we compute the depot
pipeline for SRUs and the delay at the depot for LRU repair and at the bases
for SRU resupply. Eventually the delay at the base for the LRU is calculated
and the expected backorders, from which we can compute availability.

We discuss the calculation of optimal policies and show how to
generalize the assumption of constant resupply times that do not vary by
base. The Poisson demand assumption is generalized to the cases where (1)
the mean changes over time; (2) failures are due to wear-out rather than to
random causes.

In Section 5.12 we address the topic of commonality, where a specific
SRU may be used on more than one LRU. Clearly commonality is desirable,
because the total stock required is less in that case. Then we show how we
can determine reorder points and order quantities for items at each echelon.
This is particularly important at the depot and for items that are inexpensive
or have little or no chance of being repaired.
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We discuss how to take into account that all first-indenture items are not
equally critical to the operation of the aircraft. Then we show how the
availability due to spares can be modified to include the degradation due to
remove-and-replace maintenance as well as to periodic maintenance.

The theory in this chapter applies to the case where repair/resupply can
be initiated at any time (continuously) and where cannibalization is not
performed to consolidate “holes” on the fewest end items. The case of
periodic resupply is addressed in Chapters 6, 7 and cannibalization is
covered in Chapter 8. Another case of interest is where there is no resupply;
the spares may be for a flyaway kit or a war reserve spares kit that must
support independent operations for a period of time. In Section 9.5 we show
that this problem is just a special case of VARI-METRIC.

Mathematical Preliminary: Multi-Echelon Theory5.2

In Sections 4.4 and 4.6 we derived equations for the mean and variance
of the number of units in the pipeline for the multi-indenture case. Here we
need to develop the equations for the multi-echelon case before considering
the combined problem.

If we assume that the depot to base order and ship time, O, is a constant
that does not vary by base, the resupply delay to any base at an arbitrary
time, t, is a function of the status at depot at time t - O. We assume that the
depot fills orders on a first-come, first-served basis. Then the distribution of
outstanding orders to base j, conditional on the total number of outstanding
orders, has a binomial distribution. We will use this fact repeatedly below
when we calculate the VARI-METRIC multi-echelon equations. The reader
who is not interested in the mathematical details may prefer to skip this
section and accept the results embodied in Equations 5.8 and 5.11. The
significance of these multi-echelon equations is that the pipeline variance
always exceeds the mean unless the depot stock level is zero. This is
analogous to our multi-indenture results in Section 4.6 where we found that
the LRU pipeline variance always exceeds the mean unless each SRU stock
level is zero.

The number of units in the pipeline for base j, is related to the number
of units in repair at the depot, The expected number of units in the
pipeline can be written in terms of the conditional expectation in a manner
similar to Equation 4.23
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The variance is more complicated and requires proof so we state the
following:

LEMMA: Let and be two variables that are not independent of each
other. Then the variance of can be computed as

PROOF: The terms on the right-hand side are interpreted in the proof below,
which follows Parzen (1962). The variance was defined in Equation 2.2:

The last equality is just Equation 5.1. But for any random variable Y and
constant a

Using this relationship, the inner bracket on the right-hand side of Equation
5.3 for any fixed becomes:

Upon taking expectations of both sides in Equation 5.5 with respect to
we obtain

which is another way of writing Equation 5.2, proving the lemma.
Now we want to evaluate Equations 5.1 and 5.2 for the multi-echelon

problem where the LRU stock levels are at base j and at the depot. To
evaluate the inner bracket in Equation 5.1 we note that if there are no
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depot backorders delaying a resupply to the base. Thus, the average number
of units in the base pipeline is just the average number in resupply:

where is the average annual demand by base j on depot for resupply (we
generalize to allow some base repair later) and O is the order-and-ship time
to any base.

When there are depot backorders, of which an average
fraction are from base j. Thus, the expected number of units in the
pipeline to base  j is:

and taking the expectation with respect to in Equations 5.6 and 5.7 shows
that Equation 5.1 equals:

Now consider Equation 5.2. To evaluate the second term on the right we
need the variance of the quantities on the left-hand side of Equations 5.6 and
5.7 for a specified Since the variance of a constant, is zero, and the
variance of a constant times a variable is the square of the constant times the
variance of the variable we have:

The inner bracket of the first term on the right of Equation 5.2 is very
similar to Equations 5.6 and 5.7, where we utilize the fact that there is a
binomial distribution of the depot backorders to base j.

When Equation 5.9 is added to the expectation of Equation 5.10 with
respect to Equation 5.2 becomes:
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Equations 5.8 and 5.11 will be used repeatedly in Sections 5.5 to 5.7
below, when we need to compute multi-echelon pipelines. Note that when
equals as in the multi-indenture problem, Equation 5.11 reduces to
Equation 4.16 for a single SRU with the proper notational changes.

Definitions5.3

The combined multi-indenture, multi-echelon process begins when an
LRU fails and is brought into base supply. If base supply has a spare LRU, it
is issued; otherwise a base LRU backorder is incurred. The failed LRU has a
probability of being repaired at the base; otherwise, if the repair is too
complex, the LRU is sent to the depot for repair and a resupply request for
the LRU is placed on depot.

If the LRU is repaired at the base, we assume that one and only one SRU
will be found to have failed. If a spare SRU is available, it is put on the LRU
and the LRU repair is completed. The SRU has a probability of being
repaired at the base; otherwise the SRU is sent to the depot and a resupply
request for the SRU is made on the depot.

When an LRU repair/resupply is completed, a backorder is satisfied if
there are any outstanding; otherwise, the LRU stock on hand is increased by
one. If the LRU is not repaired at the base, a similar process for SRU repair
occurs at the depot. We assume that all SRUs can be repaired at the depot.
Later this assumption is relaxed.

Next, define the following constants with the convention that i denotes an
SRU item, 1, 2, . . . , I (0 = LRU) and j denotes a base, 1, 2, . . . , J (0 =
depot):

= average annual demand for SRU i at base j
= average repair time (in years) for SRU i at base j
= probability that a failure of SRU i at base j can be repaired at that

base

= conditional probability that an LRU being repaired at base j will

result in a fault isolation to SRU i where
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= constant order-and-ship time from depot to any base of SRU i if the
depot has stock on hand. Note that this time does not vary by base.
This assumption is relaxed in Section 5.10.

= stock level for SRU i at base j

As before, a stochastic variable is needed for the pipeline: = number
of units of SRU i at base j that are in repair or resupply at a random point in
time

It will be useful to modify the notation for expected backorders slightly
to include a second argument, Var, for the variance of the state probabilities.
When the state probabilities are Poisson, and hence the variance equals the
mean, the second argument will be suppressed. Var) = expected
backorders when the stock level is s and the state probabilities have mean
and variance Var. The notation for the variance in backorders will be
expanded similarly to Var).

Demand Rates5.4

We assume that demand is Poisson until Section 5.11, where that
assumption is generalized. It is necessary to develop equations for SRU
demand rates and LRU depot demand rates as a function of the base LRU
demand rates, for j > 0. The sequence of these derivations is shown by
the arrows in Figure 5-1a.

The average annual demand for SRU i at base j is the average annual
demand for the LRU at the base times the probability that the LRU is
repaired there times the probability that the LRU repair results in a demand
for SRU i:
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The average annual demand for the LRU at the depot is the sum of LRU
demands at the bases that result in resupply of LRUs from the depot:

The average annual demand at the depot for SRU i is the resupply
demand summed across the J bases (average annual demand for SRU i at
base j multiplied by the probability that SRU i is not repairable at the base)
plus the average annual SRU demand resulting from LRU repairs at the
depot. (Note that the standard MOD-METRIC model of Section 4.4 ignores
this second source of SRU demand)1. Therefore,

The diagram in Figure 5-1b shows the sequence of pipeline and
backorder calculations required to compute the expected base backorders for
the LRU. This is exactly the reverse of the sequence used to calculate the
demand rates above. Our focus is one item group (an LRU and its second-
indenture SRUs).

Mean and Variance for the Number of LRUs in
Depot Repair

5.5

The fraction of depot demand for SRU i due to depot LRU repairs is

The number of LRUs in depot repair consists of two groups: (1) the
number of LRUs in the depot repair pipeline when there are no delays for
SRUs; (2) LRUs delayed in repair because of not having the required SRUs
on hand at depot. For the same reasons underlying Equation 4.12, these two
groups are independent. A particular SRU backorder has a probability that
it is delaying an LRU repair at depot and a probability that it is
delaying a resupply to some base. For any total number of backorders on

MOD-METRIC ignored demand for SRUs caused by depot repair of LRUs, because it
would have required a more complex optimization procedure. We use a different
optimization procedure, which allows us to include this important source of demand.

1
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SRU i at depot, the probability distribution for the number of them that are
delaying LRU repair has a binomial distribution. Thus the mean and
variance for the number of LRUs in depot repair are from Equations 5.8 and
5.11:

Mean and Variance for the Number of SRUs in
Base Repair or Resupply

5.6

Analogous to the definition of let be the fraction of all demand at
the depot for SRU i that is being resupplied to base j:

Equations 5.14, 5.15, and 5.18 imply that

The number of SRU i in repair or resupply to base j is the number of
units in the pipeline plus the delay due to the fact that the depot does not
always have the SRU on hand. The fraction of the latter delay affecting base
j has a binomial distribution again (since is assumed to be a constant that
does not vary with the base j). Equations 5.8 and 5.11 yield the mean and
variance for the number of SRU i in repair at base j or being resupplied to
base j:
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5.7 Mean and Variance for the Number of LRUs in
Base Repair or Resupply

Let be the fraction of LRU demand that came from base j:

Note that because of Equation (5.13)

The number of LRUs in repair/resupply at base j may be divided into
three groups: 1) the number of units of the LRU in the pipeline when there
are no backorders; 2) the LRU resupply delay due to LRU backorders at the
depot; 3) the base LRU repair delay due to SRU backorders at base. Since
each LRU failure is assumed to be due to the failure of one SRU only, the
mean and variance of the third group is just the sum of means and variances
for the SRUs as in Equations 4.12 and 4.16:
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Under the assumption of Poisson demand the variance of the number of
SRUs in depot repair was equal to the mean number in depot repair. But
unless the stock level for SRUs at the depot is zero, the variance of the
number of LRUs in depot repair in Equation 5.17 is larger than the mean in
Equation 5.16. Similarly unless the stock level for SRUs at the depot is zero,
the variance of the number of SRUs in base repair or resupply in Equation
5.20 is larger than the mean in Equation 5.19. Finally the variance of the
number of LRUs in base repair or resupply in Equation 5.23 is even larger
when compared to the mean number in repair or resupply in Equation 5.22.
This is because the state probabilities on the right-hand side of these
equations have variances that exceed their means unless all stock levels at
the depot and all SRU stock levels at bases equal zero.

Availability5.8

The availability at base j due to expected backorders on the LRU and its
SRUs is given by

where is the number of aircraft at base j and is the number of
applications of the LRU (QPA) on the aircraft. The right-hand side of
Equation 5.24 must be multiplied by a similar bracketed term for every LRU
family to obtain the overall availability at base j, and the availabilities at
each base j must be multiplied by the number of aircraft using Equation 3.3
to obtain the overall system availability. As before, if for any
item,
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The minimization of the sum of base LRU backorders is equivalent to
maximization of availability only if the number of aircraft is the same at
each base. Otherwise it is necessary to weight the base LRU backorders by
base in Equation 5.24.

Optimization5.9

We have shown how to calculate the expected base backorders as a
function of depot and base stock levels for an LRU and its second-indenture
SRUs. The optimization procedure consists of augmenting these levels and
retaining those solutions that lie on the convex hull. A similar optimal
function for the sum of base backorders versus cost must be computed for
each LRU family (i.e. the LRU and its SRUs), and then marginal analysis is
used to combine across LRU families to obtain the system solution.

Generalization of the Resupply Time Assumptions5.10

In the previous sections we assumed that the depot to base resupply time,
is a constant that may vary by item but not by base. As a practical matter

we are more likely to want to model variation by base (e.g. U.S. vs. overseas
bases) rather than by item. Also, it would be nice to generalize the
assumption of a constant time to an arbitrary probability distribution of
resupply time.

These generalizations cause no theoretical difficulty in the Calculation for
the mean and variance of the number of units in the resupply pipeline (e.g.
the first part of Equation 5.19, because Palm’s theorem is applicable. The
problem arises in the allocation of depot backorders for a particular item i to
the several bases. We have no guarantee that the binomial distribution is
appropriate, because the status at each base at an arbitrary time, t, relates to
the depot status at different earlier times,

However, it is likely that the binomial is not an unreasonable
approximation in the more general case. Equations 5.19 and 5.22 for the
expected values should still be correct; Equations 5.20 and 5.23 for the
variances will be wrong if the distribution is not binomial, but the error
should be slight, particularly if the depot backorders are not too large. We
would expect that the approximation would tend to be better as the number
of bases increases as well. Finally, it is important to remember that VARI-
METRIC is an approximate model anyway. If the order and ship times do
vary by base, that should be reflected in the model input because the
pipelines are computed correctly even if the binomial allocation of
backorders to bases is only approximately correct. (see Problem 7).
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Generalization of the Poisson Demand Assumption5.11

In Chapter 4 we noted that real world data suggest that there are demand
processes other than Poisson with a constant mean: (1) random failures from
a Poisson process with a changing mean that lead to a variance-to-mean ratio
greater than one; (2) failures due to wear out such that the variance-to-mean
ratio is less than one. In Tables 4.2 and 4.5 we provided examples for the
mean and variance of backorders when the state probabilities are negative
binomial or binomial respectively.

Let’s consider Equations 5.16 and 5.17 and see what changes are required
to approximately model demand processes with variance-to-mean ratios that
are not one. The first term on the right-hand side of Equation 5.16 is the
expected number of LRUs in the repair pipeline and is unaffected. The
expected backorders in the second term for each SRU i are computed for a
mean demand over a time period

We start with the case of variance-to-mean ratios greater than one arising
from a Poisson process with a changing mean. Suppose that we believe an
estimation equation such as Equation 4.30 is appropriate for estimating the
variance-to-mean ratio of annual demand from an estimate of the annual
mean. We substitute for in Equation 4.30 to obtain an estimate of the
variance-to-mean ratio, V. Then, the expected backorders on the right-hand
side of Equation 5.16 are computed using a negative binomial distribution
with a mean of and the variance-to-mean ratio, V, just computed. This
must be done for each SRU i, and we will obtain different values of V
usually. Similar considerations apply to Equation 5.17 except that the first
term on the right-hand side, must be multiplied by the variance-to-
mean V for the LRU, obtained by substituting into Equation (4.30) using
as the average annual demand.

Now we turn to variance-to-mean ratios less than one arising from items
with wear-out characteristics. If we assume that SRU i failures are primarily
due to wear out, then we can evaluate Equations 5.16 and 5.17 using
binomial state probabilities. Here we have no estimation equation for
variance-to-mean as a function of the mean, so we would typically assume
that the variance-to-mean ratio is independent of the mean value. However,
this does require the user to make an estimate of variance-to-mean ratio. We
will return to this topic in Chapter 7. Of course, an alternative that can be
used is to assume that demand for these wear-out items is Poisson. This
overstates variance, but that is less severe than understating the variance of
Poisson demand processes with changing means.
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Common Items5.12

Suppose that a specific SRU is used on two (or more) different LRUs.
The theory above has ignored this possibility, with the result that the total
stock for the SRU, computed as if the SRU were unique in the two locations,
would be unnecessarily large (or the backorders would be overstated).
Obviously commonality is desirable.

The mathematical modifications necessary to model commonality are
straightforward. For example, consider the modifications to Equations 5.16
and 5.17 for the mean and variance of the number of units of the LRU in
depot repair. must now be the total depot demand for SRU i from all
LRUs on which it is common. Similarly, is now the fraction of total depot
demand for SRU i that arises from depot repair of a particular LRU parent.
Only a portion of the backorders for the common SRU at depot contribute to
the pipeline delay at depot for a particular LRU parent. As before, this
portion has a binomial probability distribution, so that Equations 5.16 and
5.17 are still valid with the revised definitions of and Of course, the
effect of the SRU must be computed for all LRU parents, and comparable
changes made in the Equations 5.22 and 5.23 for the mean and variance of
the number of units of each LRU parent in base repair.

The SRU can be common to many LRUs, and there can be more
indentures and echelons. This does complicate the computer programs
substantially (particularly because sub-SRUs could be common to several
SRUs some of which in turn are common to multiple LRUs), but the basic
logic is the same. The computer programs have to be even more
sophisticated to take into account that a common item does not always
appear at the same indenture level.

Consumable and Partially Repairable Items5.13

We have considered only repairable items. As explained in Chapter 1,
this simplifies the stockage problem in that it is appropriate to use an (s - 1,
s) inventory policy. We buy a stock level s and the quantity to order or repair
is one. Now we must find a way to compute the reorder point, R, and order
quantity, Q, for lower-indenture items which may have large demand and
low cost.

The mathematical problem is that it is more difficult to find the optimum
values of two decision variables, R and Q, on each item rather than just the
stock level. Muckstadt (1982) suggested that a simple, approximate
approach would be to use the (s - 1, s) inventory theory of the repairable
item models to calculate the optimal stock level for each item at each
location and the expected backorders. Using the expected backorders for a
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particular item and location as a constraint, it is easy to calculate on a single
item basis the optimal Q and R.

It turns out that when the resulting Q’s are greater than one, it is most
likely to be at the depot where demand is largest and for inexpensive items
that are seldom repairable. The latter is due to the fact that the average depot
pipeline time is the procurement lead time rather than the depot repair time
for such items, and the procurement lead time is typically longer. Also, the
external order cost for a procurement is typically larger than the internal
order cost between echelons of the supply system.

Of course, the economic order quantity, Q, may be greater than one for
other types of items and at other echelons. It should be noted that in each
case the reorder point and order quantity for resupply from the next higher
echelon is being computed. The demand that is repaired locally at the site
does not enter into the calculation of Q and R.

To perform this calculation we need the probability distribution of lead
time demand. Since the variance of lead time demand can exceed the mean,
we could use the negative binomial or a continuous distribution such as the
normal. Since the normal distribution theory is given in Hadley and Whitin
(1963), the normal would seem to be the obvious choice. However, an
iterative procedure is required, because the equation for the reorder point is a
nonlinear function of the order quantity and vice-versa. Thus, it is necessary
to make initial guesses for the Q and R, and then to refine them by
substituting the latest estimate for Q into the equation for R, and then
substituting this R into the equation for Q, etc. The procedure does converge
rapidly in most cases, but is cumbersome.

Presutti and Trepp (1970) found that if demand is assumed to follow a
Laplace distribution, the equation for Q is independent of R and no iteration
is required. They show that the Laplace is similar to the normal, though it
has a larger peak and longer tails for any specified standard deviation, a, as
depicted in Figure 5-2. Again, our interest is not the difference in the
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individual probabilities, but the difference in the reorder point and order
quantity from the two distributional assumptions. We will return to this
consideration below.

We define the following variables for a particular item:

= expected demand during a lead (or resupply) time
T  = constant lead time

= standard deviation of demand during a lead time
R = reorder point
k = protection level =
Q = order quantity

EBO(Q, k) = expected backorders at a random point in time, based on
the two parameters Q and k instead of s as before. (Note the reorder
point R can be computed from k).

The Laplace distribution for lead time demand is given by:

Using the approach of Hadley and Whitin, the probability that the number of
units backordered at time t is between y, y + dy given that the inventory
position (on-hand plus on-order minus backorders) is between L, L + dL, at
time t -T is:
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This is because any stock on order at t - T must have arrived by time t,
and any demands after time t - T cannot have been replenished. Hadley and
Whitin show that the probability that the inventory position is between L,
and L + dL is dL/Q. Therefore, Presutti and Trepp find that the probability
that the number of units backordered is between y and y + dy is

Note that we have been able to delete the absolute values from Equation
5.25, because we consider values of y such that L + y is greater than This
is equivalent to requiring a positive safety level.

The annual costs of ordering and holding for an item at a site from
Equation 4-57 in Hadley and Whitin [1963] are to be minimized with respect
to Q and k:

and the expected backorders are:
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subject to:

where m = average annual demand on the next higher echelon support site
= fixed order cost
= holding cost per unit per year
= item cost
= backorder target determined by VARI-METRIC (this must be

the backorders for the portion of stock being resupplied from
the next higher echelon)

Note that the first term of Equation 5.31 is the average cost per order
times the average number of orders/year; the remaining terms are the
average annual cost of holding a unit of the item times the average stock-on
hand.1 We substitute into Equation 5.31 so that the variables are
now Q and k instead of Q and R. Then we want to minimize the sum of
Equation 5.31 plus a Lagrange multiplier, times the constraint Equation
5.30.

When this expression is differentiated with respect to k and set equal to
zero, it can be solved for the Lagrange multiplier:

where we have defined

When the same expression is differentiated with respect to Q and set
equal to zero, it is possible to substitute for the Lagrange multiplier from
Equation 5.32 and obtain:

The average stock on hand can be computed from Equation 2.5, s = OH + DI - BO. In the
place of the constant s, we substitute the term inventory position, IP, because it is not
constant in the general case with Q > 1. Transposing terms and using expected values, we
obtain E[OH] = E[IP] - E[DI] + E[BO].

1
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Note that Equation 5.34 is independent both of k (which defines the
reorder point, R) and the backorder constraint, That is, of course, the
reason that we are using the Laplace distribution. Equation 5.34 cannot be
solved explicitly for Q. An iterative solution is possible, but an easier
alternative is to recognize that in most cases in Equation 5.33 is
approximately one, so that Equation 5.34 can be written:

and

Usually we constrain Q so that it does not exceed five years of demand,
and it must be a positive integer. Then we can solve for k directly from
Equation 5.30, because the backorders should equal the constraint in order
to minimize Equation 5.31:

where the constraint on R in the minimization of Equation 5.31 implies that
and At first glance it seems odd that the formula

for k, the multiple of for safety level, should be preceded by a minus sign;
but k is usually positive because we are taking the logarithm of a number
which is typically less than one, and the result is a negative number.

Note that it is easy to solve these equations. We substitute into Equation
5.36 to obtain Q and use that value in Equation 5.37 to solve for k and the
reorder point, R. Remember that the Q and R relate to the demand on the
next higher echelon support site, excluding any demands that are repaired
locally. By letting go to zero in Equation 5.36, we see that we have derived
the Wilson lot size from Equation 1.1.
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Suppose that the lead time is not constant. We used the constant lead
time assumption in the derivation of expected backorders. If the lead time is
allowed to vary, the estimate for expected backorders will not be precisely
correct. Of course, it is an approximation anyway, because of our use of the
Laplace distribution. But, if the lead time is not constant, then is the
standard deviation of demand over the lead time including both demand
variability over a fixed lead time and lead time variability. Thus, will be
larger than in the constant lead time case (see Problems 4 and 5).

Numerical Example5.14

Let’s do a computation of the economic order quantity and reorder point
at the depot for a specific item. Assume that demand is Poisson and:

Average annual depot demand = 20
Fraction not Repairable at Depot (NRTS) = 1
Unit cost = $200
Average annual holding cost rate = 0.25
Order cost = $300
Procurement lead time (constant) = 220 days

From the VARI-METRIC optimization that meets the target (availability,
budget, or whatever), we use the expected backorders for this item at the
depot of 0.1 as a target for our single-item computation.

We solve Equation 5.36 for Q first, and then substitute that value into
Equation 5.37 for r. In order to compute Equation 5.36, we need the average
annual demand on the support site (procurement source in this case). The
annual demand on procurement, m, is just the annual depot demand
multiplied by the NRTS fraction:

We need the standard deviation of lead time demand. Assuming Poisson
demand and a constant lead time, the standard deviation of lead time demand
is the square root of the lead time demand (see Section 1.10). The
procurement lead time demand, is just the average demand over the lead
time:

and the standard deviation of lead time demand is:
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Finally, from Equation 5.36

which rounds to 18. Now we can substitute into Equation 5.37 for k:

and we find the reorder point, R, from the expression following Equation
5:37 as:

which rounds to 13.
Suppose we modify the problem so that the item is sometimes repairable,

with a NRTS = 0.5; assume the average depot repair time is 30 days.
Repeating the computation above, we find Q = 13 and R = 6.28 before
rounding. However, the reorder point needs to be related to our inventory
position, the sum of on hand plus due-ins minus backorders; we must add
the depot repair pipeline which equals:

so that the reorder point is 7.10, or 7 after rounding.
There is one other little detail. The expected backorder target from VARI-

METRIC was assumed to be 0.1 for the depot on this item. But in the case
where some demand is repaired at the depot and some is reprocured, the 0.1
needs to be allocated between the two pipelines. We believe the most
appropriate split is in proportion to the pipelines; thus, instead of 0.1 in the
second case with some depot repair, the backorder target, used in the
calculation of R, should be (0.1)(6.03)/(6.03 + 0.82) = 0.88. In this case, the



122 Optimal Inventory Modeling of Systems

impact is small, but when the NRTS fraction is fairly small, the expected
backorder target for the procurement (or resupply) pipeline will be reduced
significantly. On the other hand, if the NRTS fraction is small, the
procurement demand will also be reduced, which reduces Q and R. For
example, following the same calculations where the NRTS = 0.1 and the
backorder target is reduced by the pipeline ratios to 0.045, yields Q = 5, and
R = 3; the latter includes the depot repair pipeline of 1.48.

Item Criticality Differences5.15

Our implicit assumption in all the modeling above has been that a
backorder on any first-indenture item at a base is equally critical to the
performance of the aircraft. As a first approximation, that appears to be
reasonable in most cases. However, it is possible to refine that assumption.
We have already discussed weighting the backorders differently by base
when the number of aircraft vary by base, or when various parameters may
vary by base (order and ship times, demand rates, repair times, etc.) and we
want to meet specified base availability targets.

Suppose that there is an LRU that is only needed on some fraction f of
the flights. Then it would be quite reasonable to assume that a backorder on
that item should only have an imputed cost/day that is a fraction f as large.
This is easily accomplished by allowing backorder weights not just by base,
but by item. Of course, our interpretation of the term “availability” must be
modified to take into account these partially available aircraft. While this
seems like a reasonable procedure, it has not been adopted by any users to
our knowledge.

Note that we do not need to worry about the criticality of lower indenture
items or the criticality at support sites, because the backorders of LRUs at
operating bases determine system availability completely. The impact of
lower indenture items and other echelons on LRU base backorders is already
taken into account.

Finally, we close this section on criticality with a true story. About forty
years ago a contractor was building an inventory model for the Navy. The
Navy promised to supply item criticality, but when the model was done the
criticality had not been provided. The contractor was asked to use his best
judgment. First, the contractor calculated the stockage policy on the
assumption that criticality was proportional to unit cost, but was distressed to
find that this led to a lot of stock on the high-cost items. Next the contractor
assumed that criticality was independent of unit cost, only to discover that
there was a lot of stockage on the low cost items. The final report embodied
the contractor’s best estimate that criticality was proportional to the fourth
root of unit cost.
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Of course, that is one of the “non-results” of inventory theory that has not
survived the test of time. Obviously if we had a way of knowing how much
to stock on the high cost items (and other parameters), we wouldn’t need an
inventory model in the first place.

Availability Degradation due to Maintenance5.16

The availabilities in the models that have been developed increase with
more spares, and could approach 100% with enough spares. However, even
if we have infinite spare stock, there will be times when an aircraft is not
operational because of the time to remove and replace a first-indenture item
on the aircraft. In addition to maintenance time that is required to replace a
failed item, there may be additional downtime due to periodic inspections.

It is easy to include this maintenance downtime to calculate Operational
Availability as discussed in Section 2.14. The reason we have not done so
previously is because the appropriate modification depends on the type of
end item. For example, aircraft do not fly continuously. There is some turn-
around time between flights for servicing the aircraft with fuel and other
provisions. In reality the aircraft availability rates vary over time, decreasing
during service periods. Normally we exclude downtime for servicing in the
calculation of availability. Similarly if the aircraft fly in daylight hours only,
we may not care about the availability rates at night.

In effect, the operational availability for aircraft depends on the flying
program, because if there is sufficient time between flights or at night it may
be possible to perform most of the remove-and-replace maintenance on first-
indenture items without further degradation in availability, assuming that
sufficient spares are available.

On the other hand if the end item is a system that operates 24 hours a
day, there will be a further degradation in availability due to maintenance. If
the system is down a fraction of time f for preventive maintenance, we must
multiply the availability due to spares that we have calculated in Equation
5.24 by f. If we replace items as they fail, the overall availability is Equation
5.24 multiplied by f, the probability that no first-indenture item is down for
maintenance, where

and is the probability that item i is undergoing remove and replace
maintenance at a random point in time.
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Availability Formula Underestimates for Aircraft5.17

The availability formula of Equation 2.18 assumes continuous operation
of the end-item. As noted in the previous section, we may not want to
compute the maintenance availability to estimate operational availability
when the end-items are aircraft with sufficient time to remove-and-replace
items between sorties.

In addition, the availability formula of Equation 2.18 may understate
aircraft availability when:

1) Sorties are longer.
2) Demand rates are high.
3) Aircraft fleets are large
4) There are long recovery periods between sorties.
5) There is some flexibility in scheduled takeoff times.
6) “Opportunistic” installation of spares is possible.

When sorties are longer and demand rates are high, it is more likely that
there will be multiple failures. This does not usually result in an air abort,
but it does prevent the aircraft from taking off until maintenance is
performed. By “opportunistic” installation of spares we mean that
maintenance is able to diagnose all failures, determine which items are
needed, and only install the needed items on the aircraft if all items are
available. There is no point in installing some of the items if that does not
make the aircraft flyable, because those items may convert a down aircraft to
flyable in the future (we are assuming that cannibalization is not normally
performed). Of course, “opportunistic” replacement may not be feasible in
all cases, because maintenance may find additional problems during “real-
world” repair. Nevertheless, it does represent an upper bound on
maintenance capability that is useful to examine.

Simulation is required to incorporate all these “real-world” sortie effects.
Table 5-1 shows the percent reduction in the number of aircraft down from
the number predicted by the availability formula of Equation 2.18. The data
are invented so that only approximate conclusions can be made. The
interested reader should write his own simulation (easy to do) using data
from his application.
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Summary5.18

In this chapter we have derived the VARI-METRIC theory for the
combined multi-echelon, multi-indenture problem. Using this theory it is
possible to calculate the cost-availability curve for aircraft at operating
bases, and the associated stock levels for every item at every location
corresponding to each point on the curve. The theory can also be used to
calculate cost-availability curves for individual aircraft systems, such as
propulsion. Cost-availability curves for different systems can be combined to
give the same aircraft cost-availability curve, provided that there are no
items that are common to different systems. When there are items common
to more than one system, it is better to use VARI-METRIC on the combined
systems.

Note that when VARI-METRIC is applied to the entire aircraft or
multiple systems, it is not necessary to specify hierarchical information
about the system on which each LRU is used. This is because we assume
that any LRU backorder will decrease availability, regardless of the system
on which it is used. In the next chapter we consider redundancy where the
space station is available if K or more of the N identical copies of a system
operate. We will find it necessary to compute the probability distribution of
backorders for an item across the N copies of the system.

We do not consider redundancy in this chapter. However, the VARI-
METRIC theory is easily adapted to cover redundancy in the simplest case
when there is a single end item at each base (see Problem 6).

We discussed several generalizations to the VARI-METRIC
assumptions. For example, a constant resupply time that does not vary by
base was assumed in the derivation, and later relaxed. Similarly we have
generalized the Poisson assumption to the case where demand rates vary
over time and to the case where failures are due primarily to wear out.

We have shown how it is possible to modify the theory for SRUs that are
common to more than one LRU parent. Using backorder targets by item and
location from VARI-METRIC, we have developed a procedure for
computing the reorder point and order quantity. There was a discussion of
techniques for modeling criticalities that vary by item, and for including in
availability the degradation due to maintenance remove-and-replace time.

Problems5.19

1. Integrate Equation 5.28 and obtain Equation 5.29. Also verify the
integration in Equation 5.30.

2. Verify Equations 5.32 and 5.33.
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3. Calculate the mean and variance for and from
Equations 5.16 and 5.17 when there are two SRUs where each and

for the LRU and each SRU. The SRU stock levels at the depot,
are each one. Use Table 4.2 to show that when demand is Poisson

and 1.4324 and that when demand has a variance-to-mean, V, of 3
over the pipeline and Use Table 4.5 to
show that when demand has a binomial distribution with V = .5 over the
pipeline and What do you conclude about
the sensitivity of these pipeline means and variances with respect to the
differences in the demand processes?

4. In Section 5.13 the lead time was assumed to be constant. When the
lead time has a standard deviation show that the variance in lead time
demand due to both demand variability and lead time variability is:

where m is the average annual demand, V is the variance-to-mean ratio of
demand, and is the expected lead time demand. What does this become
when V is given by a power curve relationship such as Equation 4.22 for
some parameters a and b: Hint: Use Equation 5.2 where the
conditional variable is the lead time, T, and x is demand over the lead time

5. Effect of variability on the economic order quantity, Q.
a) Assume that demand is Poisson and m = 10 demands/year, NRTS = 1,

procurement lead time = 0.5 years, V = 1, (holding cost) = $100/year,
(fixed order cost) = $100 in Equation 5.36 and assume that the lead time is
constant. Show that before rounding to an integer the value of Q = 6.32.

b) Assume that the standard deviation of the lead time, is 0.2 years,
and use the result of Problem 5.4 above to show that the standard deviation
in lead time demand, equals 3. Recompute Q from Equation 5.36 and
show that it now equals 7.07 before rounding.

c) Assume the conditions of part a and b except that the variance-to-mean
ratio of demand, V, is given by the power relationship of Equation 4.22.
Show that the standard deviation in lead time demand, now equals 3.33
and Q from Equation 5.36 now equals 7.39 before rounding.

Note that changes in the standard deviation of lead time demand result in
less than proportional changes in the order quantity Q. Thus Q is more
robust than to data errors.

6. Consider a nuclear power plant application where the single end item
is the power plant itself. The power plant must shut down (or operate at
reduced power) unless at least K of N water circulating pumps are operating.
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Show that with a simple change in Equation 5.24, it is possible to include
redundancy (no cannibalization). (Assume that the demand rate for an item
is independent of K, otherwise known as the cold-standby case. See problem
6 of Chapter 8 for the cannibalization case.)

7. (Research) Attempt to develop an analytic model and verify with
simulation the behavior of the variance in the pipeline distribution for a
single item in the multi-echelon case when the order and ship times are
allowed to vary by base. Consider rules that may be more effective than
first-come, first-serve for allocating depot shipments to bases.

8. Use VARI-METRIC theory to recalculate the example in Section 3.4.
In particular show that the row for a depot stock level of 2 in Table 3.3
becomes 1.9240, 1.6114, 1.2988, 0.9862, 0.6736, 0.3610, 0.2995



Chapter  6

MULTI-ECHELON, MULTI-INDENTURE MODELS
WITH PERIODIC SUPPLY AND REDUNDANCY

In the United States there is more space where nobody is than where
anybody is. That is what makes America what it is.

– Gertrude Stein

Space Station Description6.1

The theory in this chapter was motivated by a need to develop a stockage
model for Space Station Freedom, the large multi-national effort being
managed by NASA that was launched in the mid-nineties. The most
important difference between this application and those considered in the
previous chapters is that here the operating base cannot place a resupply
order at any time. Resupply is periodic, depending on the frequency of the
space shuttle flights. There will be several a year, but depending on the item
and whether it needs pressurized or unpressurized storage, it may only be
eligible for certain resupply flights. This periodic supply modeling is
applicable to other problems such as a base in Antarctica which can only be
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resupplied during the summer months or ships which can be resupplied only
when they return to port.

A Space Station is comprised of many different types of systems such as
Electric Power, Laboratory Module, Habitation Module, etc. A given system
type will usually have significant redundancy in its design. After all we are
talking about systems that may be critical for life support, and which are
designed to operate for thirty years.

Instead of a fleet of aircraft, we are concerned here about systems. For a
particular system type with N identical copies, we assume that at least K
units must be operating for the Space Station to operate. For each first-
indenture, orbital replacement unit (ORU) in a system we assume that at
least of the Z identical copies must operate for the system to operate. Thus,
we are modeling redundancy at two levels. This enables us to consider a
wide variety of design configurations and maintenance policies ranging from
no cannibalization to full cannibalization.

Cost is not the only resource that we want to consider in the optimization.
There are weight and volume constraints in space that must be considered
when we determine what to buy and whether to keep it in space or on the
ground.

Finally, most ORU failures are assumed to be due to random causes and
they are usually repairable on the ground. The theory below is based on
these assumptions initially. Then it is generalized in Chapter 7 to cover those
ORUs whose failures are due primarily to wear out, e.g. batteries. Also,
some percentage of failures on an ORU, whether due to random causes or
wear out, can not be repaired. There must be additional spares to cover these
condemnations.

The theory developed in this chapter is for a specific application, and this
provides important motivation. However, it is important for the reader to
bear in mind that the techniques for modeling periodic resupply and
redundancy are very powerful and can be used in other problems.

Chapter Overview6.2

In this chapter we describe the “physics” of the Space Station resupply
and repair processes. Because resupply is periodic, the availability on the
station is highest after a resupply and declines over the cycle. Similar to
previous chapters, on each item we find the probability distributions for the
number of units in repair on the ground and the number of units broken on
orbit. Subtracting this from the total number of spares, we determine what is
available to resupply the station via the space shuttle, and this allows us to
calculate station availability at any time t during the next cycle.
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We begin with a single ORU and compute the probability distribution for
the number of systems down due to that ORU. Then we show how to
combine ORUs to calculate the probability distribution for the number of
systems down due to all ORUs comprising a system. Because of redundancy
within a system, a “hole” for an ORU does not always cause a system to be
down. At the system level we assume there are N identical copies of the
system of which only K must be operating at any point in time. Thus, we
have to compute the availability taking this second type of redundancy into
account as well.

The traditional approach used by NASA to compute stock levels is
described. The defects of this approach are examined, and the dramatic
improvements obtainable with the optimal theory are illustrated with several
examples. Reliability block diagrams are discussed, and converted to the
appropriate parameters for the theory. We show that it is possible to evaluate
the availability of different reliability configurations. This should be useful
to system designers even before considering optimal stockage policies.

We explain how marginal analysis can be used in this problem to obtain
optimal stockage policies for what to stock on the ground and on orbit. The
impact of cannibalization is assessed. We describe the state-of-the-art in
redundancy modeling and present some important extensions to the theory.
The chapter concludes with a discussion of how the theory can be applied.
Some important topics are left as problems at the end of the chapter: (1) why
earlier approaches to modeling redundancy understate availability,
particularly when the number of systems is small; (2) how to extend the
model to also optimize the multi-indenture stockage of SRUs on the ground.

A number of generalizations of the theory are deferred to the next chapter
to avoid distracting the reader. More examples of how the theory can be
applied are found there as well.

Maintenance Concept6.3

The maintenance concept for a space station is that when an ORU fails
on the station, it is removed and replaced by a spare if one is available on the
station. The next space shuttle will bring some resupply of ORUs, and take
the failed ORUs back to the ground for repair. Even though resupply is
periodic, we assume that information on orbital failures is sent to the ground
continuously.

Most ORUs are repairable on the ground. These are taken into a shop or
sent to a contractor where the failed SRUs are replaced on the ORU. The
time to repair a specific ORU is assumed to have a probability distribution,
depending on the complexity of the repair and the availability of SRUs.
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Our model needs to be multi-echelon for the ORUs, specifying the
appropriate stock level in space and on the ground for each item. It needs to
be multi-indenture as well, where the optimal mix of SRU ground stock is
determined.

Availability as a Function of Time during the Cycle6.4

The measure of effectiveness is the availability, the probability that the
Space Station (or some system type or group of system types)1 is not down
due to spares multiplied by 100 and expressed as a percent. As contrasted
with our previous models, however, the availability here does not stay
constant. After a resupply shuttle mission, the availability is highest and then
it decreases until the next shuttle resupply flight as depicted in Figure 6-1. It
decreases because failures occur during the cycle, and these are removed and
replaced with spares. The probability that we will run out of some type
spare, and fall below the minimum of K operating systems of some type is
greatest just before the next resupply.

Since availability is not a constant, we have to decide what point in time
we are interested in. For some systems, particularly those related to safety of
flight, it seems logical to be most concerned about those times at which
availability reaches its lowest value - at the end of each cycle just before the
next shuttle arrives.

For a system with N copies, there must be some number systems operating. K and N
will vary by system type, of course.

1
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For other systems, such as the Electric Power System, we may be more
interested in average availabilities. This is because it is not critical that there
be 100% power throughout each cycle. In the Electric Power Generation
System there were planned to be eight different “strings” (N = 8), each of
which would produce one-eighth of the total power. Thus, we may want a
power generation profile that estimates the average fraction of each cycle at
100% power (8 of 8 strings operating), at 87.5% power (7 of 8 strings), at
75% power (6 of 8 strings) etc. This implies that we need the capability to
assess availability at any time point in the cycle.

Probability Distribution of Backorders for an ORU6.5

We begin with a single ORU, assumed to be repairable always, and
demand on the station during a cycle of some fixed length, T years. Random
failures will be assumed throughout this chapter, so that demand is from a
Poisson process with a constant average annual mean, m:

p(x|mT) = probability that demand over the cycle is x where x = 0, 1, 2,...
when the mean demand is mT

s = spare stock for the ORU composed of the orbital stock level
and the ground stock level This means that we send up
enough stock on each shuttle to restore the orbital spare stock to

if possible. Of course, there may be occasions when we are
not able to restore the orbital spare stock to due to the number
of failed units of the ORU.

Our objective is to compute the probability distribution for the number of
backorders or “holes” for the ORU at an arbitrary time t during a cycle
where We need to compute not only the probability of sufficiency
(or the expected backorders as in previous chapters), but the probability
distribution for the number of backorders, because of our modeling of
redundancy, to come later.

Consider the time 0 at which the shuttle is to begin its resupply mission,
as shown in Figure 6-2. If mT is the mean demand during a cycle and x
denotes the number of demands during the cycle, then p(x|mT) is the
probability distribution for the number of ORUs that have failed in space
during the cycle ending at time 0 and which will be taken back to ground on
the shuttle return trip (we assume that there is ample space on the shuttle for
all failed ORUs).

Suppose that some failures cannot be repaired during the time between a
shuttle return to ground and the next shuttle flight. Let be the mean for
the ORU demand that requires at least two cycles to repair (cannot return on
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the next shuttle), the fraction of the mean that requires at least three
cycles to repair, etc. up to some maximum number of cycles, n. Logically
these m’s must form a nonincreasing sequence. Each demand from the
original Poisson process with mean m has a probability distribution for the
number of periods that will be required for the repair. This divides the
original Poisson process into n independent Poisson processes, one for each
repair length.

Figure 6-2 depicts the case where the mean demand requiring three
periods or more to repair, is zero. As in our previous chapters on repairable
items, our task is to compute the probability distribution for the number of
units in repair or not available for issue, but now it is at the time 0, when the
shuttle departs for the station. Since the total spare stock s is constant, a
knowledge of the number of units due in enables us to compute the number
of units that are available to meet demand. Define

As seen in Figure 6-2, for every value of y of interest we need to compute
the probability of x demands during the orbital cycle ending at time 0 and y -
x demands during the previous cycle. The latter group of y - x broken ORUs
was returned to ground on the previous shuttle, but could not be repaired by
time 0. This sum of probabilities is called a convolution:
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Note that we assume, as in the models of the previous chapters, that there
is no queueing for repair on the ground; there is ample repair capacity. For

not equal to zero, Equation 6.1 is applied again where the p(x|mT) terms
are replaced by the Pr{DI = x} terms just computed and the
terms are replaced by etc.

In fact it is not necessary to calculate the convolution in Equation 6.1 or
its generalization when etc. We know from Problem 12 of
Chapter 4 that Pr{DI = y} is Poisson with mean and
thus can be calculated directly. Later we will generalize the Poisson demand
assumption on the right-hand side of Equation 6.1 to the negative binomial
and binomial distributions (for variance-to-mean ratios greater than one and
less than one, respectively). From Problems 13 and 14 of Chapter 4 we know
that both of these probability distributions are convolutions also, and thus
Pr{DI = y} can be computed directly, provided that the variance-to-mean
ratio is constant.

Now we are ready to compute the probability that there is exactly one
backorder Pr{BO = 1} for the ORU at time t, during the next
cycle. There will be exactly one backorder if we had or less in repair on
the ground and failed in orbit at the time the shuttle left for the Space Station
at time 0 and demands during the orbital cycle up to time t. This is
because with or less broken, we were able to fill the spare stock on orbit
to the full stock level with the shuttle flight that arrived at the beginning
of the cycle (the shuttle arrives at some time later than 0, but the time
interval is short and can be ignored for most purposes). Incidentally, the
number of spares sent up in the shuttle is not but x where x is the number
that are broken in orbit; there will be good spares in orbit after the shuttle
arrives.

There will be exactly one backorder also if we had broken at time
0 and demands during the orbital cycle up to time t. In this case we were
able to fill the spare stock on orbit only to the level with the shuttle
flight. The other combinations yield a sum of terms:

and
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Note that the mean demand through time t during a cycle, where
T, is just mt. The first term on the right-hand-side of Equations 6.2 and 6.3
differs from the subsequent terms, because it contains a cumulative
probability for the number of units due in. Even though the probabilities for
the number of units due in from Equation 6.1 are Poisson probabilities.
Equations 6.2 and 6.3 are not convolutions that can be evaluated
immediately as in Equation 6.1. This is because the arguments for p( ) and
Pr{ } have different ranges and there are some cumulative probabilities.

We need the expression for Pr{BO = 0} as well. There will be no
backorders if we had or fewer broken at time 0 and or fewer demands
during the orbital cycle up to time t. Also if we had broken and
or fewer demands during the orbital cycle up to time t, etc. The complete
expression is:

Note that Equation 6.4 differs from Equation 6.2 because it contains
cumulative Poisson probabilities, P( ), rather than Poisson probabilities p( )
for the number of demands.

Probability Distribution for Number of Systems
Down for an ORU

6.6

Now we want to compute the probability distribution for the number of
units of a system that are down for this ORU. Suppose that the quantity of
this ORU on a system is Z, and that of the Z must operate for the system to
operate. Obviously must be less than or equal to Z. When can be less than
Z, there is redundancy within a system.

We want to consider redundancy at the system level as well by
specifying that at least K units of the total N copies of the system must
operate. Our objective is to compute the probability distribution for K units
of the system up (i.e functional) when one ORU is considered. Then we
generalize this to all ORUs comprising the system. To do this we must
consider a specific configuration where for convenience we assume that the
first K systems must be up and the last N - K are down (i.e. not working).
Later we consider the number of different ways that K systems can be
selected from N.
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The hypergeometric distribution1 gives the probability distribution that N
systems have backorders respectively, given a total of

backorders across all N systems:

This is because there are Z locations in each system, and of these are to
have backorders on system 1, on system 2, etc. This is conditional on the
fact that there must be y backorders among all NZ possible locations.

The probability distribution for the number of backorders, Pr{BO = y},
was computed above in Equation 6.3. The probability that systems 1, 2,. . .i
are up and systems i + 1, i + 2, . . . N are down can be written:

where W is the set of hypergeometric probabilities such that the backorders
on system j, have the properties that:

In other words for each value of y, we must add all those hypergeometric
probabilities with the property that the first i systems are up (because no
more than the allowable units of the ORU are down) and the last N - i
systems are down.

Equation 6.6 looks very forbidding, but it is actually quite
straightforward. We need to compute the probability sums over W for
specific values of N, N - 1, . . . K as a function of y on an ORU. There is a

It is not obvious that the hypergeometric is a valid probability distribution whose terms sum
to one. The reader was asked to prove this in Problem 13 of Chapter 4.

1
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lower bound on y that depends on and Z for the ORU, below which the
sum of the hypergeometric probabilities comprising the set W is 1 for i = N
and zero for all i, (see Problem 6).

For values of y between the bounds we must compute the hypergeometic
probabilities for N, N - 1, N - 2, . . . K. But, these probabilities are
independent of the demand rates and stockage policy. Since they depend on

and Z only, two ORUs with the same and Z have identical
hypergeometric probabilities. Thus, the probability sums over W for specific
values of N, N - 1, N - 2, .  .  . K as a function of y between the bounds can be
computed once and used over and over with values of Pr{BO = y} that differ
by ORU and change as the stock level is augmented.

As an example consider one ORU where Z = 2, and N = 3. We will
work out the case where the number of systems operating, K, equals 2 which
means that systems one and two are up and system three is down. The set W
is empty for zero or one backorder, because there must be at least two
backorders for a system to be down.

With two backorders the only hypergeometric probability in the set W is:

With three backorders, there are two hypergeometric probabilities in the
set W:

With four backorders, there is only one hypergeometric probability in the
set W:

When there are more than four backorders, it is not possible to have
systems one and two up and system three down. Applying the same
approach for the other values of K yields Table 6-1.
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To calculate the probabilities that the first i systems are up, S(i), we
multiply the hypergeometric probabilities in the corresponding column of
Table 6-1 by the backorder probabilities in accordance with Equation 6.6.
Thus,

Probability Distribution for Number of Systems
Down

6.7

We begin by showing how two ORUs are combined; the procedure is
repeated for as many ORUs as required. The problem in combining ORUs is
that for a given system to be up, it must be up for each ORU. We will use
subscripts on S(.) to designate the particular ORU, and suppress the subscript
to indicate a group of ORUs. The first three equations are:
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Note that there is a triangular symmetry here in the equations, similar to
that in the development of the backorder probabilities in Equations 6.2 and
6.3. The last equation in the set above for S(N - 2) is more complicated
because of the multiplicative factors of 2. The first factor of 2 arises from the
fact that if two systems are down because of ORU 1 and one of these same
systems is down for ORU 2, there are two possible ways of selecting the
latter system; the second factor of 2 is a mirror image case. The third factor
of 2 arises from the fact that is the probability of having a specific
system down due to ORU 1 and is the probability of having a
(different) specific system down due to ORU 2, but there are two ways of
selecting these. The equations become more complicated as the number of
systems allowed to be down in Equation 6.7 increases. Of course, N is not
very large for most systems and the number K that must operate is positive,
so that N - K, the number allowed to be down, will be quite small.
Furthermore, we need never compute the probabilities for less than K
systems. (see Problem 8)

These calculations for combining multiple ORUs are not required for the
example of Table 6-1, because there was only one ORU.

6.8 Availability

The procedure above is repeated to include all ORUs in a system. To
calculate the probability that any group K of N systems are operating, we
must take the probability of a specific configuration such as the first i
operating as defined by S(i) and multiply by the number of different ways
that i good systems can be drawn from a total of N. Thus, the availability, A,
is 100 times the probability that any i or more of N systems are operating:

Consider the example of Table 6-1 again. The probabilities in each row of
the table must add to one when each entry is multiplied by the appropriate
combinatorial factor for the column. For example, in the column headed i =
3 the combinatorial factor is one, because there is only one way of picking 3
good systems from 3 systems; in the column headed i = 2 it is three, because
there are 3 ways of picking 2 good systems from 3. Thus, in the row for two
backorders 4/5 + 3(1/15) = 1. This can be used as a check on the
probabilities in Table 6-1 and in the computation of availabilities from
Equation 6.8. For the single ORU considered in the example of Table 6-1,
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6.9 Numerical Example for one ORU

Let’s consider the ORU with the redundancy configuration from Section
6.6. We want to calculate the backorder distribution where we will assume
that the average demand over a resupply cycle, mT = 1. The demand which
takes one or more cycles to repair plus the demand which takes two or more,
etc., multiplied by T will be assumed to equal 2. From the
discussion following Equation 6.1 (and proved in Problem 12), we know that
when demand is Poisson Equation 6.1 is just a convolution which becomes:

We use Equation 6.3 to calculate the probability distribution for
backorders greater than 0 and Equation 6.4 for zero backorders. The time of
interest, t, will be taken as the end of the resupply cycle, T, just before the
next shuttle arrives. We will assume that the orbital spare stock, and
the ground spare stock, Thus, Equation 6.3 for x = 1 becomes:

where the final simplification comes about because when we have
another convolution.

Similarly, we find:

where Equation 6.4, which is not a convolution, is used for the last quantity
above, Pr{BO = 0}.

The probability distribution for the number of operating systems can be
seen from Equation 6.8 as:

Pr{all 3 operate} = S(3) = 0.8219
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Pr{any 2 operate} = 3S(2) = 0.1344
Pr{any 1 operates} = 3S(1) = 0.0316
Pr{none operate} = S(0) = 0.0081

and the expected number of systems operating is 2.78. The expression for
S(2) was given at the end of Section 6.6. The reader is asked to derive the
expressions for S(3), S(1), and S(0) from Table 6.1 as Problem 6.4.

Isaacson et. al. (1988) have modelled redundancy in a group of aircraft
by calculating the probability that a system picked at random is not down.
Then A(i), the availability of i or more systems, is estimated by using a
binomial distribution for the probability of i or more systems being up. From
Table 6-1 the probability that a system picked at random is not down equals:

Denoting this value by the binomial probability of all 3 systems operating
is any 2 systems operating is any 1 system operating is

and none operating is These values are 0.7925, 0.1917, 0.0154,
and 0.0004 respectively. The expected number of systems operating is still
2.78 as in the hypergeometric theory, but note how the binomial assumption
reduces the variability dramatically. If we are really concerned about the
extreme cases such as no systems operating, the binomial theory estimates a
probability of only 0.0004 whereas the more exact theory estimates 0.0081
or twenty times as large.

The binomial approximation is poor because of the assumption of an
infinite population of systems. It assumes sampling with replacement.

Optimization6.10

We have shown how to evaluate any stock levels for each ORU in
a group that comprise a system with redundancy at two levels. In order to
optimize, we need only be able to evaluate any policy, and develop an
efficient procedure to generate solutions. As in the steady-state models
developed in earlier chapters, marginal analysis techniques are utilized here.

Since the availability of several different system types is the product of
the availabilities, we compare the increase in the logarithm of availability
divided by the increase in cost for every possible augmentation (i.e. an
increase in or an increase in for every item in a given system). After we
have generated all of the potential solutions for one system type, we discard
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any that are not on the convex hull. Finally, we merge the solutions for
different system types to generate the cost-availability curve.

Multiple Resource Constraints6.11

As noted earlier, cost is not the only resource of interest here. Orbital
weight and volume are considerations as well. This means that when we
look at the ground resources used in augmenting we divide by the item
cost, when we look at the orbital resources used in augmenting we
divide by where the are Lagrange multipliers and w and v
are the ORU weight and volume.

By varying the Lagrange multipliers we obtain a set of solutions.
Suppose that we want 95% availability and the total volume from a
particular set of exceeds the allowable volume for storage. Then we must
increase the price of volume. Similar considerations apply to the weight
constraint. Of course, the set of alternative solutions is finite. It may not be
possible to achieve a 95% availability with a given volume and weight
constraint. In such a case we must consider redesign, a change in our
constraints, or a relaxation of our availability target.

Figure 6-3 provides actual system output from the photo-voltaic (PV)
module, whose detail data are given in Table 6-2. Since there was no volume
data by item at this time, we show the 90% and 95% availability tradeoff
curves for investment cost in spares (on orbit plus on the ground) versus on
orbit spares weight. It is quite typical to find that part of each curve is nearly
vertical and part is nearly horizontal (a quick look at Table 6-2 shows a low
correlation between cost and weight). For example, if our objective had been
95% availability and weight were the only resource considered, our optimal
solution would have been the rightmost point on the graph - a weight of 16.9
thousand pounds. The associated spares cost of this policy is $168.7 million.
Figure 6-3 shows that if we relax the weight constraint slightly to 17.2
thousand pounds (a 1.8% increase in weight), there is a large decrease in
cost to $146.2 million (a 13.3% decrease in cost). Even when management is
primarily concerned with one resource, these tradeoff curves provide
important insight.
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REDUNDANCY BLOCK DIAGRAMS6.12

Figure 6-4 shows a redundancy block diagram for the communication
and transmission system in the space station. Numbers have been substituted
for the names of each of the eight different orbital replacement units. The
purpose of this section is to show how to convert a redundancy block
diagram into several different system types where the modeling of a
particular system type was described above. For a particular type of system
there are N identical units of which K must operate, and in each of the K
operating systems at least of the Z ORU’s of each kind must operate, and
Z can vary by ORU within a system and K and N can vary from one system
to another).

From a modeling perspective the overall problem can be thought of as
four system types in series, and the results written down immediately as
Table 6-3. Each system type in Figure 6-4 is enclosed in a dotted box for
clarity.

Table 6-3 is not the only way to represent the physical system. Since
system 2 contains only one item, the data for ORU 5 could be entered as K =
N = 1, Z = 2 and the same result obtained; similarly for system 3. Or,
systems 2 and 3 could be combined into one system with K = N = 1,
Z = 2 for each ORU. All three alternatives give the same result, equivalent to
full cannibalization of ORU 5 and 6.

However, if systems 2 and 3 are combined into one system with K = 1, N
= 2, for each ORU (similar to the table), the result would not be
equivalent to full cannibalization of ORU 5 and 6. Such a configuration
implies that there are two pairings of ORU 1 and ORU 2, and at least one
specific pair must operate. The redundancy block diagram for this is
different from Figure 6-4.
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Numerical Examples6.13

Now we want to provide some real-world, numerical examples from the
space station application. Our purpose is threefold: (1) to demonstrate that it
is possible to use the theory presented here in efficient models for personal
computers that are capable of handling 4000 or more items and up to 10
different system types; (2) to show this theory when compared to traditional
approaches produces significant improvements in system performance at any
budget level; (3) to illustrate the types of decisions that can be made with the
model. The data were taken from the actual design as of late 1990, but do
not necessarily represent the final configuration.

Let’s examine the traditional approach and identify some of its
weaknesses. This approach, used by the contractors until our model was
completed, is to buy enough stock on each item so that there is a 95%
probability of sufficiency (POS). In other words each contractor was told by
NASA to compute levels for on-orbit stock so that on each item there would
be no more than a 5% chance of demand exceeding supply during a cycle.
As discussed at length in Chapter 1, an item policy such as this has the
defect that system cost and performance are fixed outputs. The availability
that results may be inadequate or the system cost may exceed the budget. We
believe that management should be presented with a system availability-cost
curve. Once management has specified a point on this curve, the item
decisions are known.

A second defect with the item approach is that resource constraints are
not considered. In effect every item with the same demand rate gets the same
stock level, regardless of unit cost, weight, or volume. As we have seen in
earlier chapters, an important aspect of the system approach is to obtain the
maximum effectiveness per resource unit (dollars, weight, volume or
whatever). It is possible to use POS as a measure for a system of items,
rather than item by item. Thus we could develop an optimal POS-versus-cost
curve where the probability of sufficiency is the chance that demand can be
satisfied for every item on the system. That would be an improvement over
the item approach, but there are other significant defects with POS, as
discussed next.

POS was discussed briefly in Section 2.7, where we noted that it is
similar to fill rate, except that it is computed from the probability
distribution of demand instead of the probability distribution for the number
of units in repair. But, these items are repairable, and even though resupply
is periodic rather than continuous, our stockage policy should not be
independent of the amount of time to repair these items on the ground.

An even more serious defect with POS is that it is being used to compute
on-orbit stock only. But the logistician’s problem is to determine the total
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buy of each item, not just the number to put in orbit. The POS calculation
assumes that there will always be enough stock on the ground to replenish
the orbital stock levels each cycle. It is because the assumption of infinite
ground stock is not very reasonable that we developed the theory above to
determine the total stock to buy for each item and the optimal split between
orbit and ground.

A final defect with POS is that it is insensitive to redundancy. It is
necessary to compute the probability distribution of backorders in order to
model availability when there is redundancy.

For purposes of comparison we have taken the investment required by
the preliminary approach, but allowing for the fact that some units of the
item will not be available for the next shuttle. The availability from the
contractor policy is evaluated, and that investment is used as a constraint for
the optimal model. There were no item volume data, and no target values for
the total volume or weight so the only resource considered in these computer
runs was cost. The objective is to have 100% power availability or all 8 of
the 8 systems operating at the end of a 365 day resupply cycle. (Each system
is a series string, and if one ORU fails the system no longer operates).

The input data file to obtain a 95% availability with all 8 of the 8 systems
operating was presented in Table 6-2. The system is the PV Module, part of
Electrical Power Generation. The 23 items that are dominated by random
failure are included in the input. NASA estimated that these can be repaired
on the ground within about 160 days, well within the 365 day resupply
cycle. There were also 3 items that were dominated by wear out that are not
included in this list. They are excluded because it is assumed that when they
fail they cannot be repaired. The contractor recommended buys are much
larger, and incommensurate with those of repairable items. Of course, the
model can include these items as well, but for purposes of comparison with
the preliminary POS quantities, we did not want to include them in these
runs.

Since the item data relate to the actual program, we have used an ORU
number rather than the actual name of the ORU. The data include also the
indenture, cost (in thousands of dollars), weight, volume, Z, stock level
from the preliminary POS computation (IS), variance to mean ratio of
demand (l=Poisson demand), average annual demand per unit of the ORU.
For example, if Z is 3 and there are 8 systems, the total average annual
demand for the ORU, m, is 24 times as large).1

Strictly speaking we are modeling the cold-standby case where back-up systems are turned
on only when a system fails. Thus, the demand rate stays approximately constant (until
there are no more backup systems and an additional system fails). For purposes of data
entry we assume that the total item demand rate is divided by N times Z to obtain the
demand rate per occurrence of the ORU. The warm-standby case is probably more

1
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Figure 6-5 shows the availability of 100% power for the POS stockage
policy and for our optimal policy over the course of the logistics cycle. As
noted in Section 6.4, each curve decreases over time to a minimum just
before the next resupply shuttle arrives. Note that both curves are slightly
convex when viewed from the horizontal axis, because the availabilities are
so low. The optimal policy gives higher availability than the contractor
policy at every time point, and the average availability of 39.6% is almost
three times as large. The item stock levels are shown as Cases 2 and 1
respectively in Table 6-5 and discussed below.

In order to consider 75% power, we modify Table 6-2 so that K = 6 in the
first line of data. This is like having redundancy at the system level, but not
at the ORU level. In some cases there is a capability to switch/cannibalize
ORUs between systems (e.g. in power distribution there is some “cross-
strapping” which allows for electrical switching of ORUs between strings
without requiring physical cannibalization, but obtaining the same benefit),
and this will result in a higher availability for any set of stock levels. If
cannibalization of all ORUs were possible, the input data in Table 6-2
should be modified so that each and Z for each ORU should be changed
from 1,1 to 6,8 (or from 3,3 to 18,24 and from 4,4 to 24,32) and K and N
should each be 1. In other words for the PV module to operate, any 6 of the
8 occurrences of an ORU must operate, rather than all ORUs on 6 specific
systems. These two cases are called no cannibalization (Case 3) and

realistic. As the number of backorders for an item increases, the demand decreases. In
Section 6.14 we discuss research that suggests the differences are minimal when the
average annual demand is less than one.
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cannibalization (Case 5) for 6 of 8 systems (75% power) in Table 6-4. A
similar calculation is performed to obtain 4 of 8 systems (50% power), both
under no cannibalization and cannibalization in Table 6-4. We show
availabilities at the end of the 365 day cycle in each case.

In effect the no-cannibalization case corresponds to redundancy at the
system level only, and the cannibalization case corresponds to redundancy at
the ORU level only. Of course, there can be redundancy at both the system
level and the ORU level. This would be reflected by having K less than N for
the system and less than Z for an ORU. The model has this capability, and
the numerical results would fall between the extremes of no cannibalization
and full cannibalization shown in Table 6-4.

The input data in Table 6-2 assume that there is no redundancy since K =
N = 8 and for each ORU (though the values of Z differ somewhat by
ORU). The same case with no redundancy could be specified with K = N =
1, where each and Z are multiplied by 8. This leads to the same availability
and optimal stockage policy for the theory that has been developed in this
chapter. However, the usual redundancy modeling as in Isaacson et. al
(1988) understates the probability that all 8 systems operate as shown in
Table 6-2. Instead of the end-of-cycle expected availability of 14.41% that is
shown in Case 2 of Table 6-3, that theory yields an estimate of 7.40%. The
reasons for this are discussed below in Section 6.14 and Problem 4.

Now we compare the system-level results for various policies in Table 6-
4. Table 6-5 shows the item stockage decisions that underlie these. Figure 6-
6 shows the computer-generated availability-cost curve for Case 3 beginning
at the investment cost of $61.176 million and showing all solution points
through a 95% availability.

The major conclusions from Tables 6.4 and 6.5 are as follows

1) The investment of about $61 million suggested by the 95% POS
calculation is likely to be inadequate, since only 0.7% of the 365 day cycles
are estimated to be completed at 100% power. This is because the contractor
model computes only the orbital spares based on the assumption of 95%
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availability on each item; infinite ground stock is assumed but not included
in their calculation.

2) The solution for Case 5 costs about $4.5 million less than the POS
solution. This illustrates the fact that adjoining solutions may have a large
cost difference. Here the next item to be procured was a $6.5 million item
which would have exceeded the investment constraint that we imposed. Of
course, when all systems on the station are combined, the $6.5 million will
be small by comparison with the total spares budget and appear much less
grainy.

3) Table 6-4 shows that if it is possible to switch/cannibalize ORUs
between systems (as in power distribution), the impact on system
performance is dramatic (Case 5 vs. Case 3 and Case 6 vs. Case 4).

4) Under the constraint of about $61 million, the optimal stockage policy
in Table 6-5 for our model looks significantly different from that of the POS
solution. We tend to buy more stock of the higher demand items, particularly
if they are lower cost (almost three times as much for ORU #17).
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5) The optimal allocation of a $61 million investment for 8 of 8 systems
operating is unchanged when we relax the requirement to 6 of 8, and almost
unchanged when we require only 4 of 8 (assuming no capability to
cannibalize or switch ORUs between systems). The fact that this stockage
policy is “robust” even when the objective changes is highly desirable and
encouraging.

6) When cannibalization is allowed, the optimal stockage policy is
affected somewhat. The big changes are for three ORUs: #6, #9, and #22.
This is because the first two items have a Z of three in each system and the
latter has a Z of four. Thus, under cannibalization fewer of these items are
needed. However, the cannibalization policies are still quite different from
the POS policy.

Table 6-4 showed end-of-cycle availabilities, though average
availabilities over the cycle tend to be more meaningful for the electric
power system. Figure 6-7 presents data in a format that is more familiar to
power system engineers. It shows the expected fraction of each cycle that the
system will be at various power levels, assuming no cannibalization. Thus
for the optimal stockage policy, the average availability at 100% power is
39.6% of the cycle (as in Figure 6-5); the average availability at 75% power
is about 30%, etc. Again we see that the optimal policy yields significantly
higher availabilities at every power level, though the spares budget is the
same.
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6.14 Other Redundancy Configurations with 50% ORUs
Operating

Now let’s examine possible design alternatives available to NASA and
how they impact availability and spares cost. In Table 6-4 there were two
cases where the Space Station was assumed to operate (be available) if at
least 50% of the number of units of each ORU type operates: Case 4 with no
cannibalization and Case 6 with complete cannibalization. In fact, there are
several other combinations of K of N systems and of Z ORUs that provide
availability if at least 50% of the number of units of each ORU type operate.
Each combination represents a different physical design configuration which
may cost NASA more or less money to implement on the station. We do not
know these design costs, but we can calculate the benefits in terms of spares
costs and system availabilities.
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Table 6-6 contains both Case 4 and 6 from Table 6-4 plus the four other
configurations that require at least 50% of each ORU. We show explicitly
the values of K and N as well as the values of and Z for the first ORU (the
values of and Z are the same for every ORU except that ORU #6 and ORU
#9 are a multiple of 3 for and Z; ORU #22 is a multiple of 4).

The six alternatives are listed in order of increasing efficiency. As noted
earlier, Case 6 corresponds to full cannibalization and produces the highest
availability. Case 4, called no cannibalization in Table 6-4, is in the middle
of the remaining five cases. It is hard to decide what to call these cases, but
the first is clearly the worst way to interconnect ORUs so that the system is
available when at least 50% of each ORU operate - to require that all four
ORUs of each type be up in one of two systems.

From the physics of the configurations there is an obvious pattern in the
way in which values of Z, K, and N change from least efficient to most
efficient. This is perhaps even clearer from the redundancy block diagrams
a-f in Figure 6-8. At first glance it might appear that the availability from
lines 3 (Case c) and 6 (Case f) in Table 6-6 should be similar, since any 4 of
8 operating ORUs result in 50% availability. But, that is true only with one
ORU. As more ORUs are combined, line 3 requires that the operating ORUs
be on exactly the same 4 systems, and this is much more restrictive.

Table 6-6 dramatically illustrates the richness of the computer model in
terms of evaluating various redundancy designs. When the system cost target
is held constant at no more than $61.3 million, there is a dramatic range of
availabilities from 48% to 99% depending on the type of redundancy. Since
it costs more to increase availability when the availability is high, the results
are even more dramatic when we hold the availability target constant at
95%. The spares investment cost in the next-to-last column of Table 6-6 has
a range of about 3.5 times from the least expensive configuration costing
$30 million to the most expensive at $106 million.

The more efficient redundancy configurations may cost more to build or
they may have additional on-orbit weight and volume implications. Some
may not be feasible to build. Nevertheless, it would be extremely desirable
for system designers to consider logistics issues such as spares when they are
building systems. Now we have a tool that can be used in assessing these
tradeoffs.

The change in allocation of the $61 million between Case 4 and Case 6
was discussed earlier. The policy for the top two cases in Table 6-6 (Cases a
and b) is identical with Case 2 in Table 6-5. Thus, the optimal stockage
policy is very “robust” with respect to changes in the redundancy structure.
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Summary of the Theory6.15

Now that the theory development is complete, it is useful to review some
of the key assumptions and consider what generalizations are possible. How
does this theory differ or complement the theory in previous chapters?

The cornerstone of the repairable item theory in earlier chapters was
Palm’s theorem which says that the probability distribution for the number of
units in repair is independent of the shape of the repair distribution. Palm’s
theorem was never used in this chapter, because it isn’t true here. Equation
6.1 explicitly recognizes that each demand has a probability of
requiring more than one cycle to repair, a probability of requiring more
than two cycles, etc. The percentage of repair completed before each shuttle
flight is the important factor, not just the mean repair time. Of course, the
result is unaffected by the exact time within a cycle that the repair is
completed.

On the other hand the spirit of the infinite channel queueing assumption
is alive and well here, as in previous chapters, in the sense that there is
ample repair capacity and the repair time for an item is not influenced by the
number of items already in repair. As before, the time to perform repair is
assumed to be dictated by the type of failure and the complexity of the
repair.

We have assumed that the cycles are of equal length, but the equations
are completely valid if the cycles differ in length. Of course, the computer
program and the data manipulation have to be a little more sophisticated.
Similarly the demand rates can change over time, as they will during the
build up of the station. The theory applies to multi-echelon stockage, and is
easily extended to multi-indenture cases (see Problem 7). However, the
computer program becomes significantly more complicated, because
whenever an SRU stock level increases, the repair delay for the “parent”
ORU is reduced, requiring a recomputation of its probability distribution. As
in the theory of previous chapters, it can be extended to more echelons or
indentures if the “physics” of the problem warrants. Since commonality
tends to increase at lower indentures, not just across “parents” in the same
system but in different systems, the extra complications are probably not
worth the effort.

It should be noted that there has been some modeling of redundancy for
the case of continuous resupply rather than periodic and a fleet of aircraft
instead of a single station. Isaacson et. al. (1988) allow redundancy at the
first indenture item level only. The allocation of item backorders to each
aircraft in the fleet is conceptually similar to our problem of allocating ORU
backorders to systems on the space station. However, they use the infinite
population assumption to distribute item backorders to specific aircraft, and
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then compute availability of the aircraft fleet by using a binomial
distribution.

This simplifies the computation significantly, not only that of S(i) for a
particular item from Equation 6.6 above, but that of S(i) for all items in a
system and the availability as described in Sections 6.7 and 6.8, respectively.
However, the infinite population assumption is unrealistic for most system
types on the space station, where the number of identical systems is small.
We show in Problem 4 that the simplification produces estimates that are
optimistic by about 5% in half of the designs. As the number of systems
increases, the infinite population assumption produces a smaller error.

The expected number of systems down is the same for the binomial and
the improved approach. But, the variance in the probability distribution for
the number of systems down is greater under the improved theory,
particularly when N is small. Thus, the binomial theory understates the
probability that all N systems operate, but overstates the probability that at
least 50% of the systems operate. The improved theory is particularly
important if we need to estimate the probability of no power, in which case
the space station must be evacuated. Under alternative b in Figure 6-8 the
probability that all 4 systems are down is 5.25% from the binomial theory,
but 11.02% from the improved theory.

Kaplan (1989) addresses a problem that is similar to Isaacson except that
he does not calculate the probability distribution for the number of operating
systems. The modeling at the item level in Kaplan is slightly more general.
He does consider downtime for remove-and-replace maintenance (which we
include in a different way in Chapter 7), and the reduction in demand for an
item that occurs as the number of backorders increases (warm standby case).
In the limit when there is a backorder at every location of the item, the
demand rate goes to zero (as it should). This is sometimes called the finite
calling population assumption, not to be confused with the infinite
population assumption for the distribution of backorders to aircraft discussed
previously.

Kaplan tests the adequacy of his approximation by simulation. The
conclusion of most relevance to the space station is that when the mean time
between failures on an item exceeds a year, the “finite calling population”
correction is not needed. Since most items on the space station should have
much longer mean times between failures, we will not incorporate this
refinement.
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Application of the Theory6.16

It is important to discuss how the theory can be applied. We want to
consider uses of a computer model based on this theory at different times in
the development and deployment of a system.

Early in system development item costs, weights, and volumes are
known imprecisely, if at all. Even the design is still being changed. Ideally
the model could be useful to designers in the evaluation of different
redundancy configurations. The complexity of the redundancy is a function
of the required availability: more redundancy is cost-effective if high
availabilities are needed, other things being equal. Depending on the
capabilities for electronic switching between ORUs, we may get much of the
benefit of cannibalization.

Even though there may be some capability to switch between broken
ORUs to keep a system operating or even cannibalize, logisticians are likely
to calculate the spares requirement under the assumption that every “hole”
will be filled, regardless of redundancy. If that policy is followed in
provisioning, it would be sensible to evaluate the availability under the K of
N degraded mode for each system that represents minimum capability. For
example, we might provision to 90% availability for all critical systems on
the station, but find that those same levels evaluate to a 98% assurance that
no critical system will be below its minimum requirements for K operating
of its N systems.

Item costs, weights, and volumes are hard to obtain and demand
estimates even harder (and more important), but the system cost-availability
curves are likely to provide some information. That is, at the system level
some of the item data errors will cancel out, and the overall system cost-
availability curve should be meaningful. If management looks at these
curves for several systems, it should be in a better position to set meaningful
availability targets, weight and volume constraints for different systems.

Some major logistics decisions can (and must) be made from this early
data, and a model is better than a guess. For example, how long should the
cycle between resupply flights be? Are there ORUs that are similar and
which could be made common? What is the tradeoff in extra design cost,
weight, volume to achieve commonality versus reduction in spares? We will
discuss such questions in the next chapter.

As the development matures, more precise data estimates should be
obtainable. Eventually the same techniques can be used to calculate optimal
shuttle “manifests”, i.e. based on the latest failure rate information, age of
installed ORUs that are subject to wear out, constraints on the available
weight and volume for the next shuttle and in space, what should be sent on
the next shuttle?
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6.17 Problems

1. Evaluate Equation 6.2 when the distribution of due in, Pr{DI = X} is
Poisson with mean .2 and p is Poisson with mean .1, and

2. For the single ORU considered in the example of Table 6-1, determine
the probability that only System 1 operates, S(1) and A(1), the availability of
one or more systems.

3. Suppose that the example of Table 6-1 is modified so that Z (the
quantity of an ORU in a system) = 4. Compute the appropriately modified
Table 6-1.

4. Derive the expressions for S(3), S(1), and S(0) for Section 6.9 from
Table 6.1. Also verify that the binomial probability distribution for the
number of systems down agrees with the numbers shown in Section 6.9.

The availability estimates from the binomial theory as applied to the six
lines of Table 6-6 yield the following availability estimates for the $61.3
million cost constraint: 52.28%, 71.91%, 91.00%, 89.10%, 97.05%, 99.40%.
Note that the first three of these binomial estimates overestimate availability
by about 5%, whereas the last three are quite close.

5. In order to estimate the average availability for a specified stockage
policy, it is necessary to calculate A(i) at several time points t in a cycle. If
the availability at t = 0 starts very high (say 95%), it will decrease slowly at
first and more quickly as t nears 1. Thus, it is said to be concave when
viewed from the x axis. If the availability at t = 0 starts quite low (say 10%),
it will be convex decreasing more rapidly at first and slowing as t nears T.

The accuracy of the estimated average will increase with the number of
points t at which the availability is computed. Suppose that the average is to
be estimated from three points in the cycle. What are the best values of t to
choose? What is the generalization of this to an arbitrary number of points?
Does the choice of points change if the availability values are weighted
unequally (e.g. Simpson’s Rule in approximating integrals)?

6. When Equation 6.6 is used to calculate S(i), it is not necessary to
compute Pr{BO = y} for all y. Show that y less than or equal to can
never result in a system down, and thus is a lower bound; that

is the upper bound for y at which there is some probability of i or more
systems operating.

7. Extend Equation 6.1 for the number of items in repair to include the
multi-indenture case. Assume that when the ORU is examined on the ground
there is a probability that the failure is due to SRU 1 and a probability
that it is due to SRU 2. The ORU can be repaired within one cycle if the
SRUs are available, but the SRUs have a probability of requiring one or two
periods to repair. Does it complicate the model if those items requiring two
periods to repair are fixed by the contractor?
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8. Extend Equations 6.7 to the case of N - 3 and N - 4 systems up. (Hint:
the sum of the coefficients in the three equations shown are 1, 3, and 9. The
sums for N - 3 and N - 4 are 27 and 81. Use a tabular form where the rows
are the number of systems up for ORU 1 starting with N, N - 1, N - 2 . . .
and the columns correspond to ORU 2. The table entries are the
multiplicative coefficients for the probabilities. The advantage of the table is
that it highlights the symmetry).

9. Design a computer algorithm that will generate the cases for the
hypergeometric distribution of Equation 6.5 efficiently for any N, Z and y.
For example, suppose that there are eight backorders to be distributed across
three systems with a Z = 4. The algorithm should generate the cases 440,
431, 422, 332 and use combinatorial factors for symmetric cases.

10. There are some redundancy designs that cannot be modeled precisely
with the K of N systems and of Z ORUs operating. Consider the system
shown in Figure 6-9, where current can flow on item 3 only in the direction
of the arrow, and show that it is not possible to represent this with a
redundancy block diagram of the required form. Find a way to model a
lower bound on availability (by assuming that item 3 is always broken) and
an upper bound on availability (item 3 is always functioning and current can
flow in both directions). Note: This type of redundancy is unlikely at the
ORU level, though it could occur at the SRU level.

11. (Research) It was noted in Section 6.15 that Kaplan used a simulation
and found the approximation for a “finite calling population” was not
required if the mean time between failures exceeds a year. However, he
assumed that backorders could be assigned to systems using a different
infinite population assumption that we have shown leads to inferior
estimates of availability. The research problem is to write a simulation for a
single ORU and compare the results with our redundancy theory model
ignoring the “finite calling population” correction of Kaplan. Find the
parameters that define any region of poor agreement, and see whether the
suggested correction of Kaplan makes a significant improvement. The
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parameters may include the mean time between failures, the time required to
repair the item, and Z, K, or N.



Chapter 7

SPECIAL TOPICS IN PERIODIC SUPPLY

Sometimes I think the surest sign that intelligent life exists elsewhere in the
universe is that none of it has tried to contact us.

- Bill Watterson, “Calvin and Hobbes”

7.1 Chapter Overview

The purpose of this chapter is to present several enhancements to the
theory in Chapter 6. These are special topics that are important, but which
would have been a distraction from the primary theoretical development.
This is an opportunity to provide some further examples of analysis used for
management decisions on the space station as well.

We begin with more discussion of availability, and some adjustments that
need to be made when comparing resupply cycles of different length. Then
we show how the degradation to availability due to maintenance remove-
and-replace time in orbit can be incorporated into an overall availability
measurement.

Next we discuss a major topic, modeling of items whose demands are
primarily due to wear out. There are several such items in the space station’s
electrical power system, including batteries and solar arrays. The reliability
engineer will typically estimate a failure rate (i.e. demand rate) that increases
when the item approaches its expected lifetime. But to use our spares
modeling techniques, the failure rate curve must be converted to a
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probability distribution for the time to failure. We show how it is possible to
approximate any failure rate curve to any degree of accuracy, and compute
analytically the distribution for time to failure.

We will find that it is desirable to keep track of the time at which each
item with wear-out characteristics is installed on the station, because this
provides a more accurate basis to estimate spares requirements over the next
cycle. With the installation dates of wear-out items and knowledge of the
spares on-orbit by condition, broken and serviceable, we can prioritize what
should be sent on the next shuttle resupply flight. This is sometimes referred
to as the shuttle manifest problem.

For the purpose of procuring spares that will be delivered many months
in the future, the ages of the installed items at the beginning of a resupply
cycle are unknown. This simplifies the optimization problem, and allows us
to use an analytic approach based on the assumption of a gamma distribution
for the time to failure. We are able to calculate analytically the probability
distribution for the number of demands during any period of time, even
though the original failure rate changes with time.

Finally there is a discussion of how the model can be adapted to a more
dynamic environment, as will be encountered during the station assembly
phase. It is desirable to link the spares requirements to the procurement
actions that must take place at least a lead time earlier and at a time when
production lines are still operating.

7.2 Availability over Different Cycle Lengths

In the previous chapter we noted that end-of-cycle availability may be a
more appropriate focus for some systems such as the Environmental Control
and Life-Support System (ECLSS), that relate to safety of flight. For other
systems such as electric power, the average availability (at various power
levels) may be more meaningful. We have shown how to calculate both.

However, if we are comparing end-of-cycle availabilities for cycles of
different length, we must make an adjustment. For example, an end-of-cycle
availability of 90% for an annual resupply cycle implies that over the thirty
year program, it is expected that the system will fail about three times since
(1 - .9)(30) = 3. By contrast, if there are N cycles per year, a 90% end-of-
cycle availability implies that over the thirty year program the system is
expected to fail about 3N times.

The correction factor to convert the end-of-cycle availability for any
cycle length to an annual quantity is just a product of reliabilities:
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where N is the number of cycles per year. N need not be integral and it may
be less than one. Thus, if the number of cycles per year, N, is four, an end-
of-cycle availability of 90% becomes only 65.6% annualized.

Figure 7-1 shows a comparison of annualized availabilities for different
resupply cycle lengths and a spares investment of $61 million for the power
generation system. This is the same case that we considered in Chapter 6,
and the end-of-cycle availability (annualized) for 365 days is 14.4% for the
optimal policy and 0.7% for the 95% POS policy as in Table 6.4. While the
end-of-cycle availabilities for 100 percent power in Figure 7-1 are all quite
low, the shorter cycles lead to much higher availability. It is clear that a
semi-annual cycle is much better than a longer period, and not much worse
than a 91 day cycle. The reason for the latter is the 160 day ground repair
time assumed for the ORUs; even if there is a shuttle every 90 days, it is
assumed that nothing can be repaired that quickly. On the basis of this
analysis, NASA decided to change from a 365 day cycle to a 182 day cycle
for these spares.

When average availabilities are used, instead of end-of-cycle
availabilities, no correction factor is needed to annualize availability.

7.3 Availability Degradation due to Remove/Replace in
Orbit

The availabilities that we have considered in this chapter and its
predecessor are concerned with supply availability only. Thus, if there is
enough stock in orbit, it is possible for the availability to approach 100%.
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As in Section 5.16, for continuous resupply, we want to take into account the
degradation in availability due to the time required to remove and replace
ORUs in orbit. Thus, the operational availability is the product of
availability due to supply shortages and availability due to maintenance
remove-and-replace actions.

To calculate the availability due to maintenance actions, it is necessary to
postulate a maintenance policy. The policy for the space station depends on
the ORU that has failed. If the ORU failure can be replaced inside the space
station and a spare is available, we assume that the maintenance will take
place with minimal delay. Thus the fraction of time that ORU i is down for
remove and replace maintenance, is just the demand rate times the
average repair time:

Some ORU failures require that a maintenance action be performed
outside the pressurized module (an external vehicle action or EVA event). It
is necessary for two astronauts to put on space suits, and their time outside
the capsule is strictly limited. The number of these EVA events is planned to
be about one per week.

Thus the down time for a remove and replace on an ORU requiring EVA
time is the time to the next EVA mission plus the maintenance time.
Assuming that all failures requiring EVA for which there is a spare ORU in
orbit can be replaced during the next EVA event, Equation 7.2 can be used,
but the average maintenance hours for these ORUs must be increased by half
of the time between EVA events.1

The availability due to remove and replace maintenance for all ORUs on
a system is:

which is identical with Equation (5.38) for the continuous resupply case. The
operational availability due to both supply and maintenance delays is just the
product of the two availabilities, Equation 6.8 and Equation 7.3, respectively
(divided by 100 since this factor appears in both equations). Note that the
availability due to maintenance is constant over the cycle; it does not

1 Since the electrical power ORUs must be replaced during EVAs, there is an average waiting
time of one-half week before remove-and-replace maintenance can be performed. As a
result, the maintenance availability for the 26 electrical power ORUs was only 0.954.
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decrease over the cycle similar to the availability due to supply. Thus, its
impact is the same for end-of-cycle or average availability.

This is strictly correct when the number of systems required to be up, K,
equals the total number, N. When K is less than N, the availability in
Equation 7.3 is understated because some failed ORUs that have not been
replaced will not reduce the number of operating systems below the K
allowed.

A more precise model would have to compute the interaction between
supply and maintenance for K, K + 1, . . . N and use Equation 6.7. We
believe this refinement is not warranted in the problem context here. We do
need the supply availability as calculated in Equation 6.8 when K may be
less than N in order to determine the optimal spares mix (assuming that
procurement is willing to plan on having “holes” where there is redundancy,
which is probably unlikely), and it is useful to have an estimate of the
availability reduction due to maintenance as in Equation 7.3. But, we will
not usually multiply them together for the reason just stated.

7.4 Failures due to Wear Out

In the previous chapter we were concerned with ORUs whose demands
are primarily due to random causes and having a constant demand rate. In
this section we want to consider items whose demands are usually due to
wear out. For these items the failure rate will vary with time. There may be a
short period of “infant mortality” with a high failure rate followed by a low
failure rate, which gradually increases as we approach the design life when
the item typically wears out. The solid line in Figure 7-2 is an example of an
item whose failure rate varies with time in accordance with a “bathtub”
curve. Space station items whose failures are mostly due to wear out include
batteries and solar arrays.

We assume that it is possible to estimate the changing failure rate for a
wear-out item. But, as in each previous chapter, our models require the
probability distribution for the number of demands in any fixed period of
time. This requires a two-step process developed below: 1) the failure rates
must be converted into a probability distribution for the time to the next
failure; 2) the probability distribution for time to failure must be converted
into the probability distribution for the number of demands over any
specified time period (the state probabilities).
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This was easy for a constant failure rate. We showed in Section 4.2 that
this produced an exponential distribution for the time to the next failure, and
a Poisson distribution for the number of demands during any time period. It
is important to note that the changing failure rate problem in this section is
different from the case of random failures with a mean demand rate that
changes over time, discussed at length in Chapter 4. In the latter problem we
do not assume that we can predict the change in the failure rate. All we can
do is to estimate the probability distribution for the number of demands
during a time period from empirically derived formulas.

The relationship between the failure rate m(t) at any time t, and an
arbitrary probability distribution for the time to failure, h(t), is a
generalization of Equation 4.4:

where we have written m(t) to indicate that this failure rate is not constant,
but may vary with t. The failure rate at time t is the probability density that
there is a failure between t and t + dt given that there has been no failure
during the interval 0 to t, [1 - H(t)].

For an arbitrary failure rate function m(t), such as Figure 7-2, it is
necessary to estimate h(t) using numerical techniques on a computer. But, if
m(t) is approximated by a series of constant failure rates over different time
intervals, as indicated by the dashed lines in Figure 7-2, an analytic solution
for h(t) is possible. The failure time distribution is exponential over each
interval where the failure rate is constant, but we must make some scale
adjustments.
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Suppose we designate the failure rates as for for
etc. The probability distribution for time to failure in the first interval is

independent of the failure rate beyond and is simply

The probability of a failure between 0 and is the integral of Equation
7.5, which we denote as for convenience. The probability
distribution for time to failure in the second interval is exponential as well,
but it must be multiplied by (1 - a) so that when h(t) is integrated from 0 to

the result equals one:

The failure rate for is obtained by substituting Equation 7.6 into
Equation 7.4:

Thus we have shown how the constant failure rates are related to
exponential distributions of the time to failure. This procedure can be
applied to each interval sequentially to yield Figure 7-3. The multiplicative
constant for each exponential function is 1 - a where a is the area under all
of the previous exponential curves (see Problems 2 and 3).
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The probability distribution of time to failure in Figure 7-3 has a
discontinuity at each point where the failure rate changes. Of course, the
discontinuities can be made arbitrarily small by using more failure rates in
Figure 7-2. The important point is that we have a simple, analytic procedure
for computing the probability distribution of time to failure.

Now we are ready for the second step noted above - calculation of the
probability distribution for the number of demands over the next cycle from
the probability distribution of time to failure just computed. As in the
continuous resupply problem of Chapter 5, we will estimate the mean and
variance-to-mean ratio of this distribution. When the failure rate in Equation
7.4 varies with time, the estimated variance-to-mean ratio will be smaller if
we take into account the age of each installed item at the beginning of the
cycle. Of course, in a steady-state procurement model these ages are
unknown.

However, in this chapter on periodic resupply we want to consider not
only the steady-state procurement problem, but the optimal policy for each
shuttle flight based on the latest information including number of units and
location of serviceables and unserviceables (failed units) for each item. The
information should include the age of each installed item that is subject to
wear out as we show below.

7.5 Numerical Example

Suppose that we have ten installed batteries and we want to compute the
mean and variance for the number of demands over the next cycle. We
assume that the age of each installed battery is known, and that the failure
rate is similar to Figure 7-2. The probability distribution of time until failure
for a battery conditional on the fact that it has operated for time t is simply
obtained by taking the original distribution, h(t), in Figure 7-3 and dividing
by the probability that it has not failed during time t, namely 1 - H(t). The
new probability distribution is defined for and is like Figure 7-3, except
that each probability is multiplied by 1/[1 - H(t)) so that the area from t to
infinity integrates to one.

As in Chapter 6 we assume that the resupply cycle is of length T. Thus
the probability that a battery of age t will fail during a cycle of length T is
the integral of the probability function in Figure 7-3 from t to t + T, divided
by 1 - H(t). To simplify the mathematics, we assume that if a battery fails
during the cycle, its replacement has a probability near zero of failing during
the same cycle. In the next section this assumption is relaxed.

Thus for each battery i, based on its age at the beginning of the cycle,
we compute the probability that it will fail during the next cycle. Thus,
there is a probability of no failure. The mean number of failures on
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battery i is and the variance is The mean number of failures for
all 10 batteries is the sum of the means, and the variance for the total number
of failures is the sum of the variances since the item failures are assumed to
be independent.

This is summarized In Table 7-1, and a hypothetical example given
where the range from .1 to .9. We call this the tracking case to indicate
that we keep track of the age of each battery; the variance is 1.9.

By contrast, consider the no-tracking case, where all we know is that the
average Thus, the mean is .5 and the variance is .25 for each battery.
The total mean is 5.0 again, but the variance is now 2.5 and the variance-to-
mean ratio is .5. In order to obtain the same protection level, the no-tracking
case with the higher variance-to-mean ratio will require more spare stock.

The on-orbit stock required for various protection levels, k, was derived
in Equation 1.2. Thus, the ratio of stock required for a variance of 2.5 versus
that for 1.9 can be expressed as a function of the protection level as:

Even for a protection level, k, as large as 10 this ratio is only 1.1.
However, the comparison can be made more dramatic if fewer of the
batteries are near .5 probability in the tracking case. For example, if 5 have a
failure probability of .1 and 5 have a probability of .9, the variance in the
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tracking case drops from 1.90 to .90 and for a protection level, k, of 10 the
ratio of stock in Equation 7.8 is almost 1.5, indicating a requirement for 50%
more stock.

7.6 Multiple Wear Out Failures at one Location during
a Cycle

The theory in the previous section is adequate provided that the
probability is very low that an ORU and its replacement could both fail due
to wear out in the same cycle. (Throughout this book we have always
allowed multiple failures for demand due to random causes). The probability
distribution of time to failure need not be gamma or any other well-known
function; numerical methods can be used on any probability distribution to
estimate the i corresponding to any The failure rate may have a
“bathtub” curve shape to reflect “infant mortality,” as in Figure 7-2 and
combine any aspects of both random failures and wear out.

However, as the cycles become longer, it may be necessary to consider
cases where an ORU and its replacement(s) have probabilities greater than
zero of wearing out in the same cycle. For each battery location i we must
compute the probability of 0, 1, 2, . . . failures during the resupply cycle
based on the age of the installed battery at the beginning of the cycle, For
example, there will be two failures in one location during the resupply cycle
if the first failure in location i is at a time between and a second
failure of the replacement battery at a time between and and no
subsequent failures during the interval. The probabilities must be added up
for all possible times and which will require numerical procedures in
the general case.

For purposes of spares procurement the ages of the installed batteries at
the beginning of a resupply cycle are unknown, of course. Let’s consider an
analytic approach to this problem that retains the possibility of multiple
failures in a location during a cycle and assumes a random distribution of
ages for the installed batteries. Suppose that we approximate Figure 7-3 with
a continuous distribution for analytic convenience. Because of the increasing
failure rate as the item approaches its wear-out life, the probability
distribution for time to failure in Figure 7-3 has a hump in the to time
period.

Two unimodal analytic distributions that could be chosen for this purpose
are the gamma and the Weibull. For a particular mean and variance the two
distributions look very similar, as was illustrated in Figure 4.4. However, as
discussed in Section 4.17, the gamma has the advantage that it is much
easier to determine the parameters for any specified mean and variance. That
is precisely the capability we need. The mean and variance of Figure 7-3 are
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computed analytically, and the gamma parameters (a, b) are estimated from
the relations following the gamma definition in Equation 4.21 (see Problem
3).

A second advantage of the gamma distribution is that there is a nice
physical analogy that may be meaningful. For integral values of the shape
parameter a in Equation 4.21, the gamma distribution is the probability
distribution for the ath successive exponential event. In some cases it may be
possible to visualize the failure process as a series of internal failures, each
of which is exponential, where failure of the ORU occurs only after some
number of internal failures. In the queueing theory literature where a is an
integer, the gamma is referred to as the Erlang distribution.

The most important advantage of the gamma/Erlang distribution is that
we can calculate analytically the probability distribution for the number of
demands during any period of time. For simplicity we begin with a case
where a = 4 and derive these Erlang-4 state probabilities. Later we
generalize to the gamma distribution with non-integral a.

The mean of the Erlang is denoted mT. We will compute the probabilities
by relating the Erlang to a Poisson process with mean = 4mT. If we observe
no demands in this Poisson process, there were no demands in the Erlang. If
we observe four Poisson process demands, there must have been one Erlang
demand since every fourth Poisson demand is an Erlang demand.

The problem arises when we observe a number of Poisson demands not
precisely divisible by four. For example, if we observe one Poisson process
demand, it may or may not be an Erlang demand, depending on the counting
origin. With a random counting origin, there is a probability ¼ that it is an
Erlang demand. For a random origin, the general relationship for the Erlang-
4 state probabilities, erl(x|mT), where m is the average annual demand and T
is a specified time period, is:

where the p’s are Poisson probabilities with mean 4mT. It is easy to verify
that the erl’s sum to one, and thus comprise a valid probability distribution. It
is also easy to check that the mean of the Erlang probabilities is mT (when
each equation for erl(x) is multiplied by x and summed, the coefficient of
each Poisson probability, p(y), is y/4). The Erlang variance-to-mean ratio
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approaches 1/4 for large values of mT, but must be computed numerically
for small mT.

While the physical model for the Erlang is based on the ath exponential
event where a is integral, the state probabilities can be computed for
nonintegral a as well. This allows us to model any variance-to-mean ratio
less than one. The generalization of Equation 7.9 is given below. For
computational purposes, it is more useful to provide the first three Erlang
probability equations, where is used to denote the integer less than or equal
to a:

The general pattern can be inferred easily, noting that the numerators of
the successive coefficients in an equation increase by 1 until the next
coefficient would exceed one. Then the numerators decrease by one until
they would go negative, except that the first of these numerators must be
computed as in the following example. In the equation for erl(1 | mT) the last
term on the first line has a coefficient of An amount less than one,
is used to reach the numerator of a at which the coefficient is one, leaving an
amount to subtract from a for the next numerator, and this equals

The notation is the biggest problem in understanding these equations. In
fact, the equation for erl(2 | mT) as written assumes that is greater
than a, and that is less than zero. The computer programs to
evaluate these equations are not difficult, however.

For each specific value of x, the corresponding Poisson probability, p(x),
appears in one or two of Equations 7.10, depending on whether a is integral.
Thus, when all Equations 7.10 are summed, the right-hand side is a sum of
Poisson probabilities, which must equal one. Since the Erlang probabilities
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on the left-hand side sum to one and each is non-negative, the Erlang is a
valid probability distribution. When the Erlang probabilities, erl(x | mT), are
multiplied by x and summed, each Poisson probability, p(x), has a coefficient
x/a, showing that the mean of the Erlang is mT.

Table 7-2 shows the variance-to-mean ratios of demand for various
Erlang values a (the Erlang is the same as the gamma pdf with integer a) and
mean values of demand over a cycle. When a = 1 we have the Poisson
whose variance-to-mean ratio equals one. Larger values of a lead to smaller
variance-to-mean ratios as computed from Equation 7.10. When a is infinite,
the time between demands is constant. There appears to be an anomaly when
a is infinite and the expected demand is .25. This result arises because with a
random time origin and a constant time between demands that is four times
the cycle length, there is a probability of .25 of one demand and .75 of no
demand. This is like the earlier case of a binomial variable whose variance-
to-mean is

Note that as the expected number of demands becomes large, we know
more and more about the expected failure times of all failures except the first
which was assumed to have a random origin. Thus, these variance-to-mean
ratios are appropriate for the case of tracking, when the time of the last
demand in the previous cycle is known. When a particular ORU is in several
locations, we add the means and variances for each location.

Figure 7-4 summarizes the relationship between the failure rate, the
probability distribution of time to failure, and the probability distribution for
the number of demands during an arbitrary period of time, t. Any of the three
cases (a, c, or e) implies the same process for random failures with a
constant mean; any of the three cases (b, d, or f) implies the same process
for wear out.
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1 For random failure items with changing means the failure rate of case a would be a line that
has some variation up and down, the probability distribution of time to failure of case c
would be a series of exponentials with different means, and the probability distribution for
the number of failures during t of case e would be the negative binomial of Equation 4.5,
but the relationship between these three views is only approximate, not exact.
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In the wear-out case we showed that if the failure rate is approximated by
horizontal line segments as in Figure 7-2, it is easy to calculate analytically
the probability distribution of time to failure. The mean and variance of that
distribution can be used to fit a gamma distribution, with the advantage that
it is possible to calculate analytically the state probabilities for the number of
demands during t from Equation 7.10. Again, for simplicity the mean and
variance of these state probabilities can be used to fit a binomial distribution.

On the other hand, since the gamma distribution is unimodal, it is not a
good approximation to all probability distributions of time to failure. It is
possible to consider a mixture of an exponential and a gamma which would
be bimodal, but this frustrates the analytic calculation of the state
probabilities. Of course, numerical and simulation methods can be used to
estimate the state probabilities that result from any assumed failure rate
distribution.

7.7 Common Items

The common item problem is more difficult to model correctly than in
the continuous review case discussed in Section 5.12 if we are referring to
second-indenture items that may be used on multiple ORUs. This is because
the importance of an ORU “hole” in the space station depends on where that
hole occurs in a system and the type of redundancy at both the ORU and
system levels. But the probability distribution for the number of holes on
two ORUs (or more) is related in turn to the stockage policy for the common
SRU.

Though we will not discuss that complex case, we will consider a simpler
case of commonality at the ORU level. In this actual example from the
power generation system, there are two types of solar array blankets, a left
and right. It is technically possible to have a single, common ORU that could
be used in either position, but there are additional design costs and there may
be additional weight and other considerations. The data is for the 23 random
failure items from Chapter 6 plus 3 wear-out items, of which 2 are the left
and right solar arrays.

To evaluate this decision of whether to make the solar array blankets
interchangeable, we run the model under both sets of assumptions and
calculate both system availability-cost curves. The important observation
from Figure 7-5 is that the benefit of commonality increases with the
availability target. At about a 73% availability, the dotted line shows a
spares budget saving of about $10 million, whereas at 95% availability the
dotted line shows a spares budget saving of about $15 million. (The actual
costs have been replaced by fictitious costs to avoid influencing future
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contractor estimates for the common item design, but the qualitative results
are accurate.)

NASA decided not to make a common blanket because of increased
weight; this makes sense if no spare blankets are carried in space, but not if
it is necessary to have both a left and right blanket as on-board spares.

7.8 Condemnations

We have assumed that every ORU that fails in space can be repaired on
the ground. In Chapter 6 we outlined the solution for the multi-indenture
problem as well where the ground stockage of SRUs required to repair
ORUs was determined. Again the assumption was that SRUs can be
repaired.

Now we consider the fact that some ORUs or SRUs may not be
repairable on the ground, and may have to be scrapped or condemned.
Without loss of generality let’s consider an ORU which has a probability f
that a failure due to either a random cause or wear out can not be repaired.

We need to distinguish two resupply scenarios: (1) one-time
procurement; (2) continuing procurement. Many of the ORUs on the space
station can only be purchased prior to full-scale deployment while the
production lines are still open. This means that in addition to the spares
determined by the theory of Chapters 6 and 7, we must buy spares to cover
the expected condemnations over the life of the space station, plus some
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safety stock. It is obviously very difficult to estimate condemnation rates
over the next thirty years for a system that has not been fielded yet, and it is
hard to give precise guidance.

When continuing procurement is possible, the appropriate modification
to the theory is to use a repair time in the model equal to the condemnation
fraction f times the average resupply time for procurement plus (1 - f) times
the average repair time when the item can be repaired. The procurement lead
time should include administrative and other delays.

7.9 Dynamic Calculations

The theory we have developed is for steady-state operations. Of course,
the reality is that the space station will be built up over time, and the demand
rates will increase with the number of ORUs actually in service. Demand
rates will tend to be low, and it will take time for enough data to cause us to
revise demand estimates. But, over a 30-year program, all of the data
elements will change. Models based on this theory are easy to operate; it is
possible to run them at different points in the program build-up.
Alternatively, one can calculate only the peak requirements when the station
build-up is over.

The same model can be used for shuttle manifests with up-to-date
information including the age of items subject to wear out. The advantage is
that depending on the available weight and volume for both the shuttle and
the station, it is possible to prioritize the spares sent on each shuttle. By
looking at the increase in availability per unit resource, weight or volume or
both, management can determine whether extra capacity should be used for
spares or something else.

It is possible to link the spares required by the model to procurement lead
times, and constraints on production, to determine a list of what and when to
buy, as well as programmatic budgets required by time period.

7.10 Summary

We have shown that end-of-cycle availabilities over different resupply
cycles must be annualized if meaningful comparisons are to be made.
Corrections to availability to account for remove-and-replace time of an
ORU in orbit have been presented.

For items with wear-out characteristics the failure rate changes with time.
Though the failure rate may be the most convenient representation for the
equipment specialist who is estimating data, we need to calculate the
probability distribution of time to failure for our models. We show that if the
failure rate curve is approximated by a series of constant failure rates that
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differ by time interval, it is possible to calculate the probability distribution
of time to failure analytically.

To determine the best mix of items for a shuttle manifest, it is necessary
only to compute the probability of failure for each unit over the cycle, taking
into account the age of each installed unit. However, for procurement
purposes this information is unknown, so that a simpler model based on a
gamma distribution of time to failure is proposed.

An example of commonality was presented, and procedures for
estimating additional stock due to condemnations described. Finally, there
was some discussion of the dynamic problems of stockage due to the fact
that the station is built up over time.

7.11 Problems

1. Verify that the mean and variance of the exponential distribution from
Equation 4.1 are 1/m and

2. In the model of Section 7.4 with constant failure rates over different
intervals, suppose that and
Write an analytic expression for the probability distribution of time to failure
for any

3. Verify that the mean and variance of the time to failure in Problem 2
are 2.208 and 5.47. Suppose this distribution is approximated by the gamma
distribution of Equation 4.21, and estimate the parameters a and b.
(Remember that the Erlang is the special case of a gamma with integer
values of a). Note that the variance-to-mean of this gamma distribution is
larger than that of the exponential. Explain why this occurs.

4. Suppose that the assumptions of problem 2 are modified so that any
item which does not fail by is automatically replaced. What happens
to the failure rate graph and the probability distribution of failure. Will the
mean and variance of the latter increase or decrease?



Chapter 8

MODELING OF CANNIBALIZATION

Did you hear about the cannibal who went to the psychiatrist because he
was fed up with people?

-Eve Titus

8.1 Chapter Overview

In Chapters 2-5 we addressed the problem where repair or resupply could
be initiated at any point in time or continuously; in Chapters 6 and 7 we
considered the case where resupply is periodic. In the latter case we
considered the impact of cannibalization (consolidation of ORU “holes” into
the smallest number of systems by remove-and-replace maintenance). Now
we want to return to the earlier problem where resupply is continuous and
show how cannibalization can be modeled.

In most applications, spares are purchased under the assumption that
cannibalization will not be practiced regularly. Of course, there will be
situations where maintenance personnel cannibalize a few items to prevent a
large portion of the fleet from being grounded, but this does not imply that
cannibalization is standard procedure (or cost-free) to be assumed in the
optimization. Even if cannibalization is not assumed in the optimization of
what to buy, we believe it is desirable to evaluate the increase in availability
that could be achieved with those spares if maintenance does cannibalize.
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The availability under cannibalization is an upper bound on what could be
achieved.

We noted in Section 1.11 that a stockage policy optimized under the
assumption of no cannibalization tends to produce a robust stockage policy
that performs well regardless of the cannibalization policy actually practiced
by maintenance; that stockage optimized under the assumption of
cannibalization tends to perform rather badly when maintenance does not
cannibalize. Even so we may want to optimize under the assumption of
cannibalization because: (1) with newer plug-in systems cannibalization may
be easy to perform; (2) it may be desirable to anticipate a wartime scenario,
in which cannibalization is more likely to take place.

The cannibalization we consider takes place only at the site (base). It is
most likely to occur on first-indenture items, but it may occur at lower
indentures as well. The linkage between depot and base stocks is still by
means of pipelines as in Chapter 5, but the measure of performance at the
base is the probability that there will be y or fewer aircraft down at a random
point in time. Feeney and Sherbrooke used this objective function in single-
echelon, single-indenture models as early as 1963, and it was surely used
prior to that time.

The main reason that availability has not been used as the objective
function for optimization is mathematical: availability under cannibalization
is not separable into independent item computations. The need to use
different objective functions, depending on whether cannibalization is
practiced, has been an important conceptual limitation. In this chapter we
show that availability can be used as the objective function for the
cannibalization problem as well, and that marginal analysis produces near-
optimal, multi-echelon, multi-indenture solutions. The computation requires
substantially more computer time, but the solutions are slightly better and
more credible.

Sometimes it is necessary to model non-stationary demand, such as in a
wartime scenario where a planned period of surge flying for several days is
followed by a lower planned flying rate for a sustained period of time. Full
cannibalization is usually assumed. We describe some of the features of
Dyna-METRIC, a model designed more for assessment of specified stock
levels rather than determination of optimal levels. Recently the Aircraft
Sustainability Model has been designed as a multi-indenture optimization
that can use either objective function, availability or the probability that
there will be y aircraft or fewer aircraft down.

Then we turn our attention to a model originally called DRIVE -
Distribution and Repair in Variable Environments. This model attempts to
make optimal decisions based on short-term planning horizons and the
actual condition and location of items, rather than on the steady-state
probabilities that are used in procurement models. For this reason the model
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can make large improvements in availability. This model is discussed in this
chapter, because it is assumed that cannibalization will be practiced at the
bases.

8.2 Single Site Model

We assume that demand is Poisson with a constant mean, so the
probability distribution for the number of units in repair in steady state is
Poisson by Palm’s theorem. The probability of having y or fewer aircraft
down at a random point in time, G(y), where y is a parameter, equals:

and P is the cumulative Poisson distribution of the steady-state probabilities
for the number of units in repair and is the number of units of LRU i on
the aircraft. Thus Equation 8.1 indicates that the objective function will be
satisfied if there are no more than units in repair of each LRU i,
where as before, is the stock level on line-replaceable unit (LRU) i and
is the quantity of LRU i on the aircraft. For a single echelon and indenture,
this is easily converted to separable, additive item functions by taking
logarithms.

The cumulative probabilities inside the bracket on the right-hand side of
Equation 8.1 are not convex even when the P’s are Poisson (this was shown
in Problem 4 of Chapter 2 for small values of s when the mean exceeds one).
Thus it is a little surprising that the logarithms of these cumulative
probabilities are convex when the probabilities on the right-hand side are
Poisson, negative binomial or binomial (see Problem 1), so marginal
analysis can be used to obtain optimal stock levels.

Because of analytic simplicity, the probability of having y or fewer
aircraft down has been used for over 25 years as the objective function for
cannibalizable items. But there are several reasons to use expected
availability as the objective function

1) We use expected availability as the objective function for non-
cannibalizable items. Most systems contain a mix of cannibalizable and
noncannibalizable items, and we would like to use the same objective
function for both types of items.
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2) The probability of y or fewer aircraft down requires a specification of
the parameter y. The stockage policy can be quite sensitive to the value
of y chosen. For example, when y = 0 the range of items stocked will be
large; when y = 1, the range of items stocked is less, because there is no
need to stock low-demand items. Further, the measure gives equal credit
to 0, 1, . . y aircraft down, even though the smaller values are preferable;
equal penalty to y + 1, y + 2, . . aircraft down, though the lower values
are preferable. Thus, it is has the defect of being an all or nothing
measure, similar to fill rate, which ignores the length of time a stockout
lasts.

3) Many users misinterpret the probability of having y or fewer aircraft
down, confusing it with an availability rate. For example, a .85
probability of y or fewer aircraft down is quite different from an 85%
availability. The probability depends on the value of y. A stockage list
that produces a .85 probability of 0 aircraft down will typically lead to an
availability rate greater than 85%, whereas a .85 probability of y or fewer
aircraft down, for large values of y, results in an availability less than
85%.

The ability to optimize the procurement of spares under the assumption
of cannibalization is becoming more important, because items on newer
systems tend to be easier to cannibalize.1 There may be nonwartime
applications for the military and even some commercial applications where a
degree of planned cannibalization is appropriate.

The expected availability under cannibalization, denoted by is the
total number of aircraft, N, minus the expected number down, all divided by
the total number of aircraft:

1 1The Air Force has estimated that of the 176 LRUs on the F-16 aircraft dominated by
random failure that are carried in war reserve kits, there are about 44 (25%) that are hard
to cannibalize. Hard-to-cannibalize is defined as over four hours of maintenance time or
with significant risk of breakage. For the F-15 there are 237 LRUs of which about 45
(19%) are hard cannibalizations. A recent review has reduced those percentages.
Maintenance personnel on the A-10 aircraft told us that there are only ten or so items that
they find difficult to cannibalize. One example is a pitch and roll indicator that requires
recalibration, and which is easy to damage. The percentage of hard cannibalization items
would probably be smaller for commercial aircraft. In an Air Force exercise to simulate
combat conditions, we noted that maintenance personnel found it easier to cannibalize
some avionics LRUs between aircraft, rather than go to base supply for the item.
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where g(x) is the probability density of exactly x aircraft down and n is a
positive integer that is large enough such that G(n), the cumulative
probability, is approximately one. Since N is the number of end items,
Rewriting Equation 8.3 with cumulative probabilities yields:

which is equivalent to:

It is easy to evaluate the availability for any set of stock levels using
Equation 8.4. The optimization problem is that each G(y) is a multiplicative
function of the item stock levels, as shown in Equation 8.1. Thus the
availability is not an additive separable function of the item stock levels.

We can still apply marginal analysis, but there is no guarantee that every
point on the cost-effectiveness curve will be optimal. It turns out that when
marginal analysis is applied, the results are usually optimal (i.e. items are
bought in the correct sequence). However, Mike Slay was able to construct a
single-indenture case where a non-optimal solution is generated.1 The first
solution of 57, 10, 10 at $7700 shown in Table 8-1 is obtained by marginal
analysis, and it lies on the convex hull as indicated by the asterisks. At the
next step, for $7800 the marginal analysis selects the policy of 58, 10, 10
rather than 57, 11, 10, because the former availability is larger. For the third
step to $7900, the marginal analysis selects the policy of 58, 11, 10, as
indicated by the asterisk. It does not consider the policy of 57, 11, 11 which
has a higher availability of 97.0618%, because the algorithm had already
bought 58 units of the first item in the previous step. Finally at the fourth
step, to $8000, the marginal analysis selects 58, 11, 11 which lies on the
convex hull.

1 The three first-indenture items in this case have pipeline mean demands of 54.3, 10 and 10
respectively, variance-to-mean ratios of one, and costs of $100. The availabilities are
based on 100 end items, though this type of non-optimality is independent of N.
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This example demonstrates that the solutions generated by marginal
analysis may not be convex and they may be dominated by points that are
not obtainable with marginal analysis (e.g. 57, 11, 11 dominates 58, 11, 10).
This isn’t surprising since Equation 8.4 is not an additive separable function
of the item stock levels. However, it was not easy to find an example where
marginal analysis produces a non-optimal solution point. Our experience
suggests that these non-optimal points are rare, and that after a non-optimal
point, the succeeding solutions obtained with marginal analysis are usually
optimal. Even though expected availability with cannibalization can produce
some non-optimal solutions, we believe its advantages as an objective
function outweigh the disadvantages in most situations.

8.3 Multi-Indenture Model

The extension to two indentures requires that the cumulative Poisson P’s
derived in Equation 8.1 of the previous section be generalized to represent
the probabilities for LRUs either in repair or awaiting SRUs in repair. We
begin with a single LRU type and its SRU components j = 1 . . . J. The
algorithmic procedure is as follows where the probabilities may be Poisson,
negative binomial, or binomial:

1. For the LRU, calculate the set of steady-state probabilities that the
number of units in repair is x, Pr{# LRUs in repair = x}.

2. For each SRU, calculate the set of cumulative steady-state
probabilities that the number of units in repair is y or fewer, Pr{# SRU j
in repair
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3. For the LRU and its family of SRUs, calculate the set of steady-state
probabilities that the number of LRUs awaiting SRUs is y or fewer, Pr{#
LRUs of type awaiting SRUs

Pr{# LRUs awaiting SRUs

Because of cannibalization there will be y or fewer LRUs awaiting SRUs
if for each SRU j, the number of SRU j in repair does not exceed the
stock level, plus y times the number of locations for the SRU in the
LRU,

4. Calculate the probability of y or fewer LRU backorders due to LRUs
or SRUs,

where is the LRU stock level. A similar computation is performed for
every LRU and its family of SRUs (where we assume in this derivation
that a given SRU is not common to more than one LRU type), so that we
obtain a set of for each LRU type i. Then the cumulative Poisson
probabilities, in Equation 8.2 are replaced by these to generalize
that result to the two-indenture case. A cost-effectiveness curve can be
generated for the probability of y or fewer aircraft down using the from
Equation 8.6. However, the are not additive separable functions of
the items. Thus, they are not convex for two or more indentures.

Now let’s consider the expected availability objective function for this
two-indenture problem.
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8.4 Optimization of Availability

As noted in Section 8.2, the expected availability with cannibalization
objective function is not separable into individual item optimization
problems and is not convex, even for a single indenture. Suppose we use
marginal analysis anyway and compare the expected improvement in per
dollar invested (Delta) if any stock level is augmented. By any stock level
we mean each LRU and each SRU. But, after each point on the cost-
availability curve is generated, every Delta must be recalculated because of
the nonseparability of the objective function. (Obviously nonseparability is a
more serious problem than nonconvexity in optimization). We need to find
an efficient way to do this.

Mathematical induction is used. We show that it is possible to find an
initial solution. Then we show that having computed any solution, it is
possible to calculate the next solution.

We can compute the availability corresponding to the initial stock levels
for all LRUs and SRUs, where the levels may be zero or positive. To denote
this initial solution, we add a zero subscript to the corresponding set of
probabilities of no more than y aircraft down, Now we want to
show how we can proceed from any solution with stock levels on every LRU
and SRU and a corresponding set to the next solution. Our objective
is to show how we can use marginal analysis efficiently to find the best LRU
to augment (later we will extend this to include SRUs as well). We can
compute a new set, which corresponds to augmenting by one the
stock level on LRU i

where is used to denote the cumulative probability of y or less
backorders on LRU i or its SRUs given that the LRU stock level is
The SRU stock levels are fixed also, but we have not indicated them in the
conditioning since we are not going to let them vary here.

In other words the modifications to the required to compute
for each LRU i, are very simple. These in turn allow us to compute

the availability with one more unit of LRU i from Equation 8.4 and the
increase in availability divided by the cost of LRU i, the Delta referred to
above. Suppose that we designate by k the LRU with the largest Delta,
indicating the next solution point. Now we want to show the modifications
necessary to the that will convert them into a new set that
can be used to find the next solution point.
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for all values of i except i = k. The first line of Equation 8.8 is converted to
the last line by substituting To calculate for the LRU k that
was optimal, we must calculate the next step

The point is that if we save the values for every possible LRU
augmentation, it is easy to update them at each solution step, because for a
particular value of y we multiply by the same ratio involving the optimal
LRU k for all i except i = k. For the LRU k that was optimal, it is necessary
to compute the and multiply by a different ratio.

The procedure for augmenting SRUs is precisely analogous, though the
notation becomes more cumbersome. It is easy to build a computationally
efficient model that is economical in terms of storage such that it is possible
to optimally allocate investment across 1000 items or so on a personal
computer. Note that steps 1 and 2 of the algorithmic procedure of Section
8.3, computing the probability distributions for the number of LRUs and
SRUs in repair, need never be repeated, but the probabilities must be stored.
Storage is needed for the corresponding to any augmentations. For
example, if the range on y is 0-49 in for each item i and there are 1000
items (LRUs and SRUs), we would need an array of size 50,000. At 4 bytes
of storage per element we need 200K for the G’s, and a total of 80K for the
LRU and SRU repair probabilities. The entire program for 1000 items will
fit easily into 512K of storage.

By keeping the corresponding to any augmentation in core, the
calculation time at each step can be kept reasonable. In summary, the
procedure is as follows:

1. Determine that LRU or SRU, k, which produces the maximum
increase in availability per item cost using Equation 8.4. The function
replaces the function corresponding to our new availability.

2. Recalculate the function If the augmented item was an LRU, we
must only calculate Equation 8.6; if an SRU we have to calculate
Equations 8.5 and 8.6.

3. For each i except i = k, we update the functions using Equation 8.8;
for i = k, we update the function using Equation 8.9.
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4. We repeat steps 1-3 generating points on the cost-availability curve
until we reach some specified cost or availability target.

Thus, even though the objective function is not separable, there is an
elegant procedure for applying marginal analysis. The deltas are not convex
either, and since they are recomputed after each allocation, there is no simple
procedure for convexification. It turns out that these are not critical defects,
as seen below.

8.5 Comparison of Objective Functions for
Cannibalization

In order to evaluate the performance of the marginal analysis algorithm,
we took some actual Air Force data on the F-111. We compare the
probability of y or fewer aircraft down for several values of y and the
expected availability objective in Table 8-2. The data are for two indentures,
and we have shown above that marginal analysis can not guarantee an
optimal solution for either objective function when there are two indentures.

The maximum availability objective does consistently produce lower
numbers of aircraft down than the probability of y or fewer aircraft down for
any value of y and any budget level. Table 8-2 shows two such points with
budgets of $48 and $60 million. However, the maximum availability
objective reduces the aircraft down by less than one-half percent over that
obtained for the probability of y or fewer aircraft down for the best value of
y (y = 4 for $48M and y = 3 for $60M). On the other hand, with the latter
objective function one must run several values of y to find the best
availability for a given budget.

However, there is another number of interest to logistics planners. What
is the cannibalization workload that results from the stockage policy? The
expected LRU backorders, shown in the last column of Table 8-2, are the
“holes” in aircraft. Since cannibalization is the consolidation of “holes” on
the fewest aircraft, the number of “holes” is greater than the number of
cannibalization actions. Nevertheless, there is clearly a relationship, and it is
desirable to keep both expected LRU backorders low and availability high
(see Problem 8).

At small investment levels, the allocation of budget under expected
availability looks similar to that for the probability of y or fewer aircraft
down with a large value of y. As investment is added, the policy shifts to a
smaller value of y, eventually moving to y = 0. Thus, the availability
criterion effectively chooses y values that decrease toward zero as the
investment increases. This is reasonable.
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The stockage policies obtained with marginal analysis can be improved
whenever the stock levels for each SRU, equal or exceed the number of
applications of SRU j on the LRU, for all SRUs, provided that the cost of
a full set of SRUs equals or exceeds the LRU cost (see Problem 3). This
simplifies the marginal analysis search procedure, because it is not necessary
to consider policies consisting of a full set of SRUs.

In summary, the maximization of expected availability produces slightly
higher availability (fewer aircraft down) than the probability of y or fewer
aircraft down for any value of y and any budget level. This is true not only
for the data in Table 8-2, but for several other cases we have run. We suspect
that the improvement in availability obtained will be small in most data sets,
though it is useful to have this new technique as a check.

The biggest advantage of the expected availability objective is conceptual
- using the same criterion regardless of cannibalization policy. The
availability of a system consisting of some cannibalizable items and some
noncannibalizable items can be calculated as the product of the two
availabilities, and we know how to optimize the stock levels for each piece.1

1 The overall availability is greater than the product of the availability for cannibalizable
LRUs and that for noncannibalizable LRUs, because the cannibalizable “holes” can be
moved to aircraft that are down for noncannibalizable LRUs. Also, the overall availability
is less than the smaller of the two availabilities, because the number of aircraft down for
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Another advantage of the expected availability objective is that it is only
necessary to calculate one cost-effectiveness curve, rather than a family of
curves as in the case of the probability of y or fewer aircraft down.

On the other hand, the curves for the probability of y or fewer aircraft
down can be calculated much faster and more items can be handled in a
personal computer. More importantly, with this objective function
management can see the tradeoff between availability and a measure related
to cannibalization workload. As in most optimization problems where there
really is more than one resource, it is possible here to relax the expected
availability objective slightly and get significant reductions in
cannibalization workload (this is analogous to the relationship between cost
and weight in the space station as described in Section 6.11 and depicted in
Figure 6.3).

There is an interesting relationship between optimizing with different
numbers of aircraft allowed to be down and maximizing availability,
demonstrated in Table 8-2. With a budget of $48 million, availability is
maximized when the number of aircraft allowed to be down is slightly more
than 4 (since the expected LRU backorders are 174.1 and 172.1,
respectively); with a budget of $60 million, availability is maximized when
the number of aircraft allowed to be down is about 2.5 (although we cannot
solve for nonintegral values of aircraft allowed to be down), since the
expected backorders of 65.8 are about half way between 80.3 and 43.7. In
effect, the procedure for maximizing availability is like the procedure for
allowing a certain number of aircraft to be down, where this number
decreases as the budget increases.

In Figure 8-1, we see similar results for the F-16 where the data points
are generated for various values of y, the number of aircraft allowed to be
down. As in Table 8-2 we see that by allowing the number of aircraft down
to be slightly larger than its minimum, there is a large reduction in LRU
backorders.

all LRUs is larger than the number down for cannibalizable (or noncannibalizable) LRUs
alone.

If we knew the cumulative probabilities for the number of aircraft down due to
noncannibalizable LRUs, we could multiply each cumulative probability by cumulative
probabilities for cannibalizable LRUs. The resulting probabilities are the G’s to substitute
into Equation 8.4 for the overall availability. Slay suggests approximating the former
probabilities by a Poisson distribution whose mean is the expected number of aircraft
down due to noncannibalizable LRUs. Numerical examples show that this is usually a
good approximation. However, in some cases the Poisson understates the variance enough
so that the availability with a few noncannibalizable items exceeds the availability under
full cannibalization, which is incorrect. The problem disappears when a negative binomial
distribution is used as described in Problem 7.
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8.6 Generalizations

As noted in the derivations of Section 8.3, the probability distributions
can be Poisson, negative binomial or binomial. Of course neither objective
function is convex for two or more indentures, but we would expect that the
marginal analysis solutions under negative binomial or binomial
probabilities would lead to results that are not dissimilar qualitatively to
what we observed in Table 8-2.

If a multi-echelon model is desired, it is possible to combine the VARI-
METRIC theory of Chapter 5 with the theory in this chapter. Cannibalization
takes place only at the bases, but the means for the number of LRUs and
SRUs in repair at the base must take into account the pipelines to depot
which in turn depend on the depot stockage policies.

The theory developed in this chapter can be used to model the case where
there is no resupply of the base. Typical military applications are flyaway
kits and war reserve kits. That problem is considered below in Section 9.5,
where we show that simple changes in the demand rates are the only
requirement to use VARI-METRIC theory. Those same modifications to the
mean demand rates for LRUs and SRUs in Section 8.3 are appropriate when
cannibalization is practiced.



194 Optimal Inventory Modeling of Systems

8.7 Dyna-METRIC and the Aircraft Sustainability
Model

Dyna-METRIC was developed by Hillestad and Carrillo (1980) as an
analytic model for studying the transient behavior of component
repair/inventory systems under time-dependent operational demands and
logistics decisions like those that might be experienced in wartime. There
have been several versions of the model, simulation and analytic, with the
most recent analytic version described in Isaacson (1988).

The advantage of Dyna-METRIC is that it is possible to model wartime
scenarios such as a planned period of surge flying for several days followed
by a lower planned flying rate for a sustained period of time. Cannibalization
is normally assumed, though it is possible to assume that some items are not
cannibalizable.1 The mathematical justification is the dynamic form of
Palm’s theorem proved by Crawford (1981) and described in Appendix A.

Dyna-METRIC is multi-echelon and multi-indenture, but it is best
described as an assessment model rather than an optimization model. If the
user supplies the stock levels by location, the model will determine the
probability that the required number of sorties can be met during the wartime
period. In other words Dyna-METRIC computes the probability of y or
fewer aircraft down for any set of stock levels. Only in the case of a single
base and single-indenture does Dyna-METRIC compute the optimal stock
levels.

Slay and King (1987) have developed a model called the Aircraft
Sustainability Model (ASM) that incorporates several enhancements to
Dyna-METRIC. It allows the user to specify either of two objective
functions, availability or the probability of y or fewer aircraft down, and
determine the two-indenture, quasi-optimal policy similar to that described
above in Sections 8.2 to 8.4. The modeling of the tradeoff between the first-
and second-indenture items as described in those sections is more accurate
than the procedures used in Dyna-METRIC. Both models are multi-echelon,
but Dyna-METRIC does allow the user to specify different base types. ASM
was used by the Air Force for the mobility kits in Desert Storm and it
continues in use today.

It is important to stress that Dyna-METRIC or ASM is designed for a
problem where cannibalization is performed, and when there may be
changes in the demand rates because of planned changes to the flying
program; the model in Chapter 5 is appropriate when cannibalization is not
performed, and we want optimal stock levels in a multi-echelon, multi-

1 The theory for noncannibalizable items is based on the assumption of an infinite population
of aircraft, and as shown in Section 6.15, this can lead to substantial error.
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indenture, steady-state problem. But, the VARI-METRIC theory of that
chapter is used in ASM to link echelons.

8.8 DRIVE - Distribution and Repair in Variable
Environments1

In Chapter 7 we noted that better decisions can be made about what to
send on a specific space shuttle if the age of each installed unit of any item
subject to wear out is known. Now we want to address the corresponding
“tactical” problem for continuous resupply. When a procurement model
using VARI-METRIC theory is run, a number of simplifying assumptions
are usually made. For example, the Air Force assumes that each base is
identical - number of aircraft, demand rates, repair capability, order and
shipping times, etc. The rationale is that the model is used to determine what
to buy, and these procurements do not make an impact until a procurement
lead time later, many months in the future. When the procurements are
delivered many factors will have changed, and at that time the Air Force can
take base differences into account.

This suggests that it is important for the Air Force to have a good
technique for allocation of spares - known as the distribution problem. Also
it is clearly important for the Air Force to have a good technique for depot
repair scheduling, since that affects the assets available for distribution.

The author has helped the RAND Corporation in the design and
implementation for the Air Force of a model to perform both distribution and
depot repair scheduling called DRIVE as described in Abell, Miller,
Neuman, and Payne (1992).

8.9 Purpose of DRIVE

Why do we need a DRIVE type model for repair and distribution? As
noted above, a procurement model may make a number of simplifying
assumptions. But even if the procurement model takes into account all of the
base differences, many things will change over a procurement lead time.

1 Picking a good acronym is both an art and a science. Originally DRIVE denoted Depot
Repair in a Variable Environment. Then we realized that the model had to deal with
distribution as well; fortunately, the acronym meaning could be easily modified.

In Chapter 3 we discussed METRIC. The acronym has been successful in that other modelers
have used the term as in MOD-METRIC and DYNA-METRIC. On the other hand, it has
led to confusion; after a briefing to Headquarters Air Force Logistics Command in
Dayton, Ohio by a RAND colleague of mine, an attendee was heard in the corridor asking
why feet and pounds weren’t good enough and what did the METRIC system have to do
with spares anyway?
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This includes item data such as demand rate estimates, unit prices,
procurement lead times, etc. and system data such as aircraft basing patterns,
flying hour programs, etc.

Suppose that we make the unrealistic assumption that none of those data
elements change over the procurement lead time. It is still possible to
improve system performance with a good model for depot repair scheduling
and distribution. This is because the VARI-METRIC theory is based on the
probability distribution for the number of items in repair in steady-state. But
if we know at each point in time the actual number and location of the
serviceable and unserviceable units of each item, we can make better short-
run repair and distribution decisions.

The percentage improvement obtainable with a good short-run model
depends on many factors, but our experience with DRIVE suggests that it is
very significant. The Air Force schedules depot repair in most shops over
two-week periods (complex repairs for items such as landing gears, engines,
etc. will typically have longer repair scheduling periods). The percentage
improvement tends to be greater for (a) short repair scheduling periods, (b)
when there are more items whose demand rates change with time, (c) when
the amount of spare stock in the system is modest in relation to demand
rates, etc.

What was used prior to DRIVE? A stock level was computed for each
item and location using VARI-METRIC or similar theory. Then bases
placed requisitions on the higher echelons that were satisfied on a first-come,
first-served basis. Some bases were given a higher priority than others based
on the mission, but requisitions were filled on a first-come, first-served basis
within priority groups. The problem is that requisitions were based on stock
levels, but were unrelated to the amount of stock in the system for each item.
If the sum of the stock levels across locations for an item exceeded the actual
stock, serviceables plus unserviceables, there would be a number of
outstanding requisitions and these would be satisfied in time sequence rather
than to maximize aircraft availability; if less, there might be no outstanding
requisitions even though distribution to the bases of some depot stock could
increase availability.

There are many reasons for the sum of the stock levels on an item to
differ from the stock in the system. The stock levels are computed
periodically, based on data that on average is a year or two old. Depending
on the number of outstanding orders from manufacturers and the number of
condemnations for the item, the actual number of spares in the system at any
point in time can be more or less than the sum of the stock levels.

The DRIVE model should do a better job of distribution than item
managers, because optimal decisions depend on many variables including
the tradeoff between an LRU and its SRUs that are not easy without a
computer. But, the improvement in repair scheduling appears to be even
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more significant. To understand the reason, we want to think of the repair
requirement in two pieces: a keep-up requirement and a catch-up
requirement. The keep-up requirement is essentially the repair necessary to
replace failures. This is easy to compute and understand, and historically this
has been the primary basis for repair requirements in the Air Force.

The catch-up requirement is the repair required to bring each item to the
same readiness level. This requires a model that relates the spare stock by
item and location to aircraft availability. Because there was no such model
underlying depot repair requirements in the past, the catch-up requirement
was not really reflected in the repair schedule. We found in our field tests
that this perpetuated the existing problems - an item with a number of base
backorders at one point in time tended to remain a problem.

8.10 Model Assumptions with DRIVE

Originally we built a large, combined computer model to make both
repair and distribution decisions. Later we realized that this was
inappropriate for several reasons. At the beginning of each repair period we
need a priority list of what each depot repair shop should attempt to repair,
subject to its capacity constraints. And periodically we need to make a
computation of where to distribute the assets that have been repaired.
However, there are usually significant differences between the list of what
we would like repaired, and what is actually repaired.

These lists will differ for many reasons. At the item level this includes
lack of repair parts and the inability to find a broken carcass to repair (even
though repair scheduling is normally constrained by the number of broken
carcasses). At the system level this includes changes in the available repair
hours due to the insertion of high-priority repairs of more critical items that
are identified during the repair period (or support of a depot rebuild
program), test equipment failure or personnel shortages, etc.

Since the model has to be run at different times for repair and for
distribution anyway, it makes sense to have two simple models instead of
one very complex model. The repair model needs only the detailed
information necessary to determine what each shop should repair; the
distribution model needs only the detailed information by base that
determines where each repaired item should be sent.

Below we list and justify the major assumptions in DRIVE:

1. It is multi-echelon and multi-indenture. The model does depot repair
scheduling and distribution to bases taking into account the aircraft
availability at each base and the interaction between LRUs and SRUs
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2. DRIVE is planning-horizon-oriented. For each base, the model
calculates the optimal decisions over a planning horizon. For distribution
decisions the planning horizon is an order-and-ship time, because decisions
made now will not have an impact until later; for depot repair decisions the
planning horizon should be a depot repair cycle plus an order-and-ship time.

3. The model uses repair shop priorities, not a detailed schedule. For each
repair shop, the model lists in order of decreasing priority the items to repair
during the next repair cycle. A particular item may appear at several points
in the list, indicating a need for multiple units. However, the actual
sequencing of items for repair during the repair cycle is left to the shop
foreman. He is in a better position to take into account the day-to-day factors
such as the availability of repairmen and test equipment. When multiple
units of an item are to be repaired during a repair cycle, he is likely to find it
more efficient to batch them to reduce physical set-up time and repairman
inefficiencies.

4. SRU repair parts are assumed to be in stock. When an SRU is
scheduled for repair, demands for repair parts may be placed on supply in
anticipation of the need. Of course, in some cases the parts needed to repair
an SRU are not available. If this is known by the shop foreman before SRU
repair begins, it can affect the decisions as to those items to induct for repair.
This is another reason why the repair priority list differs from the list of
repairs accomplished during the repair cycle.

5. Carcass constraints are considered. Normally the number of broken
carcasses at the depot is taken into account in determining the priority list
above. In some cases this may be augmented by expected carcass returns to
the depot during the repair cycle.

6. Base shortages are consolidated by cannibalization. The Air Force
chooses to assume that any “holes” at the base for LRUs are consolidated on
the fewest aircraft; any “holes” for SRUs are consolidated on the fewest
LRUs. Then depot repair and distribution decisions are made to increase
aircraft availability at the bases. In peacetime the Air Force would typically
perform only enough cannibalization to meet peacetime availability targets,
but the assumption of full cannibalization does provide an upper bound on
capability that could be achieved if necessary. Of course, in other
applications it may be appropriate to assume no cannibalization.

7. There are timely, accurate data on asset location and condition. This is
an obvious, but difficult requirement. If data at different locations is updated
at different times during the day, there is a possibility of double-counting or
failure to count.

8. There are accurate data on demand rates, repair times, order-and- ship
times, LRU/SRU parent-child relationships, etc. It turns out that demand rate
errors are much less important to DRIVE than to a procurement model,
because we need to project demand only over the planning horizon. This
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implies that the problems of changing demand rates and estimates of
variance-to-mean ratios are largely unimportant to DRIVE.

9. Each item has one primary repair shop. The basic logic of the DRIVE
models constructed so far is that it is possible to designate the repair shop for
each failed item. While a given repair may actually involve more than one
shop, a more sophisticated model would be needed to model this interaction
if a significant amount of multiple shop repair occurs.

10. There is capability for redistribution between bases. This is an
optional capability that we built into DRIVE. On the one hand, redistribution
should be less necessary with DRIVE, because the system is partially self-
correcting based on the latest information. But if the demand rate declines
dramatically at a base that has spare stock, the spares will stay there
indefinitely unless there is a redistribution capability.

8.11 Implementation Problems with DRIVE

There are a number of practical implementation problems with a model
like DRIVE. Some of them are endemic to any model implementation such
as user resistance and training problems. Others relate to the adequacy of the
assumptions above. But there are some other fundamental concerns that we
address below.

1. Master stock numbers versus limited interchangeables. The model
deals with master stock numbers, but in the real world an item may actually
be several stock numbers with limited interchangeability. That is, a
particular stock number may be applicable to only certain aircraft. The depot
may have to depend on the requisition submitted by the base to know which
specific stock numbers are applicable.

2. Pull versus push system. A system that distributes stock in response to
requisitions is called a pull system; one that sends stock to bases using
central information on asset location and condition is called a push system. If
the depot were in possession of all information necessary, DRIVE could
push assets to the bases. But, as we have just seen in the previous paragraph,
the depot is unlikely to have the necessary information on interchangeable
and substitute items and the aircraft configurations at the base. As a result
the current Air Force implementation of DRIVE is still a pull system where
an item is distributed to a base only if there is an outstanding requisition. In
effect, DRIVE prioritizes requisitions.

3. Loss of management information and control. Before DRIVE an item
manager knew the projected repairs by item over the next quarter, and he
knew approximately what would be repaired in the next two weeks. Since
the manager controlled distribution as well, he could estimate a delivery date
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of a particular item to a specific base. There is still some quarterly planning
under DRIVE, but the specific list of items to repair in the next repair cycle
is much more dynamic, depending on a number of factors. Furthermore,
since the distribution decisions are made by DRIVE (perhaps with some
item manager authority to override), the item manager has lost some control
and visibility. We believe the gains from DRIVE in terms of better decisions
(particularly in terms of the multi-indenture decisions on both LRUs and
their SRUs) more than offset the losses, but it is critical to consider the
impact of advanced stockage models on logistics managers.

4. Demand from non-aircraft sources. The biggest problem with DRIVE
has been dealing with demands other than those from bases flying aircraft.
This includes support to depot overhaul programs, foreign military sales, and
some contractor repair programs. The DRIVE program managers have
resorted to assigning some rather arbitrary priorities to combine these
demands into the priority systems for repair and distribution,

8.12 Distribution Algorithm for DRIVE

We want to describe the distribution algorithm briefly. At each base there
is some target at the end of the planning horizon: either an allowable number
of aircraft down or an availability objective. An allocation of an item of
stock to a base will increase the probability for the former objective or
increase the expected availability for the latter objective.

The distribution algorithm would be run periodically, say weekly or bi-
weekly. It is assumed that any serviceable item already in transit to a base
will arrive before the end of the planning horizon. Thus it is counted as if it
has arrived in the calculations to follow. Similarly it is assumed that any
base repairable item will be fixed by the end of the planning horizon if
spares are available at the base.

For the moment we assume the objective function is some target number
of allowable aircraft down at the end of the planning horizon for each base,

Later we consider an expected availability target for each base.
Let’s consider a single LRU which is sometimes base repairable and

sometimes depot repairable and its family of SRUs. Since we are assuming
up-to-date information at the depot, we know how many units of the LRU
are broken at each base and what the “holes” on each LRU are. Because of
the cannibalization assumption, we know that one (or more) specific SRU is
missing on every broken unit of the LRU. Similarly we know how many
units of the LRU are missing on aircraft at each base.

An outline of the distribution logic for an LRU and its component SRUs
is as follows:



Modeling of Cannibalization 201

1. Find that base, if any, which will be furthest below its allowable
aircraft down target, due to this LRU at the end of the planning horizon,
even if there is no demand for the LRU during the period. All LRUs in base
repair for which there are spare SRUs and all serviceable LRUs in transit to
the base are counted as serviceables. Add a unit of the LRU, increasing the
base probability, in the following priority order:

a. Ship the missing SRUs from depot needed to fix a broken LRU at base
b. Ship a serviceable LRU from depot
c. Put SRUs on a broken LRU at depot and ship the LRU

Repeat this step until all bases are above (go to step 2) or all assets have
been distributed (go to step 4).

2. Same as step 1 except that the asset position is reduced by the expected
depot repairable LRU demand during the planning horizon. Repeat until the
probability at each base exceeds an input threshold, (go to step 3) or until
all assets have been distributed (go to step 4).

3. If the LRU is never base repairable go to step 4. Otherwise compute the
expected demand for its first SRU over the planning horizon at each base,
and send a unit of the SRU to the base with the smallest probability of
meeting its target. Repeat until the probability at each base exceeds the input
threshold, or until all serviceable units of the SRU have been distributed.
Advance to the next SRU and continue until all SRUs in the LRU are
processed.

4. Redistribution - Let and be lower and upper probabilities
specified as input thresholds for redistribution. If there is some base whose
probability exceeds and another base below on a particular LRU or
SRU, a redistribution is made from the former to the latter.

After an LRU family is processed, we move to the next LRU family.
Note that the distribution algorithm only considers data for one LRU family
at a time, and needs no data concerning shops and repair processes. As each
LRU family is processed we augment the G’s for each base using Equation
8.1 so that at the end we can calculate the availabilities using Equation 8.4.

8.13 Field Test Results for DRIVE

There was a six-month test of DRIVE at Hill Air Force Base in Ogden,
Utah during a six month period in 1987. The Air Force estimated that
without DRIVE about 40% of the aircraft would have been down after a 30
day period, simulating a wartime effort. If DRIVE had been available for
distribution only, about 35% of the aircraft would have been down; with
DRIVE repair and distribution about 19% would have been down.
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8.14 OVERDRIVE - Separate Distribution and Repair
Models

As noted above, I believe that DRIVE would be much simpler with two
separate models: one for distribution and a second for repair. This is because
the distribution model needs to know nothing about repair shop details, and
the repair model doesn’t need base availability details. Since the models
have to be run at different times, there is no advantage to a single model. I
have coined the name OVERDRIVE for this modification.

If we are interested in expected availability targets at each base, instead
of the probability of meeting a target number of aircraft down, the procedure
for distribution is more complicated than in Section 8.12, because expected
availability does not divide into separable functions by item. Instead we need
to give each base an essentiality weight. After a trial allocation using the
rules above, we need to increase the weights for bases that are below their
targets and decrease for bases that are above. We have found that this
procedure converges, though it may require 15-20 iterations.

For example, Table 8-3 shows the distribution of F-16 aircraft around the
world in about 1987. Suppose that our availability target is 95% at all bases.
We invented some data on repaired items, and then allocated them to bases
using marginal analysis to determine which base would get the next item.

Note that are large imbalances in Table 8-3, where some bases such as 9,
7, and 8 are under their 95% availability targets by as much as 9%. At the
other extreme bases such as 17, 16, and 13 are as much as 4% over the
targets. The average error is only 0.38%, but the average absolute error is
2.43%. Now look at Table 8-4, which is the result of lowering the
essentialities of bases over their targets and raising the essentialities of bases
below the targets. The maximum error is now only 1.88% instead of 9.04%;
the minimum error is only slightly changed for reasons discussed below.
Lastly, the average absolute error has dropped to 1.45% from 2.43%.
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Table 8-4 suggests that we don’t have enough stock to satisfy all the bases
at 95% availability. Suppose we arbitrarily reduce the availability targets to
90% at the last 15 bases. We use the same iterative procedure and after 20
iterations we obtain Table 8-5. Note that the maximum error is reduced still
further to 0.90% and the average absolute error is only 0.81%.1

1 It should be noted that this procedure for adjusting essentialities is not only reasonable, but
leads to optimality. The essentialities are Lagrange multipliers of a constrained solution,
which reflect the cost of increasing availability at different sites. This is precisely
analogous to using site essentialities discussed in the footnote following Figure E-7.
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The reason that the minimum errors do not decrease with iterations is that
a base with lots of stock and very little demand will have excellent
performance even if it receives no stock in distribution. In such cases we
need a redistribution capability. We programmed thresholds that could be
manipulated by management. No base would receive a redistribution unless
its expected backorders were decreased by at least and no base would
send an item if its expected backorders increased by more than The
overall logic is that we attempt to correct existing imbalances before
considering the impacts of probabilistic demand. Then we add the demand
component, being most concerned about LRUs, since they impact
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availability directly. After SRUs are considered, we allow for some
redistribution to correct long-term imbalances.

It is possible to generalize this procedure to cover SRUs that are common
to more than one LRU by considering the “extended” LRU family.

The repair algorithm is much simpler than the distribution algorithm. For
each item that uses a given repair shop or test stand, we add across bases to
obtain the total expected demand over the planning horizons and the
serviceable assets at the end. At each step of the algorithm we find that item
with at least one unserviceable unit where the probability of needing an
additional unit divided by the repair cost (in man-hours, dollars or whatever)
is greatest. The procedure stops when the repair shop capacity is reached.

This repair algorithm can be used to allocate repair dollars or personnel
across shops. An ideal allocation of capacity across shops would result in the
same ratio of probability/resource for each. Thus the repair algorithm
enables us to determine the catch-up requirement across items. Note that the
common item problem is handled automatically in the OVERDRIVE repair
algorithm logic.

8.15 Current Status of DRIVE

The current status of DRIVE in the Air Force of 2004 is that the model
has been implemented at all depots. For the past several years it has been
called EXPRESS, and now it is called PARS, Prioritization of Aircraft
Recoverable Spares.

PARS still does its prioritization to requisitions. Part of this is due to the
configuration concern and part is due to an Air Force policy to do “repair on
demand”. It was decided that repair on demand meant that the allocations
had to be made to existing requisitions.

The prioritization by PARS is really in two parts:

1). Prioritization is done by backorder categories for “high priority”
backorders. These would include Joint Chiefs of Staff (JCS) projected
coded backorders, Air Force Special Operations Command (AFSOC)
backorders and those causing an aircraft to be grounded (Mission
Capable Awaiting Parts, known as MICAPs).

2). Remaining requisitions.

The Air Force continues to talk about changing the objective function
to availability instead of the probability of no more than a targeted number
of aircraft down, but it is still the same as it was.1

1 Private communication from Bob McCormick, formerly a civilian employee at Wright-
Patterson AFB and now an LMI staff member.
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PARS is used for prioritizing more than 80% of the dollar value of
organic repairs at Air Force depots, so it’s being used quite extensively. It
has reached a level of maturity and acceptance such that it hasn’t been
necessary to justify its existence lately. The Air Force Material Command
(1999) did do a study comparing PARS to a “backorder priority”-based
system that the Oklahoma City depot developed. The highlights were1:

1). Using a simulation to measure the results over time, the availability-
based prioritization scheme (PARS) resulted in about 30% fewer down
aircraft under no cannibalization and about 10% fewer down aircraft
under full cannibalization

2). Assessing the expected stock levels that would result from using only
one day’s prioritized list, PARS resulted in about 20% fewer down
aircraft under no cannibalization and about 3% fewer down aircraft under
full cannibalization.

8.16 Summary

The probability of y or fewer aircraft down has been used for many years
as the objective function when cannibalization is practiced, because of its
analytic simplicity. When there is a single indenture, the logarithms of the
cumulative probabilities are convex, and marginal analysis produces optimal
solutions.

However, in the two indenture problem the logarithms of the probability
of y or fewer aircraft down are not even additive separable functions of the
items. Thus, they are not convex, and there is no guarantee that marginal
analysis will produce an optimal solution. More importantly mere are several
conceptual drawbacks to the use of mission accomplishment as the objective
function, even for a single indenture.

It is possible to use expected availability as the objective function when
cannibalization is practiced. There is an elegant procedure that enables us to
use marginal analysis, even though the objective function is not separable
into independent item calculations. Though there is no guarantee that
marginal analysis produces optimal solutions, there is empirical evidence
that the procedure leads to near optimal policies. Furthermore, for a given
budget the policies produce higher availabilities than under the probability of
y or fewer aircraft down.

For a specified budget the optimal stockage policy under the availability
objective function tends to look similar to that under the probability of y or

1 Private communication from Richard Moore, a civilian employee at Wright-Patterson AFB.
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fewer aircraft down for some value of y. As the budget is increased, the
policy looks similar to that under the probability of y or fewer aircraft down
for a smaller value of y. This seems intuitively reasonable. The advantage of
the expected availability objective is that the user need not guess the value of
y that is appropriate for the budget available. On the other hand, we would
recommend solutions for the probability of y or fewer aircraft down at
several values of y, evaluating the availability and the expected LRU
backorders for each. The computation of the probability of y or fewer
aircraft down is much simpler and we can look at the tradeoff between
availability and a proxy for cannibalization workload.

We did not discuss any modeling of redundancy in this chapter.
However, in the simple case where there is only one end-item such as a
nuclear power plant, the theory is easily adapted to cover the case where the
plant must shut down unless at least K of the N copies of a system such as
water circulating are operating (see Problem 6).

In this chapter we have described a model for depot repair and
distribution known as DRIVE. This model differs fundamentally from a
procurement model in that decisions are based not on steady-state
probabilities but on probabilities computed over a planning horizon.
Regardless of the procurement model used, DRIVE has the capability to
make better short-term decisions because they are based on the actual
location and condition of items rather than steady-state probabilities.

8.17 Problems

1. Show that Equation 8.2 is convex for Poisson, negative binomial or
binomial probabilities. Hint: Note that for the Poisson of Equation 2.4

if and only if

and show that the latter is true because after cross-multiplication, each term
on the right-hand side is dominated by a term on the left. For the negative
binomial of Equation 4.5, the same procedure is followed, after an easy
proof for a > 1 that
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for y in the interval and any x.
For the binomial we need only show that for any y where

2. Calculate cumulative Poisson probabilities for means of 1 and 10 and
then use Equations 8.1 and 8.4 to verify that the stockage policy optimized
for cannibalization in the rightmost column of Table 1.4 yields an
availability of 96.04% when cannibalization is practiced.

3. By substituting Equation 8.5 into Equation 8.6, show that any trial
solution with stock levels such that and

can be improved by building an LRU from the SRUs times quantity per
LRU (Z’s). This assumes that the J SRUs times their quantity in the LRU
comprise the entire LRU, and that their total cost is the same (or greater
than) that of the LRU.

By repeated application of this result, it is clear that a final solution is
achieved only when at least one of the SRU stock levels falls below its
quantity in the LRU (QPA). Note that the result applies to both objective
functions and any probability distribution of demand. This is a useful fact
that simplifies the search for optimal solutions.

By contrast it is easy to show that a similar result does not occur in the
non-cannibalization case. The reason is that in that case an LRU can be
backordered because of a single SRU.

4. Solve problem 10 of Chapter 2 when cannibalization is allowed, and
contrast the solution with the no-cannibalization solution from Chapter 2.

5. Solve problem 11 of Chapter 2 when cannibalization is allowed, and
contrast the solution with the no-cannibalization solution from Chapter 2.

6. Problem 6 of Chapter 5 addressed the problem of modeling
redundancy when there is a single end item as in a nuclear power plant.
Consider the same problem when cannibalization is allowed, and show it can
be accommodated with minor changes to Equation 8.1.

7. Show that the mean and variance for the number of aircraft down due
to noncannibalizable first-indenture items are approximately equal to the
sum of their backorder means and variances respectively. Hint: Use
Equation 2.19 and the Taylor series expansion for the exponential.

8. (Research) Use simulation in order to develop an estimating
relationship between expected LRU backorders, as discussed in Section 8.5
and Table 8-2, and cannibalization workload. The relationship must depend
on variables such as the number of aircraft (since the number of possible
cannibalizations increases with fleet size) as well as other variables to be
identified in the research.



Chapter 9

APPLICATIONS

Any sufficiently advanced technology is virtually indistinguishable
from magic.

-Arthur C. Clarke

9.1 Chapter Overview

In this chapter we describe a number of different applications of the
VARI-METRIC theory. Even though the basic theory assumes that resupply
or repair can be initiated whenever a demand occurs, it turns out that the
theory is appropriate for a much wider set of problems.

The most important application is to commercial airlines (Section 9.2),
which depart from the usual assumptions of VARI-METRIC in that
availability is a meaningless objective for aircraft that move around a set of
airports. A related problem in Section 9.3, which is of particular importance
to airlines, is redistribution of the spares already owned before putting in a
new procurement, including the possible sale of items that are not needed.

Then in Sections 9.4 to 9.7 we turn to variations from VARI-METRIC in
the repair and resupply assumptions: periodic resupply, no resupply, repair-
in-place, and contractor repair. Even though we went into a lot of detail in
Chapters 6 and 7 to develop the theory for periodic resupply of the space
station, much of that was because of our desire to model redundancy; most



periodic applications are easily handled by the VARI-METRIC theory. In
Section 9.8 we estimate the probability distribution for repair delay.

In Section 9.9 we consider changes to the multi-echelon structure;
namely where a given site may be an operating site and also a support site
for other sites. This is followed by situations affecting the indentured parts
hierarchy. In Section 9.10 we consider situations where the indentured
structure is unknown or should be suppressed in the interests of simplified
data management. Section 9.11 shows a case where two model runs are
required to solve a complex system. The problems with items that have
limited interchangeability and substitutability are addressed in Section 9.12.
We show in Section 9.13 how a limited redundancy capability can be used to
model both cannibalization and no cannibalization. In Section 9.14 we deal
with the case where unfilled demand may not generate a backorder.

Airline Applications9.2

The biggest obstacle in using VARI-METRIC theory for airline
operations is that the availability objective is meaningless. We cannot
compute the percent of available aircraft at each location, because aircraft
are not assigned to particular locations; they move around.

A figure of merit used by airlines is the on-time departure rate (for
spares), which we can calculate as follows:

where departing flights are those scheduled and where we can make the
simplifying assumption that any LRU demand that can not be filled results in
an aircraft not departing on time; this last assumption is reasonable because
the demand for spares in a commercial airline operation is an order of
magnitude less than for military aircraft, and the probability of multiple
failures on one aircraft is very small. We allow the number of LRU non-fills
to be multiplied by a criticality number; this is usually one but might be less
for certain items that are not required for every flight, e.g. equipment needed
for flights over water.

Thus the objective function is basically the first-indenture item fill rate at
operating locations, though a 70% fill rate might translate to a 90% on-time
departure rate.

A version of the VMetric model, described in Appendix E is been used by
several airlines. Unfortunately, we cannot identify the airlines or precise
savings for competitive reasons, but a typical result over nine commercial
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airline fleets has been a 40% reduction in spares cost and a 20%
improvement in performance.

One airline went from an on-time arrival rate of 58.6% and an average
delay of 53 minutes to an 86.6% on-time arrival rate slightly more than a
year later, attributing this industry leading performance to “new automation
to optimize the provisioning of spare parts”.

Redistribution and Sale of Assets9.3

One of the first problems facing the airlines, as well as other users, is
how to redistribute owned stock by item optimally across locations, allowing
purchase and sale of stock up to any specified target. The ability to sell
spares that are not needed is particularly important for the airlines where the
resale price of a spare is often a significant fraction of its original cost.

It turns out that the optimal solution is quite straight forward. The model
begins with no stock and uses the sales price of each item in the
optimization. When it exhausts the number of units owned on any item, it
converts to the purchase price of that item for subsequent iterations. When
the optimization target (budget, on-time departure rate, or whatever) is
reached, the net stock on any item whose owned stock has not been
exhausted is marked for sale. It is easy to see that this procedure is optimal.
The spares for sale were not attractive to the model even at their resale
prices.

There is one other detail for items with a positive condemnation rate. We
do not want to sell all units of these items not needed by the model; instead
we perform a calculation of how much to reserve for future condemnations.

Periodic Resupply9.4

The VARI-METRIC theory of Chapter 5 can be used to model periodic
resupply as well as continuous resupply. We did present theory in Chapter 6
for the periodic resupply of the space station, but this more elaborate theory
is not required unless the spares optimization can plan on having certain
“holes” in LRUs that do not cause end-item failure because of redundancy.

The important thing is to properly interpret the VARI-METRIC inputs for
the periodic resupply case. For example, suppose we have a fleet of 50
submarines which are visited on average every 30 days by a supply ship. We
assume that the submarines can do only remove-and–replace maintenance.
Let’s assume that everything can be fixed on the supply ship in an average of
45 days.

This is a two-echelon problem with 50 operating sites. We need to specify
the Not-Repairable-This-Station (NRTS) for each site, which is one minus



the repair rate. The NRTS = 1 for each submarine and item; NRTS = 0 for
the supply ship. The repair time for the supply ship is 45 days. Before
looking below, try to estimate what the order-and-ship time should be.
Remember that the order-and-ship time is the average time from the failure
of an item until its replenishment by our supply source when the latter has a
spare on the shelf.

It turns out that there are two possible answers. As in the space station,
the availability, the probability of a submarine being fully operational,
decreases over time. If we want the average availability, we should use 15
days as the average time between needing a spare and being resupplied. On
the other hand, if we want the minimum availability that will be reached just
prior to the arrival of the supply ship, we should use 30 days.

Let’s consider a slight variant of the problem above, where our country
can only afford one submarine. What changes, other than the number of end-
items?

Again this is like the space station case where repairs were assumed to
take 160 days, but if the shuttles had a 180 day periodicity, the repair time
was effectively 180 days. Similarly, the supply ship repair time is effectively
60 days here for the same reason.

The case with one submarine brings up one other point. Where will the
model put all the spares? Unless we constrain the stock held on the
submarine by using maximum stock levels, or put a “shadow price” on
volume, the model will put all the spares on the submarine, because that is
where all the demand occurs.

There is another application which can be treated the same way. The
Israeli Air Force has radars at remote sites that are periodically visited by
maintenance teams. During these periodic inspections, any failed items are
replaced, assuming a spare is available. We assume that because of
redundancy the radars are not usually down even though there are some
“holes” (it is likely that there would be some monitoring devices on the
radars to indicate a failure in the system).

No Resupply: Flyaway Kits9.5

There are important applications where there is no resupply. The
military services determine the spares needed for flyaway kits or war reserve
spares kits that must support independent operations for a period of time. We
show below that the VARI-METRIC theory developed above is appropriate
for the no resupply case, provided that cannibalization is not practiced.

The no resupply case implies a single site. Consider a first-indenture item
that is not repairable. The expected backorders are given by Equation 2.7 as
always, but the random variable due in, DI, is replaced by the random
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variable X, the number of demands during the period. If demand is Poisson
the probabilities are Poisson with mean where is the length of the
period, instead of mT, where T was the mean repair time. Because there is no
repair, Palm’s theorem is not needed. As in the previous section for periodic
resupply, the mean would give the minimum availability, reached at the
end of the period, whereas would give the average availability.

More generally suppose that the item has a probability r of being
repaired. Assuming that the supply of second-indenture items is adequate,
the expected backorders for the first-indenture item are given by Equation
2.7 with a mean that is equal to

Second-indenture items make an impact through the value of T as in
VARI-METRIC. In principle the only complication is that the times used in
VARI-METRIC must be an appropriate combination of the repair time and
the length of the period, reflecting the probability of repair for each item.
The typical military application usually assumes cannibalization, and this
was addressed in Chapter 8.

Items that are Sometimes Repaired-in-Place9.6

Sometimes items are repaired-in-place, reducing the requirement for
spares. For example, suppose the average annual demand for an LRU and its
two SRUs are as shown in the left half of Table 9-1, where the indentations
indicate second-indenture items (note that the demand for the two SRUs may
exceed the demand for the LRU). Let’s assume that the LRU can be
repaired-in-place 30% of the time. What changes are required to reflect this
capability?

1 In this expression we assume that            In order for this expression to be correct for any     T
should be replaced by Note that when r = 0, indicating no repair, the mean
reduces to       as in the previous paragraph.



Clearly the demand for the LRU is only 70% of its original value, and
those demands break down into SRU demands as before. But, we have
demands for SRUs themselves which add up to the original totals. Each SRU
will now appear twice as a common item in the indentured list of items, once
as an SRU and once as an LRU.

Contractor Repair9.7

Let’s assume we are operating a fleet of aircraft, and that all repair is
done by a contractor at its own site. The spares at the contractor site are
calculated and owned by him. He contracts with us to repair and return items
to us in an average of 60 days. How do we feed VARI-METRIC so that it
will determine the spares we need at the operating sites to meet some
availability target?

This is a one-echelon problem since the repair site is not part of our
organization; thus there is no order-and-ship time since that pertains to times
within a multi-echelon system. The 60 days looks like a procurement lead
time, where we are assuming the 60 days includes the time to ship the
broken item back to the contractor. The Not-Repairable-This-Station
(NRTS) for each operating site, which is one minus the repair rate, must be
NRTS = 1. Of course, we could generalize this to NRTS < 1, where some
repair is performed at the operating sites.

How does the contractor determine his spares? He runs a one-echelon
calculation, too. The 60 day average repair and return guarantee by the
contractor implies that the average delay per demand plus the time, t, to get
the item to the operator should be 60 days. To be on the safe side, we may
want to include the retrograde time for the broken item as well as the
shipping time in t. Then if we are using a model such as VMetric, which
allows this objective function, we set a target for the average delay/demand
for LRUs at operating sites of (60 – t).

Probability Distribution of Delay Time9.8

One of the VMetric targets, as noted in the previous section, is the
average delay per demand for LRUs at operating sites. Suppose we are
interested in the probability distribution of delay on individual LRUs at any
site. The probability of no delay at a site is just the item fill rate, which is
one of the outputs in VMetric.
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Of course, if we are a contractor making guarantees about our support we
may want some information about the probability distribution of repair time,
not just the average delay and not just the probability of no delay.

It turns out that this can be done, but it is necessary to assume something
about the shape of the repair distribution (Palm’s theorem does not apply).
Results are easy to compute for Poisson demand in two cases: exponential
repair times (Higa et al. 1975) and constant repair times (Sherbrooke 1975).

For the constant repair time case, the delay, t, can never exceed T, since T
is assumed to be constant. Now consider delays of t or less where If s -
1 or fewer units were demanded during the previous time interval of length
(T - t), the delay can not exceed t, regardless of how many demands were
placed earlier. Thus, the formula looks very similar to that for the expected
fill rate in Equation 2.6 except that the mean is not mT, but

and the delay is zero otherwise. The general formula for the average delay is
given in Higa et al. (1975); in the constant repair time case it is most easily
evaluated by numerical integration. They provide specific formulas for the

and the average delay in the exponential repair case.
In Table 9.2 we compare the results for exponential and constant repair

times where t = 10 days (0.027 years) and the average annual demand is
3.65. We note that the probability of delay of 10 days or less is quite similar
for both repair distributions, although the repair distributions themselves are
extremely different. The average days of delay are very similar as well. The
probability of no delay, the fill rate, is identical because of Palm’s theorem.



This suggests that the constant repair time solutions may be good enough
for most purposes; if more accuracy is desired for an arbitrary repair
distribution, we would recommend averaging the two results.

Sites that are Both Operating and Support9.9

There is a large airline which operates aircraft from Washington National
(Reagan), Washington Dulles, and Baltimore-Washington, all in close
proximity. Washington National is also a support site for all three operating
bases. It is easy to represent this situation in the required tree-structure. We
break Washington National into two sites: an operating site and a support
site. We set a maximum stock = 0 for all items at National operations so that
the stock for National support is available to all three operating sites (there is
only one stockroom at National). The NRTS = 1 and the order-and-ship time
= 0 (or something very small) for all items at National operations.

This situation is easy to handle, but it is automated in VMetric.

Large Systems where Indenture Information may
be Lacking

9.10

There are applications where the parts hierarchy information is unknown.
An example is the Defense Logistics Agency (DLA) which provides
common spares to all military services. DLA has knowledge about the
system or systems that use an item, and it may be able to classify items into
different criticality groupings. But it does not usually have the parts
hierarchy data to properly classify an item by indenture, and utilize the detail
of VARI-METRIC theory. Furthermore, it would not be possible to compute
a meaningful availability, because they have responsibility for only a
fraction of the items on a given system. Instead the managers rely on various
fill rate targets by item criticality class.

In our view the VARI-METRIC theory should still be applied to items
grouped by criticality class. All items would be considered first-indenture,
since no other information is available. The model theory uses backorders in
the determination of optimal stock levels, but we can calculate the fill rate at
each point on the cost-backorder optimal curve. Thus we can calculate the
item stock levels in a multi-echelon setting that will produce a target fill rate
at the base level. In this way we still get the benefits of the VARI-METRIC
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theory which provides greater safety level on lower cost items and for the
retail, base locations in a systematic way.

Even when indenture data is available, it does not make sense to put all
items on a system into one massive computation. The lower indenture bits
and pieces will have extensive commonality, and the data input will become
very complicated. This is particularly true if there are many indentures,
because at the lowest indentures it is possible that a given common item
appears many times in the indenture hierarchy after its several “parents”.

We believe that the multi-indenture version of the theory should be run
for the major items whose cost is appreciable. But the bits and pieces should
be run in a separate one-indenture computation to some target such as fill
rate. Another useful objective function that we have used instead of fill rate,
or in combination, is the average delay per demand; this is the backorders
divided by the demand, of course, but it puts the backorder level into a more
meaningful context.

The problems with DLA managed items are discussed further in Section
10.6 concerning model implementation by the Air Force.

Systems Composed of Multiple Sub-Systems9.11

Suppose that we have a system with 1000 hand-held receivers in the field.
The receiver MTBF is 180 days. After a receiver breaks, it takes an average
of 2 days for the user to bring it in for service to one of 10 repair locations.
The user will be given a new receiver if one is available. Sometimes the
repair location can fix the receiver and sometimes it has to be shipped to a
depot.

The system also includes a transmitter at a central location which is to be
spared as well. It is desired to have a 95% availability for the overall system.

Consider how this might be modeled. First, note that even with infinite
spares, the availability due to the receivers can never be 100%. This should
make us think of maintenance availability = 100 x MTBF/(MTBF+MTTR) =
100x180/182 = 98.9% where MTTR is the mean time to repair. This implies
that to get an operational availability of 95%, the supply availability must be
= operational availability/maintenance availability = 95%/98.9% = 96.1%
(see discussion following Equation 2.17).

Unfortunately, we cannot just make an optimal VARI-METRIC run on
all the spares to a target of 96.1%, because there are 100 receivers and only
one transmitter. We need to make two VARI-METRIC runs, one for the
receivers and one for the transmitter, where the product of the two
availabilities is about 96.1%. The selected solutions from each of the two
curves should also have the property that the slopes of the individual



availability-cost curves have about the same slope, indicating that the
marginal analysis values at the solution are similar.

Items with Limited Interchangeability and
Substitutability

9.12

In the real world there are items which are members of a group with
limited interchangeability and substitutability. Suppose there are two LRUs,
either of which can be used on the aircraft, or perhaps LRU #1 can be used
on a certain group of aircraft and LRU #2 can be used on another group,
perhaps with some overlap. It may be that one of the LRUs is a newer
version which is slowly replacing the older LRU.

Let’s assume that LRU # 1 has 70% of the demand, and LRU #2 has
30%. The correct way to represent this is in VARI-METRIC is to put both
LRUs into the indentured parts list, with LRU #1 getting a demand rate of
70% of the total and LRU #2 getting 30%. Of course, each LRU may have a
different internal structure with different component parts.

In the absence of configuration control information, we are forced to
assume that each site has the same 70/30 mix of the LRU. But, if we do
know which type LRU is used on each aircraft, then we can input site
specific demand rates for the two types of the LRU.

9.13 Redundancy

We built a limited capability to model redundancy into the VMetric
implementation (described in Appendix E) of VARI-METRIC. The major
limitation is that there can be only one end-item. As an example, let’s
consider a nuclear power plant with four water circulation pumps, of which
at least two must be operating for safety reasons. (This is actually the
problem that we faced when we decided to include some redundancy
modeling). When there is only one end-item, the modeling is quite
straightforward because if we only need 2 of 4 copies, say, of the LRU to be
operating, it is like having two free spares.

Let’s suppose that each pump consist of two LRUs. We consider two
cases: (1) cannibalization of the LRUs is allowed (or some kind of cross
strapping as in the space station electrical system); (2) no cannibalization.

In the first case of cannibalization all we need to do is list the two LRUs
as first-indenture items with K = 2 and N = 4 where K is the minimum
number that must operate and N is the quantity of the LRU on the end-item
(power station). We don’t need to separately identify the fact that these two
LRUs comprise a pump.
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In the second case of no cannibalization we need to introduce a dummy
item at the first-indenture and demote the two LRUs to SRU components of
the dummy, which we will call “Pump”. The dummy item will have K = 2
and N = 4, whereas K = N = 1 for each of the components. We can think of
the two components as connected together in pairs with no possibility of
cannibalization; if either one has a “hole”, the pump is not operational.

Of course, we do not want to buy any units of the dummy item, so its
maximum stock should be set to zero. All demand for the dummy should be
passed to its children, so the NRTS = 0 and the site repair time = 0. As one
might expect, the first case of cannibalization is typically much less
expensive. On the other hand, most logisticians are unwilling to allow some
“holes”, even when there is redundancy, when they are planning what spares
to purchase.

Unsatisfied Demand may not be a Backorder9.14

Consider a commercial airline that wants to use VARI-METRIC theory
for optimizing its sparing. But when a demand cannot be filled or obtained
from the contractor source, the airline has the option of buying the item on
the open market. This has some of the characteristics of the lost-sales case,
mentioned earlier, because a backorder is not established. How should this
be modeled?

This is not the classic lost-sales case, as discussed in Hadley and Whitin
(1963), in which there are never backorders; sometimes there will be lost-
sales and sometimes there will be backorders. It would be very difficult to
build a VARI-METRIC type model to exactly model this mixed situation.
Even the classic lost-sales case of Hadley and Whitin is substantially more
complicated than the backorder case.

In our view the VARI-METRIC approach is appropriate in this
application. It is true that VARI-METRIC will tend to buy somewhat more
stock than would be optimal if the lost sales that sometimes occur could be
easily taken into account. However, our objective is to keep those lost sales
low, and the advantages of multi-echelon, multi-indenture models are
substantial.

Summary9.15

We have presented a number of applications where the basic VARI-
METRIC assumptions have been modified, but without affecting the
applicability of the theory.



Chapter 10

IMPLEMENTATION ISSUES

Our little systems have their day.
-Tennyson

Chapter Overview10.1

In this chapter we consider some of the issues relating to implementation
of stockage models. We first discuss comparisons of VARI-METRIC with
existing stockage policies, and point out errors favoring VARI-METRIC that
are sometimes made.

Then we address the amount of data required by the models, and the
difficulty in keeping the information current. We distinguish between two
types of data: (1) primary data such as demand rates that relate to the
“physics” of the problem; (2) derived data such as average repair times that
are influenced by management decision-making. We argue that standard
times may be more appropriate than measured values for derived data.

We discuss the effect of errors in the data on the model decisions. In
many cases the estimation process is robust in the sense that large errors in
the data result in small errors in the decisions. This enables us to concentrate
on those data elements such as demand rates and variances whose impact on
stockage decisions is most critical.

We stress that the theory developed in this book should be used
creatively in the assessment of alternative support policies. It should not be



assumed that the logistics system is fixed, and that the logistician’s job is to
optimize the spares only for that configuration. Are there ways to reduce
order-and-ship times, lead times, and repair times and are they cost-
effective? Is it cost-effective to increase the percentage of items repaired at a
base by means of more capable test equipment? Should there be a two
echelon structure, or does it make sense to have a third, intermediate echelon
between the bases and depot? Perhaps a ragged echelon structure as depicted
in Figure 1.3 is appropriate.

The military services of the United States and other users have
implemented the theory in this book in different ways for different reasons.
Hopefully our brief review will make the reader realize that there are many
options in how these techniques can be utilized.

Although it may be possible to include every item on an aircraft in a
massive multi-echelon, multi-indenture computation, the problems of
maintaining the data base and all of the commonality information are
formidable. We argue that it makes sense to run the multi-echelon, multi-
indenture model to an availability target for the group of important items;
that a single-indenture run be made to a fill rate target for the group of less-
important items that would otherwise require extensive data input to
represent commonality relationships.

We discuss model hierarchies, noting that early in the planning for a
system, models will be crude and may even be deterministic. As the design
is finalized, it is appropriate to consider more detailed models, such as those
in this book for spares support. During the operations phase, our models can
be still more detailed taking account of the latest information on location and
condition of spares. For wear-out items, the knowledge of the age of each
installed component can enable us to make even better tactical decisions of
what to repair and where to distribute material.

Finally, we summarize by noting the number of different ways in which
the system approach has been used in this book. In fact, that is what this
book is really about. The system approach is more complicated than the item
approach. It requires the manager to review the cost-availability tradeoff
curve, and select an appropriate target. It requires the analyst to determine
stock levels for each item and location that take into account the stock levels
for other items and locations, as well as the system target. In statistical
estimation, the system approach tells us that we should not limit ourselves to
data on a given item when we are making estimates of its mean and
variance.

But the system approach is not just a different perspective than the item
approach. It leads to different stockage decisions and significant
improvements in system availability and cost.
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Comparison of VARI-METRIC with Other
Stockage Policies

10.2

This is a critically important section. It is easy to fall into a trap when
comparing VARI-METRIC with existing policies, in a way which inflates
the advantages of VARI-METRIC. We did make some valid comparisons in
the George AFB field test of Section 1.9 and in our tests of various demand
prediction techniques in Appendix C. Recall that in those cases we used data
from a base period, made predictions, and then evaluated those predictions
with new data.

Another common approach is to take existing stock levels and compare
them with levels computed by VARI-METRIC, usually assuming constant
Poisson demand. There are a couple of problems: (1) the existing stock
levels were computed from earlier data, and if we believe demand rates
“drift” over time, then we have had the advantage of more recent, and
relevant data; (2) we know demand rates do not stay constant, so the
assumption of constant Poisson demand is almost surely wrong. By
assuming constant Poisson demand and known, error-free demand rates, we
automatically give VARI-METRIC an advantage; it is possible that the
existing stock levels would perform better if “real data” had been used to
assess their performance. Not only is this procedure wrong, but it tends to
overstate availabilities or understate the required budgets.

In addition, it is useful to look at the existing policy to identify elements
that might lead to non-optimality. It is not really sufficient just to show that
VARI-METRIC is better; users should want to know why, if possible. For
example, in the Air Force field test of Section 1.9 we noted that the Air
Force policy didn’t even consider unit cost. While there were other reasons
for the Base Stockage Model success, including the “objective Bayes”
procedure for demand prediction, it is not surprising that our policy was
more cost-effective than a policy that ignored unit cost. More generally,
stock levels should not be insensitive to echelon and indenture differences.

10.3 Use of Standards versus Measured Quantities

The models in this book share one characteristic. They tend to have a
voracious appetite for data. The importance of the data quality to decision-
making varies, though demand rate estimates are certainly the most crucial.

Data quality tends to improve with time. Early in program planning,
before any system has been fielded, the data are usually very “soft”. But we
have argued above, that for purposes of overall budgeting, the cost-
availability curves from this initial data should be meaningful unless there is
a systematic bias in the estimating procedures.
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As experience data begin to accumulate, it seems only natural that initial
estimates should be revised. For example, in the case of demand rates
Bayesian analysis provides a natural mechanism to shift from initial
estimates to real data. Of course, in demand rate estimation it is important to
use different procedures for items whose primary failure mode is thought to
be due to wear out. For wear-out items, we may want to increase demand
rates if early failures exceed expectations, but we may not want to decrease
demand rates if early failures are low.

However, there are some data elements that should not necessarily be
revised to agree with measured values. Consider the base repair time for an
item that is base repairable. Suppose that the standard used in the model
initially is four days (assuming that repair parts are on hand), representing
engineering judgment and some allowance for queueing delays. But suppose
that the measured average is ten days. Obviously if the model is rerun for a
repair time of ten days on this item, a larger fraction of the total budget will
be allocated to this item, other things being equal.

It is important to know why the measured time is ten days. If it is because
the standard time was incorrectly estimated originally, then it makes sense to
modify the model data. However, if we bought more than enough spares for
this item and the item has a ten day average repair time because we don’t
need to fix it in any hurry, it would be inappropriate to change the repair
time in the model. By increasing the repair time in the model, we would buy
even more spares for an item whose supply is already adequate.

The key consideration is to divide our data into two categories: (1)
primary data such as demand rates and unit costs that are not influenced by
management decisions; (2) derived data such as average repair times that
depend on management decisions. In the former category, initial estimates
should be revised as experience accumulates; in the latter the revision of
initial data must be made only with a full understanding of the management
policies. In many cases it will be more appropriate to use standards for
derived data values.

Robust Estimation10.4

When a statistician talks about robust estimation methods, it is a
reference to techniques where large changes in the data result in small
changes in the decision variables, e.g. stock levels. We have seen a number
of instances of robust estimation in the book. For example, in the economic
order quantity of Equation 1.1 an error in the demand rate or item cost by a
factor of 4 is reduced by the square root to an error of 2 in the order quantity.
In Table 6.5 we saw that with 8 identical copies of a system and a fixed
budget, the optimal set of stock levels corresponding to a requirement that at
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least K of the eight operate was virtually unchanged for values of K between
four and eight.

From Table 1.4 we can infer that an error in the estimated cost of an item
by a multiple of 10 translates to an error in stockage by a multiple of
something over 2 (assuming Poisson demand and no cannibalization in the
optimization). The error is less if the optimization assumes cannibalization;
more if the variance-to-mean ratio exceeds one.

As we have said many times, the estimation of demand rates and
variances is the most critical. While logisticians typically understand the
importance of demand rate estimation, they tend to be less aware of the
importance of variance estimation. In Chapter 4 (Table 4.4) we compared
the results of assuming a variance-to-mean ratio of one (Poisson) with a
variance-to-mean ratio that increases with the mean according to a power
curve relation, and showed that the latter did substantially better over the
next year for the C-5 aircraft. Similar results were noted in Appendix C for
other aircraft types.

However, we have heard logistics planners say that the power curve
relation cannot be used, because the required budget is too large. Our view is
that we should make the best estimate of every parameter required in the
models, including the variance-to-mean ratio. If our budget in the case of
Table 4.4 is $80 million (or less), it still makes sense to spend that money in
accordance with the best estimates of the “physics” of our problem. If we
spend the money on the optimistic assumption that we know the demand
rates precisely and they will not change in the future, we should not be
surprised to see severe degradations in performance, as in Table 4.4.

Assessment of Alternative Support Policies10.5

It is the author’s hope that the modeling techniques described in this book
will not be used passively by logisticians. That is, it is possible to assume
that the logistics support structure is fixed and that the task is to allocate a
specified budget optimally, or achieve a specified availability at minimum
cost.

A far more creative and interesting role for the logistician is to identify
and test interesting support alternatives. For example, are there ways of
reducing order-and-ship time, and what would the overall cost and benefit
be? The cost might be due to more use of expedited (and presumably more
expensive) transportation, and the benefit can be assessed by running the
model with a different order-and-ship time.

Typically the answer is not simply “yes” or “no”. It usually depends on
the target availability level. Other things being equal, the benefit of shorter
order-and-ship times (and similar alternatives) is greater if the target
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availability is high. We saw an example of this in Figure 7.5, where the
benefit of commonality on the solar array increased with the availability
target. In Problem 1of Chapter 10, the reader is asked to speculate on how
various factors affect the decision to put additional test equipment at the
bases.

More generally, there are logistics implications of different operational
policies. We are not suggesting that logistics should drive operations, but
there should be some feedback from logistics to operations. In the 1960s we
were asked to estimate the war reserve spares required so that a certain
number of massed sorties of six aircraft could be mounted from a total fleet
of six. As we were assured that six aircraft was a meaningful number for a
massed sortie, we pointed out that if it were possible to have a total fleet of
seven aircraft from which six aircraft would be chosen, the spares
requirement would be dramatically less (and different). The point is that
operational planners should be aware of logistics implications and
alternatives.

Last, we want to reiterate a point made earlier concerning the judgment
of logisticians. There may be situations where the logistician is aware of
factors that are not considered by the model. Perhaps there is a good reason
to have a minimum (or maximum) stock level on an item. If so, these
constraints should be included in the model optimization. The model results
should provide useful information, but they should not prevent the
logistician from applying expert knowledge as appropriate. Of course, this
means that the logistician needs to understand what is considered by the
model and what isn’t. That is the reason for this book.

Model Implementation – Air Force10.6

The military services in the United States have implemented the theories
in this book in various ways. The Logistics Management Institute
programmed a version of VARI-METRIC known as the Aircraft Availability
Model (AAM) and described by O’Malley (1983) that has been used to
estimate spares budgets for headquarters personnel in Washington, D.C. It
has been programmed for follow-on provisioning by the Air Force Logistics
Command in Dayton, Ohio. However, they assume that all bases are
identical for procurement purposes.

The Air Force Logistics Command Regulation 57-4 that deals with
Recoverable Item Management specifies that MOD-METRIC is one of the
acceptable procedures for initial provisioning. The Air Force has used it for
some procurements of new engines, and to determine an optimal mix
between the number of whole engines and first-indenture engine items.
However, in most cases the Air Force does not use an optimal availability
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model in initial procurement. Instead they buy only enough stock to fill the
repair pipelines and some stock to cover condemnations for a short period of
time. They buy little, if any, safety stock. They depend on extensive
contractor support, and have low target availability goals at the start of a new
program. They hope to get better estimates of demand and other parameters
before having to make their first real follow-on buy using an optimal
availability model. Any items with extremely high initial failure rates are
candidates for redesign.

In principle the follow-on procurement should use as input the assets of
every item, and optimize the additional procurement necessary to meet
availability targets. As a practical matter this is difficult because of the way
in which data is processed. Typically the gross requirement is computed
from the model, and at a later time the assets in the system are subtracted to
obtain the net requirement.

The Air Force in 2004 is finding that over half of the aircraft downtime is
due to consumables; in the past it was tacitly assumed that repairables were
the biggest cause. Moreover, numerous studies show that roughly 50% of all
aircraft down hours (MICAPs) are directly caused by Defense Logistics
Agency (DLA) managed parts. That doesn’t count the additional MICAP
hours for Air Force parts being driven by shortages in DLA repair parts. The
problem is, of course, that DLA does not have the indentured parts
information to do an optimal indentured spares computation. Another
problem is that DLA owns the wholesale stocks, and the Air Force owns the
retail. Since it does make sense to improve the stock leveling for DLA
managed consumables, the Air Force is experimenting with procedures for
computing and transmitting these levels to DLA. Recently the Air Force has
been able to reduce actual backorders by 65% at the depot retail supply
accounts with no increase in cost.

Of course, consumables can be handled in VARI-METRIC, but as we
suggested in Section 9.10, even when the indenture information exists, it
does not make sense to put every screw and washer, and its indentured
relationship to many different parents into the optimization. Important
consumables in terms of indenture and demand rates should go in the
indentured computations, but a single-indenture computation for all other
consumables is recommended.

We remind the reader who is interested in the Air Force applications that
DRIVE (now PARS) for depot repair scheduling and distribution was
discussed at length in Sections 8.8-8.15.

We should also mention a study performed on the C-5 aircraft (TFD
Solutions, 2000).The study considered 742 repairable components that had
demands both from the field and the overhaul facility. The VARI-METRIC
theory was used to evaluate the existing aircraft locations and the
components placed where the USAF RBL (Readiness Based Leveling) had
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them. Assuming a Poisson world with constant demand rates, the inventory
investment of $193,717,400 would be expected to produce an operational
availability of 12.9%, increasing to 55.8% with cannibalization. The study
team noted that the 55.8% rate was very close to the actual C-5 fleet
availability at that time, and that high cannibalization rates were a major
problem then.

When the initial stock was optimally redistributed, the operational
availability increased to 20.2%, or 56.2% with cannibalization. Third, an
optimal run was made with a 70% aircraft availability target (92.6% with
cannibalization). This required a budget of only $56,782,960. Finally,
another optimal run was made with a 95% aircraft availability target with a
resulting budget of $138.197m.

In summary, the study predicted an operational availability (without
cannibalization) of 95% at a cost of $138.197m using the optimal VARI-
METRIC theory as compared to an availability of 12.9% at a cost of
$193.717m under Readiness Based Sparing levels.1

Model Implementation - Army10.7

The Army uses VARI-METRIC theory in a model called SESAME -
Selected Essential-Item Stockage for Availability MEthod, originally
documented in Kaplan (1980). SESAME is used for initial spares budgeting
and for item procurement in an effectively four echelon, multi-indenture
calculation. Since 1993, it has been required by the Army for all initial
provisioning. The model incorporates base differences so that the Army is
able to distribute the initial stocks to the appropriate bases. Private
contractors doing business with the Army are supposed to use a multi-
echelon approach also.

SESAME is scheduled to be used for follow-on provisioning by 2006.
The delay until now has been organizational in nature, where some material
was owned by the units and some by the logistics organization. Now all
material is coming under the stock fund for management. There is also a
dynamic form of SESAME which is used for wartime planning.

The Army has not had the Air Force problems with DLA, but they are
trying to figure out ways to coordinate the DLA computed stocks with the
Army requirements. They are also trying to use coordinated or distributed
decision-making to control the amount of turbulence in stock levels that can
come about because of new programs.2

1 Private communication with Jim Russell, TFD Group, Monterey, CA.
2 Private communication with Meyer Kotkin, Army Material Command (AMC).
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Model Implementation - Navy10.8

The Navy has used a model called ACIM, Availability Centered
Inventory Model, developed by Clark (1981). Although the mathematics is
similar to that of MOD-METRIC, Clark did some of the earliest multi-
echelon inventory research, Clark and Scarf (1960), and he was one of the
very first researchers to relate inventory policy to availability in an optimal
model.

The Navy runs ACIM for the wholesale level first, obtaining depot
reponse times to the users. More often a standard depot time is used. Then a
multi-indenture, single echelon version of the model is run to determine
retail stock levels. Of course, the optimal split of budget between wholesale
and retail is unknown, so the model run in two parts can not be optimal.

Another model called SEASCAPE is used on the AEGIS weapon system.
This model, built by RCA, incorporates some redundancy modeling, but is
used at the retail level only.

The aviation community uses a model called ARROWS - Aviation
Readiness Related Operation Weapon Systems. This model is used for initial
provisioning (allowance lists) in a multi-indenture, single echelon version.
There is also a Spares Budgeting Model. All of the models use pieces of the
theory described in this book.

Model Implementation – Coast Guard10.9

The Coast Guard has been using VARI-METRIC theory as embodied in
the VMetric model (see Appendix E) for a number of years. In a study of the
use of VMetric at an actual site, Air Station Cape Cod, their Research and
Development report (Rodriguez et al. 1997) concluded that overall savings
to the Coast Guard could exceed $200M. In general, what they have learned
and accepted is how single item sparing significantly misrepresents the
required sparing where a tie to system availability can be made, as it can
with VMetric, and generally requires too many spares of the wrong parts.
So, while one could show big savings, much of that is consumed by
adjusting the domain of the spares to include the parts not spared in
sufficient quantity, since they can’t recapitalize excesses. They have used
VMetric for all four types of their aircraft to redistribute those they already
have for maximum availability, and have reset allowances accordingly. At
present, they use the model to set their strategic stocking levels for all
aircraft at all sites and their depot, and regularly conduct analyses of
scenarios arising out of the routine management of a system that large.
VMetric is an integral part of their over arching logistics management
system, ALMIS, and it will be used to provide the initial sparing for the
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introduction of the C130J into the Coast Guard fleet. It is most likely that
VMetric will remain their sparing model for the foreseeable future.1

Model Implementation - Worldwide10.10

Some years ago we visited a nuclear power company and briefed a
version of VARI-METRIC. When we explained that they could reduce their
investment in spares, the logistics manager said, “Why would we care about
that? We just tell the regulatory commission what we spent and then our
rates are set to reimburse us.” Fortunately, that attitude is seldom heard
anymore.

The basic VARI-METRIC theory is embodied in other computer
programs such as OPUS, developed in Sweden. This multi-echelon, multi-
indenture model is used extensively in Europe, by aircraft manufacturers and
several NATO air forces. VARI-METRIC theory has been used by hundreds
of manufacturers in the United States, particularly those involved with
aircraft and related systems. In most cases the application is initial stockage
lists, but it is hard to know the full range of model usage. As noted in
Chapters 6 and 7, VARI-METRIC theory was used extensively by NASA in
Space Station Freedom.

We should mention an important commercial application of multi-
echelon theory for managing spare parts at IBM described in Cohen et al.
(1990), in which (s, s) theory is applied in a four-echelon system with over
200,000 part numbers. The measure of effectiveness is fill rate with different
targets at different echelons. The authors note that the system improved
performance in several ways: (1) improvements in demand forecasting; (2)
accounting for the multi-echelon structure; (3) accounting for part
commonality; (4) enhancing cost-service tradeoffs. The focus of the article is
to minimize costs subject to service constraints, where the costs include
replenishment cost, expedited delivery costs, and inventory holding cost, (s,
s) theory is required because many of the items have high demand. It is
estimated that average inventory investment to achieve the same level of
service was reduced by 20 to 25 percent - a saving of $0.25 billion.

10.11 Model Hierarchies

We have talked about the engineering parts hierarchy many times in this
book, and have noted that stock levels should vary by indenture. There is
another important kind of hierarchy that we need to address here, and this is

Private communication from Capt. Norman Scurria, USCG ret., now an employee of TFD
Group, Monterey, CA.
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a kind of hierarchy of models based on when the models are used during the
life of a system.

At the earliest conceptual stages of designing a new system, crude
models may be used to make various design trade-offs. Even the word
“model” may be glorifying some of the engineering trade-offs that are made
early on. When models are used at this stage they are likely to be
deterministic. For example, in the space station it is important to have a
rough idea of the remove-and-replace workload long before the detailed
system design. Obviously if the workload is inconsistent with astronaut
hours available, major redesign is required.

Later as the designs are finalized, we can begin to use optimal sparing
models such as VARI-METRIC. Even when there is a lot of uncertainty
about item demand rates and costs, it makes sense to use the model for
budgeting purposes. Over time the input data should become more reliable,
and procurement decisions can be made; but, the Air Force realizes a
procurement model that is run today will not deliver spares until after a
procurement lead time. Rather than attempt to predict the exact
configuration of aircraft at each base and the flying hour program sometime
in the future, they run the procurement model on the assumption that all
bases are identical. This simplifies both the data estimation and computation
problems.

When spares are delivered, the base differences must be taken into
account. As we argued in Chapter 8 when we discussed the DRIVE model,
the one thing we know at the end of the procurement lead time is that we
didn’t buy the right stuff. Regardless of the method chosen for buying spares,
it turns out that because of changing demand rates, condemnations, and
experience, the world is somewhat different than we had planned a lead time
earlier.

That is, of course, why a model such as DRIVE exists - to take the latest
information and use our repair resources and distribution capabilities to
achieve the best short-run performance possible with the assets in the
system. That is why we want to consider the age of installed items that are
subject to wear out when we make the individual shuttle manifests for the
space station.

Although this book has been primarily concerned with the long-range
optimal spares procurement problems, it is important to consider the
hierarchy of different models that are required for proper management: from
deterministic, aggregate models in the early stages to very detailed,
operational models for day-to-day management at the later stages.
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System Approach Revisited One More Time10.12

This book has employed the system approach extensively. We saw in
Chapter 1 that this is not just a different perspective than the traditional item
approach, but that it can lead to significantly different policies and
substantial improvements in cost and performance. We have demonstrated
this with numerous examples using actual data wherever possible.

We noted that the models developed in this book are all analytic.
Simulation is used in a couple of cases to verify the accuracy of the analytic
models, but the models themselves are mathematical equations which can be
solved for optimal stockage policies in an efficient manner. The analytic
nature of the models is essential for practical implementation on personal
computers or even main frames.

Because we have used the system approach in so many different ways
throughout the book, we want to remind the reader of how it has been
employed:

1. Generation of cost-availability curves for a system

2. Determination of the optimal stock level for an item at a location,
taking into account that it depends on stock levels at other locations and
for other items, as well as considering the target availability or cost

3. Estimation of mean demand for an item (Bayes or James-Stein
techniques that utilize data from other items)

4. Estimation of item variance-to-mean ratios from a power curve or
Bayesian techniques (using data from other items)

5. Evaluation of prediction techniques (using a stockage model and
availability for a group of items)

The item approach was simpler, because stockage decisions on each item
were made independently. But we never knew whether those item decisions
would produce an acceptable availability level or whether the budget
requirements were feasible. Furthermore, the item approach used the same
protection level on every item regardless of unit cost, indenture, echelon, and
cannibalization policy. We have seen that dramatic improvements in system
performance and cost are possible when these are taken into account
systematically.
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Problems10.13

1. Suppose that there is a piece of test equipment that could be provided
to each base that would enable the base to repair more first-indenture items.
The cost of the test equipment has to be weighed against the benefit.
Consider the cost as fixed and determine whether the benefit of the test
equipment at bases increases or decreases with each of the following: (1)
higher target availabilities; (2) longer repair times; (3) longer order-and-ship
times; (4) longer program life; (5) reduction in unit cost; (6) increase in
demand rates; (7) no increase in demand rates but an increase in variability;
(8) more failures in the test equipment itself; (9) higher skill requirements
for operators; (10) more false positives and negatives in the equipment
diagnoses (11) easier cannibalizations.

2. In Section 9.7 we noted that the Navy sometimes uses the model
theory twice: (1) to establish resupply times from depot in a wholesale
model; (2) to establish retail stock levels based on depot resupply times.
Does this procedure lead to an optimal solution?

3. The system approach can be applied to other logistics problems.
Consider the problem of determining retention levels for stock in long
supply as modeled by Kaplan (1969). The problem is to compare the cost of
keeping an item for n years where a benefit is received at that time versus
disposing of the asset now at a fraction of its cost.

We define:

We assume that there is demand history enabling us to compute
approximately the annual demand rate. If we dispose of a unit of the item
now, we receive a benefit, fc. If we use the unit n years from now, we obtain
a benefit (discounted for the fact that it is n years in the future) less a cost
due to the storage every year from now to year n which is

c = cost of the item
f = fraction of item cost from disposal sale
F = fraction of item cost for storage annually
 = discount rate for future costs/benefits

The objective is to compute the largest value of n (the retention limit) for
which the benefit of keeping the unit for n years before it is used exceeds the
benefit from immediate disposal.

Implementation Issues 235



Note that the purchase cost c is a sunk cost. But we assume that the value
of the item if used now is c, or the cost if reprocured now is c. Since f and F
are expressed as fractions, c itself drops out of the calculation. Assume that

and F = .01, and show for disposal fractions f of 0, .05, .1, .15. and .2
that the optimal number of years for retention, n, beyond which units should
be sold is 25, 20.5, 17.5, 15.5, and 13.5 years respectively.

The system approach comes about in the determination of the stockage
cost fraction F. When warehouses are less than 85% full, the annual cost of
stocking a slow-moving item is very small. Beyond 85%, the warehouse
incurs additional charges for moving inventory to make room for new
receipts, and there is a greater chance of being unable to locate the item
when it is demanded. As the warehouse becomes full, the cost of new
storage relates to the imputed cost of an additional warehouse. Thus, the cost
of storage per unit volume as a function of warehouse capacity might be
depicted as in Figure 10-1.

4. Suppose that the items in Problem 3 can deteriorate during storage,
decreasing their value. What modification needs to be made in the equation?
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Appendix A

PALM’S THEOREM

If a man will begin with certainties he shall end with doubts, but if he will
be content to begin with doubts he shall end in certainties.

-Sir Francis Bacon

Appendix OverviewA.1

In this appendix we prove the standard version of Palm’s theorem as
stated in Chapter 2 using the approach in Hadley and Whitin (1963). The
theorem has been extended in several other references. Feeney and
Sherbrooke (1966) showed that if demand is compound Poisson with mean
m and the repair time for each failed unit is independently and identically
distributed according to any distribution with mean repair time T, then the
steady-state probability distribution for the number of units in repair is the
same compound Poisson distribution with rate mT, provided that the time
drawn from the repair time distribution is the same for all demands in a
compounding “cluster”. It is shown there that Palm’s theorem can be
extended to cover the lost sales case also, where the probabilities are defined
for zero to some maximum number of items in repair, s. The probabilities
are the same compound Poisson probabilities, normalized by the sum of the
probabilities from 0 to s.

When Feeney and Sherbrooke (1966) was published, we thought the
compound Poisson model might be a better representation than the Poisson



of the repairable item demand process. As indicated elsewhere in this book,
we believe now that the variance-to-mean ratios greater than one that we
observe are because of Poisson processes with changing means. The results
in that article do apply to Poisson demand and the lost sales. But since we
are not interested in compound Poisson demand or the lost sales case in this
book, the article will not be discussed below.

Palm’s theorem has been extended to finite calling populations by
Sherbrooke (1966), and the steady-state probabilities are shown below in
Section A.4.

The most important extension of Palm’s theorem was by Crawford (1981)
who proved a dynamic version that applies when the Poisson demand rate
(and even the repair distribution) is changing over time. Although it was not
explicitly noted, we have been using this result in Chapter 4 and elsewhere
when we talk about Poisson processes with changing means.

Preliminary MathematicsA.2

Before proving Palm’s theorem, we need to demonstrate a property of the
Poisson distribution. The joint probability that n Poisson events occur in a
time interval t such that the first occurs between and the second
between and etc. and the nth between and where

is:

which simplifies to

The conditional probability of n events occurring as outlined above is the
joint probability in Equation A.1 divided by the Poisson probability of n
events which yields

The proof that Equation A.2 is a legitimate density function is left to
Problem 1. Note that the density function is independent of the so that the
occurrences of the different events are independent random variables. The
probability that an event occurs between and is just

Let’s consider how the n! comes about. Imagine the time interval from 0
to t divided into 2n + 1 boxes, n of which correspond to the intervals to
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and the remaining n + 1 correspond to the remaining n + 1 intervals.
Think of the n Poisson events as balls that must be tossed into the boxes
corresponding to the intervals to The probability that one of the
balls goes into the box to is The probability that one of the
remaining balls goes into the box to is etc.

We have shown that if we know that at least one Poisson event has
occurred in the time interval from 0 to t, then the probability that any one
occurs between and is and this is independent of how many
events have occurred in the interval and their times of occurrence.

Proof of Palm’s TheoremA.3

PALM’S THEOREM. If demand for an item is given by a Poisson
process with mean m per unit time and the repair time for each failed unit
is independently and identically distributed according to any distribution
with mean repair time T, then the steady-state probability distribution for
the number of units in repair has a Poisson distribution with mean mT.

PROOF: Let be the probability that the repair time is where the
mean repair time is T. The probability that a unit entering repair at time
will finish by time is

If we know that at least one demand has occurred in the time interval 0 to
t, the probability that the unit is repaired by time t is

Thus the probability that any particular demand occurring in the interval
0 to t is repaired by t is

Suppose that were u units on hand initially and let x be the net inventory,
defined as the on-hand minus backorders. The basic idea of the proof is to let
the time t go to infinity and show that the number of units in repair has a
Poisson distribution with mean mT.

We want to compute the probability that the net inventory is x at time t if
there have been y demands since the system began operation. Now x is a
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number that ranges from a maximum of u to a minimum of u - y (in the case
where no repairs have been completed by time t), so that u – x represents the
number of units still in repair. Since there have been y demands, there must
have been y + x - u completed repairs. The probability that u - x of the y
demands have been repaired is given by a binomial distribution:

The probability in Equation A.5 is conditional on the number of
demands, y. Weighting by this Poisson probability and summing over all

yields the unconditional probability that the net inventory is x at time t

To estimate the limit of Pr{net inventory is x at time t} as            we note

where the last step on the upper line is obtained using integration by parts.
When Equation A.7 is substituted into Equation A.6 we obtain
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Since u - x is the number of units in repair with a range from 0 to Palm’s
theorem is proved.

A.4 Extension of Palm’s Theorem to Finite Populations

PALM’S THEOREM FOR A FINITE CALLING POPULATION.
Consider a population of s units where demand for each unit is given by a
Poisson process with mean m per unit time and the repair time for each
unit is independently and identically distributed according to any
distribution with mean repair time T. Then the steady-state probability
distribution for the number in repair is given by

where D is a normalizing constant.

It is easy to derive this result for exponential or constant repair times
using the standard birth and death equations as in Feller (1958). The proof
for arbitrary repair time distributions in Sherbrooke (1966) is a variation on
the very complicated derivation in Feeney and Sherbrooke (1966). Since this
result is never used in the book, it seems inappropriate to do more than state
it here.

Dynamic Form of Palm’s TheoremA.5

DYNAMIC FORM OF PALM’S THEOREM: Suppose that the demand
process is Poisson with mean function defined for Assume that
a demand occurring at time has a probability of not being repaired by
time given by which is independent of the times at which
any other demands occur. Then the number of units in repair at time t is a
Poisson random variable with mean m(t) given by

We have simplified the statement of the theorem in Crawford (1981)
omitting some of the mathematical niceties of measure theory. In effect, we
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assume that the integral defined above exists. We have used the notation
as it is the complement of the function H that we used in Section A.3.
While it is possible for to be a function of and t, it is usually

assumed in most applications that the repair time distribution is a function of
the difference only, and thus that the survival time distribution

where In other words the repair time distribution is
stationary. A particularly simple case is when the repair time is constant, say
T. In that case m(t) is just the integral of from t - T to T.

Note that if the demand rate is constant so that
and we let t go to infinity, then Equation A.10

simplifies to the usual form of Palm’s theorem:

where the last equality follows from Equations A.4 and A.7.
In view of the independence between the demand process and the repair

process, the dynamic version of Palm’s theorem is highly plausible. Since the
proof in Crawford is rather lengthy and involves some advanced
mathematical arguments, we will not prove it here.

ProblemsA.6

1. Show that Equation A.2 is a proper probability density function by
integrating over each where

2. Do you think that the Dynamic Form of Palm’s Theorem can be
extended to cover finite populations? If so, restate the theorem in Section
A.5. Remember that the statement of the theorem must make sense in the
special case of stationary demand.

3. Expediting – In Sherbrooke (1971) it is shown that Palm’s theorem
still applies when demand rates or repair rates are a function of the number
of units in repair. The steady-state probabilities are not Poisson, but they
depend only on the mean of the repair time distribution - not its shape. The
key assumption is that any modification to the repair rate (such as a speed-up
to account for expediting) must affect all units in repair. Equation A.9 is a
special case of this result. It is of limited use in logistics modeling, because
the decrease in demand due to an aircraft down can be caused by any first-
indenture backorder. This makes the problem non-separable.

Consider a different type of expediting and an item that is never repaired
at the operating site. There is a standard order-and-ship time from the depot,
but when the base has a backorder, an expedited order-and-ship time is used
instead. Assume Poisson demand and use the birth and death equation
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approach in Feller (1958) to derive the steady-state probabilities for
exponential service. Explain why this result can or cannot be extended to
arbitrary repair time distributions.

Write a computer program for your solution. Suppose that the pipeline is
1, the stock level is 2, and that with expediting the pipeline can be cut in
half. Show that the expected backorders of .1036 from Table 4.2 can be cut
to .0663 if expediting is invoked whenever there is a backorder or to .0370 if
expediting is invoked whenever the stock on-hand drops to zero.
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Appendix B

MULTI-ECHELON SYSTEMS WITH LATERAL SUPPLY

I do not fear computers, I fear the lack of them -Isaac Asimov

B.1 Appendix Overview

We develop approximations to estimate the expected backorders in a
multi-echelon system in which lateral supply actions between bases are
allowed when a first-indenture backorder occurs. These approximations are
easy to compute, and the average absolute error over a wide range of
parameter values is less than 4% when items are depot-repairable, even
when bases are dissimilar. With lateral supply, backorder reductions of 30%
to 50% are not uncommon, and a 72% reduction was observed in two cases.
Lateral supply becomes more important with low demand rates.

A similar approach was unsuccessful for base-repairable items. Lateral
supply has a beneficial effect only when the lateral supply time is very short,
one-fourth or less of the average base repair time. Even in such cases lateral
supply is unlikely to be important in an actual application, because base
management can expedite repair of critical items.

There are two major reasons for including this appendix: The first is
qualitative - the results provide some insight as to the conditions under
which lateral supply should provide significant reductions in backorders.
The second is methodological - even though we have been unable to build an
analytic model for lateral supply, we have illustrated a statistical approach



using simulation results. This enables us to represent the impact of lateral
supply in our models such as VMetric (see Appendix E).

B.2 Background

The military services have become more interested recently in the topic
of lateral supply between bases to reduce first-indenture backorders, “holes”
in end items such as aircraft. In the case of the U.S. Air Force, this is due to
information system improvements and physical capabilities such as the
European Distribution System and a similar system in the Pacific. These
systems have regularly scheduled flights that can make a lateral supply in a
couple of days. In December 1988 alone, the Air Force in Europe responded
to over 1500 redistribution requests for material needed by other locations
worldwide.

A lateral supply is made whenever a demand at a base causes a backorder
(i.e., stock on hand is zero and a customer has an unfilled demand) and a
spare on hand at some other base can be lateraled to arrive at the base with
the backorder before an item already in transit from a depot or completing
base repair. In other words, a lateral supply is not made if the laterally
supplied spare would arrive after the backorder has been satisfied.
Backorders are of interest, because the logarithm of availability is
proportional to the sum of base backorders as shown in Section 2.14.

On the modeling side, there have been several recent papers. Slay (1986)
described an approach to solving this problem for identical bases at a Multi-
Echelon Inventory Conference. He includes the possibility of “delayed
lateral” shipments: A delayed lateral supply may be made when a backorder
cannot be satisfied by an immediate lateral supply because no base has
stock, but some base receives stock at a later point in time and can laterally
supply the deficient base before a spare can be provided by another source.
Our simulations of the problem show that these delayed lateral actions are
important; they can exceed the immediate lateral actions when system stock
is quite low, and are more important for systems of many bases.

Slay derives complex formulas for the lower and upper bounds for
expected backorders (EBOs). We programmed his solution, and compared it
with a simulation. On a sample of five cases, the average absolute error of
his technique was about 21%; his upper bounds were closer with an average
absolute error of 9%, though inappropriately labelled since they were
exceeded by the simulated solution in all but one case. This motivated us to
consider simpler approaches to estimating lower and upper bounds that
would be more accurate and applicable to cases where bases are not
identical.
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Lee (1987) presents another approach as well as a comprehensive review
of earlier research. He considers clusters of similar bases, with laterals made
within each cluster. Axsater (1990) attacks the same problem with different
techniques resulting in smaller errors than Lee when compared to simulation
results. The Axsater techniques have the advantage that they can be applied
to dissimilar bases as well. However, both authors assume that laterals are
made from a randomly chosen base in the group that has stock on hand, and
neither makes provision for delayed laterals (though Axsater recognizes their
potential importance). Since these decision rules are not optimal, we did not
program them.

Our objective is to find an accurate approximation of the EBOs under
lateral supply that is easy to compute, capable of handling dissimilar bases,
and capable of handling cases with some base repair In addition we have
attempted to understand the conditions under which lateral supply is likely to
make a significant reduction in backorders. It turns out that when the amount
of stock is so low that there are always multiple backorders, lateral supply is
of little help; similarly, when stock is very high, lateral actions are rarely
needed.

Culosi in Groover, et al. (1987) noticed that bounds on the backorders
under lateral supply are easily obtained using standard multi-echelon models
such as VARI-METRIC, described in Chapter 5, to optimally allocate
between the depot and bases any amount of spare stock. A lower bound on
backorders can be estimated by combining all bases into a single base,
because this is equivalent to instantaneous lateral supply between bases; an
upper bound using the actual configuration of bases and demand rates,
because VARI-METRIC allocates stock between bases and depot to
minimize base backorders when there is no lateral supply. Culosi used some
of the Slay analytic relations to develop interpolation formulas between the
bounds.

We have adopted the Culosi idea of using interpolation between lower
and upper bounds from VARI-METRIC, but with a statistical approach
based on regression. We have run a large number of simulations to check the
accuracy of the formulas, and the results for depot-repairable items have
been very encouraging. Furthermore, the computation is fast and accurate
even for different types of bases. The Culosi approach is not described in
detail here because it is based on the extensive derivations in Slay, and
because the results are uniformly less accurate than our regression results.

B.3 Simulation Description

A few comments about our simulation are in order since it is used as the
standard for comparing the lateral approximations. We consider a single
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item and a system consisting of several bases at which demands occur and a
supporting depot. We use the METRIC assumptions of Chapter 3, the most
significant of which is that no queuing occurs for repair (the infinite channel
queue assumption). When the repair times for each unit are independent and
demand is Poisson, the steady-state probability distribution for the number
of units in repair is Poisson by Palm’s theorem, depending only on the mean
of the repair distribution.

The simulation can be run with either constant or exponential repair
times, and similar results are obtained as expected from Palm’s theorem.
Confidence intervals are computed for the simulated EBOs, based on the
EBO autocorrelation functions described in standard texts such as Gross and
Harris (1974). Since the confidence intervals around the simulated
backorders tend to be shorter for constant repair times, they were used in
most cases. We assume that the status of all units of stock (in transit between
specific sites, in repair at a specific site, or on the shelf at a specific site) is
known at any point. Furthermore, we assume that we know the time at which
each shipment will arrive. Demand at each base is assumed to be Poisson
distributed with a known, constant mean (although the rates may vary from
one base to another). The percentage of demand that is base-repairable is
known, and the balance is assumed to be depot-repairable. Base and depot
average repair times are known.

The numerical results presented below are satisfactory only for the case
of depot-repairable items, so our further discussion of the simulation will be
confined to them. Because repairable items tend to have high cost and low
demand at a base, the economic order quantity is one. Thus a resupply
request is placed on the depot on a one-for-one basis whenever there is a
demand, and the unserviceable unit is shipped to the depot for repair. In a
system with no lateral supply, the stock level at each base equals the stock
on hand at the base plus the number in resupply to the base minus
backorders. The stock level remains constant, but its composition varies
probabilistically over time. When there is a demand, the stock on hand, if
positive, decreases by one or the number of backorders increases by one, and
this is balanced by an increase of one in the number of resupply requests;
when a resupply is received at a base, the number of backorders, if positive,
is decreased by one or the stock on hand is increased by one, and this is
balanced by a decrease of one in the number of outstanding resupply
requests.

Thus, the number of resupply requests from a base at any point in time is
related to the base stock level. The VARI-METRIC model assumes that
resupply requests are filled on a first-come, first-served basis. However, in a
lateral supply system with perfect information about the location of
serviceable and unserviceable units, decisions on where to ship from and to
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are made on the basis of expected need as defined below. Thus, the concept
of a stock level has little relevance.

Simulation results show that when lateral shipment times are less than the
shipment time from a depot to a base, any item completing depot repair
should be sent to some base immediately. When all bases are identical, the
appropriate base to receive a unit of stock from depot is the one with the
smallest value for the inventory position, defined as (stock on hand) + (stock
already in-transit to it from the depot or being lateraled from another base)
minus backorders. Similarly, when some base incurs a backorder, the
appropriate base to send a lateral is that base with positive stock on hand that
has the largest value for the inventory position.

When bases are different, we must subtract expected base demand over a
planning horizon from the above quantities. For shipments from depot to the
bases, we use a depot planning horizon that is about twice the length of the
depot-to-base order and ship time. For laterals between bases we use a base
planning horizon that is about 1.5 times as long as the lateral supply time.
The results are not extremely sensitive to either planning horizon length. We
would expect that the planning horizon should be at least the order-and-ship
time in the first case and the lateral supply time in the second, because those
are the earliest times that the system can be affected by those decisions. The
fact that the best planning horizons are somewhat longer is an empirical
observation for which we have no theoretical basis.

The lateral supply times that we use in the simulation, motivated by the
Air Force application, are typically only a couple of days. Under the
assumptions of accurate information, it is unlikely that we would want to
divert a lateral shipment that is already underway. In other applications of
lateral supply with longer times, this capability may be important.

B.4 Parameter Values

We examined a number of cases in which parameters reflected U.S. Air
Force experience. Our numbers and the approximate mean and standard
deviation for the Air Force are shown in Table B-1. The order and ship time
is defined to be the time interval from the placement of a base resupply
request on the depot until the resupply arrives at the base, given that the
depot had stock on hand.

Our data source did not give the mean and standard deviation for the
number of bases or the percentage of items that are base-repairable, but our
parameter choices cover the range of interest. The distributions for the
remaining four parameters tend to be skewed with long right-hand tails.
Consequently, we have not chosen parameter values symmetrically around
the means.
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B.5 Depot-Repairable-Only Items

The case of depot repair is particularly important because the time to
obtain resupply from the depot can be fairly long, particularly if there are no
spares on the shelf when the request is received at depot. In contrast, if the
item is base-repairable and a backorder exists (an aircraft is down for the
item), base management can often expedite the repair and preclude the need
for lateral supply.

In Table B-2, 16 different parameter value combinations are listed: the
number of bases, the average daily demand rate at each base, the average
order-and-ship time (days) from depot, the average depot repair time (days),
and the average pipeline (defined as the average number of units of stock in
repair or resupply at a random point in time). The pipeline is a measurable
quantity, and can be computed as the sum over all bases of

Average
daily demand x (order and ship time + depot repair time).

per base

In Case 1 of Table B-2 this equals 5 x 0.88 x 38 = 167.2. The retrograde
shipment time from base to depot of a broken item is by convention included
in the depot repair time. The parameter a in the last column is the estimated
value of the dependent variable in a regression that is used in Equation B.3,
as described below.

The cases in Table B-2 are presented in order of decreasing demand. For
a given demand level, the cases are in order of decreasing number of bases.
The depot repair times always exceed the order-and-ship times, as is typical,
though a range of values is included. At the end of the table, several cases
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with dissimilar bases are presented. Cases 11 and 13-15 are comprised of
two base types each and Case 16 has three base types.

The cases in Table B-3 are the parameter values from Table B-2
combined with a lateral supply time and the number of repairable units of
stock in the system. The parameter values and the number of units of stock
are used to compute a lower bound, LB, on the total backorders at bases
when all bases are combined into one base (equivalent to a lateral supply
ime of zero); to compute an upper bound, UB, when stock is optimally
allocated to the bases and depot by VARI-METRIC under the assumption of
no lateral supply. The estimated backorders, EB, are obtained from the lower
and upper bounds and an estimating relationship described below, which
utilizes the lateral supply time as well.
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For example, the average pipeline in Case 16, using Equation B.1,

= 5 x (0.055 + 0.022 + 0.011) x 38 = 16.72

The lower bound on expected backorders, LB, for Case 16a with a stock
level s = 20 in Table B-3 is

where p(x) is the Poisson probability of x units in resupply with a mean of
16.72.

The upper bound is more complicated. The depot pipeline is the depot
demand times the depot repair time. Since all base demands are repaired at
depot this equals

5 x (0.055 + 0.022 + 0.011) x 30 = 13.2.

The pipeline to a large base with mean 0.055 is the mean demand of 0.055
multiplied by (the order-and-ship time plus the average delay due to the fact
that the depot does not always have stock on the shelf); when the depot stock
level is 0 this equals 0.055 x 38 = 2.09, but the pipeline decreases as the
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depot stock level increases. Starting with system stock of zero, the VARI-
METRIC model determines the optimal allocation of each unit of stock to
some base or the depot as described in Chapter 5.

The simulation results in Table B-3 are shown for the expected
backorders, EBO, and the expected number of units in the lateral supply
pipeline between bases, LPipe. The backorders from the regression model
are compared with the simulated backorders using the percent error, % Err.
as 100 x (EB - EBO)/(EBO). The percent reduction in backorders due to
lateral supply, % Red., is 100 x (UB - EBO)/EBO.

The first seven cases in Table B-3 have less stock than the pipeline,
which accounts for the small reduction in backorders due to lateral supply.
The remaining 40 cases were split into two groups of 20, and regression was
used on the first group to estimate the parameters of an estimating
relationship. Then the adequacy of the relationship was evaluated or
calibrated by using it to predict the backorders of the second group of 20.

The objective of the estimating relationship is to determine f, an
interpolation function with values between 0 and 1 that can be applied to the
difference between the upper bound, UB, and the lower bound, LB, to obtain
an estimate for backorders, EB:

Reviewing the simulation results, we noted that the value of f had an
exponential relationship with T when all other parameter values were held
constant. Thus, instead of including T as a variable in the regression with the
need to estimate another coefficient, we decided to represent f by the
following equation:

where:
f = interpolation value
T = lateral supply time in days (assumed to be a fixed constant that is the

same between any two bases)
a = parameter estimated by regression, described below
O = order and shipping time from depot to base (time in days to receive

an order from depot when the depot has stock on hand)

With this formulation, T = 0 results in f = 0, which is appropriate because
the several bases have become a single base with EBOs equal to the lower
bound. An infinite value for T corresponds to no lateral supply for which a
value of f = 1, corresponding to the upper bound, is appropriate. We will
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restrict the upper value for T to the order-and-ship time, O, because we are
not really interested in lateral supply times that exceed O.

The regression relation for a was1:

where:

D = sum of the daily demand rates across bases/number of bases

It was noted above that the value of a is independent of the amount of
stock and the lateral supply time; happily we have found here that the value
of a is independent of the depot repair time and the number of bases, also.
The estimated value of a from the regression is shown in the last column of
Table B-2.

For example, when the order and ship time of 8 days and the average
base demand rate of 0.22 demands/day of Case 3 are substituted into
Equation B.5, the value of a is found to be 0.268 as indicated in Table B-2.
When Equation B.3 is plotted for a =.268 and combined with the lower and
upper bounds for Cases 3a-3c of Table B-3, corresponding to total stock of
100, Figure B-1 is obtained. The three simulated backorder solutions for T =
1, 2, and 4 are shown in Table B-4 as well.

1 When Equations B.3 and B.4 are solved for A the result is:

a = -(1/T)log[(UB-EB)/(UB-LB)].
The “true value” of a for each case in Table B-3 is imputed from this equation by substituting

the simulated actual backorders for EB Then multiple linear regression was applied to the
logarithmic form of Equation B.5. The only significant independent variables were O and
D, and each of the three coefficients had a t-value with magnitude greater than 11,
indicating a probability less than .00005 that the coefficient is not significant. Regression
has been used to estimate functions of interest to logisticians by many authors, e.g.
Ehrhardt(1979).
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As noted above, the first 7 cases in Table B-3 are of limited interest
because the stock in the system is less than the pipeline. Their average
absolute error of 0.7% is very low, but the reduction in backorders due to
lateral supply is very low as well at 9.2%.

The next 20 cases in Table B-3 were used to estimate the regression
coefficients. Although a wide range of parameter values was used, the
average absolute error for the 20 cases is only 3.1%. The two asterisks after
the percentage error for Cases 5b and 5f are used to indicate that the
estimated EBO are outside the 95% confidence interval of the simulated
EBO. The largest percentage errors in this group are 8.4% for Case 5f and
7.3% for Case 6d, but the absolute errors are quite small in both cases. For
these 20 cases the average percentage reduction in EBOs due to lateral
supply is 44.8%, but this value would increase with more cases having
shorter lateral supply times and vice-versa.

The last 20 cases in Table B-3 were used to evaluate the accuracy of the
regression coefficients. Their average absolute error increases to only 3.4%,
though there are now six cases marked by asterisks where the estimate lies
outside the 95% confidence limits from the simulation. The largest
percentage errors are -8.9% for Case 15b and 6.7% for Case 3d, comparable
to the largest errors in the regression set. The average percent reduction in
backorders of 42.8% is only slightly less for this group of 20 cases.

The parameters for the 20 cases in the regression set were chosen to
represent the range of cases of interest. This is why the set of 20 cases in the
evaluation set has similar parameter values. However, we would expect little
degradation with different parameter values because there are only three
regression coefficients.
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It is interesting to note that very large reductions in backorders are
possible with lateral supply, even though the average number of units in the
lateral supply pipeline tends to be modest. The largest percentage reductions
of 71.9% and 71.8% in Table B-3 had an average of only of .358 and .109
units respectively in the lateral pipeline. Since the total stock was 100 and
140 in the two cases, it is clear that a little lateral supply can go a long way.
The largest number of units in lateral supply was 2.125, only 2% of the stock
in that case.

In summary, the results for depot-repairable-only items are very good. A
wide range of parameter values was simulated, and the degradation of the
regression from the prediction set to the evaluation set was modest. It is clear
that lateral supply can result in dramatic reductions in EBOs. The simplicity
of the calculation suggests that it should be useful.

B.6 Base-Repairable Items

Results for items that are fully (or partially) base-repairable were
unsatisfactory. When the lateral supply time is held constant for a group of
cases sharing the same parameters, the value of a changes as stock is added.
This is because all stock is at the bases, and if bases are identical, the VARI-
METRIC upper bound tends to be lower when each base has the same stock
level. When the total stock does not divide evenly into the number of bases,
the backorders with no lateral supply are larger. Thus, lateral supply gives an
even bigger improvement over VARI-METRIC, which has no lateral supply,
when the spares do not divide equally.

In the depot-repairable cases with identical bases, this did not happen. As
stock is added to the system, VARI-METRIC puts the same stock level at
each base and adjusts the amount of depot stock.

Because of the variation in a, we used regression for the interpolation
value f itself. Although the coefficients were all statistically significant, five
independent variables were needed instead of two, and the average error was
much larger. In more than half of the cases, the errors were outside the 95%
confidence limits. The maximum error was 14.3%, and one absolute error
was quite large as well (0.609). For these reasons we have not bothered to
even present the regression equations.

We ran 13 cases where the lateral supply time was one-half or more of
the base repair time. In 5 cases the simulated backorders exceeded the upper
bound; in the other 8 cases the simulated backorders were only slightly less.
We conclude that lateral supply will have a beneficial impact only when it is
one-fourth or less of the base repair time.

Even if the lateral supply time is one-fourth or less of the base repair
time, the benefits of lateral supply are probably overstated. As noted above,
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the base can change its repair priorities and repair an item, if it has repair
parts, in less than the average repair time. Thus, lateral supply will provide
little benefit when items are base-repairable.

B.7 Number of Lateral Shipments

It is desirable to estimate the number of units in the lateral pipeline (both
immediate and delayed), shown in the column headed LPipe in Table B-3.
We used step-wise regression for the depot-repairable-only cases. The only
statistically significant independent variables were: (1) estimated backorders
under lateral supply; (2) the percentage reduction in backorders due to lateral
supply. However, the average absolute error of nearly 20% on both the
regression set and the evaluation set was so large that the results are not
worth presenting.

B.8 Summary

Exact analytic solutions to many logistics problems can be obtained only
by making unrealistic simplifying assumptions. An alternative is to construct
efficient computational techniques that provide close approximations to the
solutions of the real problems over a large range of simulated situations. We
have chosen to take that approach in this analysis of a long-standing and
difficult problem

We have demonstrated simple computational models that provide
estimates for the EBOs when lateral supply between bases is allowed. The
estimates have an absolute average error of less than 4% for depot-
repairable-only items, even when bases are dissimilar.

The benefit of lateral supply is negligible unless the spares in the system
exceed the pipeline, and lateral supply is rarely needed when spares are more
than 1.5 times the pipeline. However, for intermediate spares values, lateral
supply provides large improvements in both absolute and percentage terms.
Backorder reductions of 30% to 50% are not uncommon, and a 72%
reduction was observed in two cases. Lateral supply has a greater impact
when the demand rates are low.

When items are base-repairable or partially base-repairable, a similar
approximation procedure for estimating EBOs under lateral supply was
unsuccessful. Furthermore, unless the lateral supply time is one-fourth or
less of the base repair time, lateral supply actions may degrade performance.
Even if the lateral supply time is one-fourth or less of the base repair time,
the benefits of lateral supply in an application are probably overstated. This
is because a base can change its repair priorities and repair an item, if it has
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repair parts, in less than the average repair time, rather than resort to a
lateral.
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Appendix C

DEMAND PREDICTION STUDIES

If the facts don’t fit the theory, change the facts. -Albert Einstein

C.1 Background

Demand prediction for an item consists of two essential elements: (1)
predicting the mean demand; (2) predicting the variance-to-mean ratio. The
problem is difficult, because the mean demand may vary with time, and the
variance-to-mean ratio increases with the length of the time period over
which it is measured.

For a number of years the Air Force has used an 8-quarter moving
average to estimate the mean demand over the next quarter. If an estimate of
demand is required for an arbitrary period of T years, the quarterly estimate
is multiplied by 4T. Recently, Sherbrooke (1984) found that for predicting
quarterly demand for two years in the future, exponential smoothing with a
constant of 0.4 applied to quarterly data could produce a 39% reduction in
squared error and a 12% reduction in average absolute error. The data were
1,027 items selected as a stratified random sample from the Air Force
Logistics Command (AFLC) inventory.

The variance-to-mean ratio is important, because it is used in the
determination of how much safety stock to buy on an item. The Air Force
uses the assumption of Poisson demand in many stockage models, implying
a variance-to-mean ratio of one. This simplifies the demand prediction
problem, but makes the unrealistic assumption that the demand rate is



constant over time. As we saw in Table 4.4, the Poisson assumption tends to
misallocate investment resulting in low availabilities.

Stevens and Hill (1973) developed an estimating relationship for the
variance-to-mean ratio, V, which has been altered by the Air Force Logistics
Command:

where is the estimate of the average pipeline (the average number of
units in repair or resupply). The indicates an estimate. In the original
research the independent variable was the average annual demand, m, rather
than mT and we will see below that the distinction is significant.

Sherbrooke (1984) noted that in the Stevens-Hill estimation of this
formula, 27% of the items were excluded because their demand was not
“sufficiently stable”. As a result the formula understates the true variability
of the item population. The authors estimated mean demand as the average
of eight quarters, but did not consider alternatives. This is important because
good estimates of the mean are critical to making good estimates of
variance-to mean ratio. Also, the authors did not consider the use of program
element data, such as flying hours. Finally, Stevens and Hill estimated a
variance-to-mean ratio relationship, but they never evaluated its performance
as we shall do below.

Using a slightly different functional form so that the variance-to-mean
ratio can never be less than one, and including all 1,027 items with any
positive demand history Sherbrooke (1984) found the best relationship to be

The results in this appendix are drawn from a more recent study by
Sherbrooke (1987) using data from several aircraft types. The advantage of
having data on all first-indenture items for an aircraft type is that it is
possible to use availability as the measure of performance. This is more
meaningful than such measures as squared error, percent error, or average
absolute error where the errors on different items are weighted equally,
because availability is the Air Force’s objective when it allocates funds to
spare parts.

Another objective of the study was to see whether the best technique for
predicting the mean and variance-to-mean ratio of demand is similar from
one aircraft type to another. Moreover, though quarterly Recoverable
Consumption Item Requirements (D041) data serve as the primary source as
in the earlier study, it was important to obtain some transaction data from an
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individual base. This information gives the day on which each demand
occurred, and thus tells us more about the “physics” of the demand process.

In Chapter 4 we described briefly some of the major results of these
demand prediction studies. We found that exponential smoothing with a
smoothing constant of 0.4 on quarterly data was the best predictor of the
mean, and that a slightly different power curve relationship than Equation
C.2 was the best estimator for the variance-to-mean ratio, V, over the next
year:

where is the estimate of the annual demand and is constrained to be
no more than 20. The experimental procedure was summarized in Figure 4.3.

We realize that many readers are concerned with applications that may
differ substantially from the Air Force. In other problems exponential
smoothing may not be the best predictor of the mean, and the best estimating
relationship for variance-to-mean ratios could be quite different from
Equation C.3. But, we believe that the approach used in this appendix for
determining the best prediction technique has wide applicability to other
logistics problems as well.

Since the completion of the study described in this appendix, another
empirical analysis by Slay and Sherbrooke (1988) was performed that
provided more evidence that demand over short periods of time does follow
a Poisson process with a constant mean. The larger variance-to-mean ratios
observed over longer periods of time arise because the mean of the demand
process changes leading to a Poisson process with non-stationary
increments.

C.2 Appendix Overview

In this chapter we want to provide more detail on the demand prediction
studies that have been performed than was possible in Chapter 4. Section C.3
below describes the demand prediction experiment methodology, including
the justification for using an availability model to evaluate the accuracy of
each technique (a “technique” being defined as a process for predicting the
mean demand and the variance-to-mean ratio).

The candidate demand prediction techniques are defined in Section C.4,
and results with the C-5 airframe presented. Sections C.5 and C.6 present
similar analyses for the A-10 airframe and the F-16 airframe/engine. For
each system, the same prediction technique appears to provide the best
results.
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For the F-16 the flying-hour program increased dramatically over the 16
quarters of history. We would expect that demand/flying hour would be
more stable than demand/quarter for many items, and this was found to be
true. On an item basis the estimator with less variability over the 12 quarter
base period is selected, and its performance against an Air Force procedure
based on Equation C.1 is described in Section C.7.

In Section C.8 we examine correlational information from all of the
aircraft programs above and some A-10 daily demand data from England
AFB. All of these data show that demand in a quarter is mostly highly
correlated with demand in the neighboring quarter, and that the correlation
decreases as the distance between quarters lengthens. This provides further
support for any prediction technique, such as exponential smoothing, that
weights more recent data more heavily.

When a smoothing constant of 0.4 is applied to quarterly data, only 13%
of the weight is applied to demands that occurred more than a year before (as
contrasted with 50% for an 8 quarter moving average). It has been suggested
that for very low-demand items, it may be better to use a smaller smoothing
constant to obtain more history. Section C.9 uses the data on each aircraft
type to refute this hypothesis.

Section C.10 provides the conclusions from all of our work on demand
prediction. This includes methodological recommendations on how demand
prediction studies should be performed and practical recommendations for
logisticians.

We have created a Windows tool, the Demand Analysis System (DAS)
described in Appendix F, that does all the analyses described in this chapter.

C.3 Description of the Demand Prediction Experiment

The objectives of this study are to find demand prediction techniques
that: (1) attain a high level of system availability in the future and (2) predict
a level of system availability similar to the level attained.

The candidate procedures for predicting mean demand fall into the four

categories shown in Table C-1. Let be the predicted mean quarterly
demand, the demand in the most recent quarter, the demand in the
preceding quarter, etc. For exponential smoothing, an example is shown
where the smoothing constant, is set at 0.4. The Air Force now uses the
second procedure, a moving average, with N = 8. This weights each of the
last 8 quarters equally and gives no weight to earlier quarters.
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The Bayesian procedure is the “objective Bayes” technique that was
applied at George Air Force Base in 1965 and described in Section 4.10. The
basic idea is that the two parameters of a single gamma prior probability
distribution are estimated from past demand on all items. Bayes theorem is
then used to combine this prior distribution with specific data about an item
to obtain posterior distributions that will differ by item. An important
difference between the Bayes procedure and the two previous procedures is
that the Bayesian approach yields a probability distribution - instead of a
point estimate - of demand. There is, therefore, no need to develop a
variance-estimating procedure for the Bayes technique.

Finally, it is possible to use higher-order procedures where both a trend
and a mean value are estimated. We followed a procedure called “Holt linear
estimation,” which is described in Makridakis and Hibon (1979); it consists
basically of second-order exponential smoothing. The first parameter is the
same as the first-order exponential smoothing parameter and is set at 0.4, as
above. The second parameter is a trend value that we set at 0.5 after some
trial and error. However, we restricted the rate of growth for trend to
eliminate absurd inferences or estimates of negative demand; the absolute
value of the trend/quarter was limited to 15% of the mean value, so that over
4 periods the mean could increase or decrease by 60% at most.

Earlier work (Sherbrooke 1984) made it clear that it is important to
estimate the variance-to-mean ratio, V, as well as the mean. Four types of
candidate procedures are considered in Table C-2. The first is a power
relation, where the variance-to-mean ratio is an increasing function of the
mean. Here the mean is expressed as an annual value. If the mean is
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expressed over any other time period, the exponent is unchanged, but the
multiplicative constant would be altered.

Another procedure is to estimate the item’s variance from its own past
data. A third type of procedure is the Bayesian, which automatically
provides an estimate of variance. Finally, recent research, as in Winkler and
Makridakis (1983), suggests that combinations of procedures may
outperform individual procedures. A general power relation such as
Procedure 1 in combination with Procedure 2, which is sensitive to extreme
variation in the history of an item, may outperform either procedure alone.
To prevent any technique from making absurdly large estimates of variance-
to-mean ratio, we invoked an arbitrary maximum of V= 20 on each item.

A major difference between this study and earlier studies of demand is
the evaluation mechanism. Most prediction studies use some model-
independent measure to evaluate accuracy. The problem is that there are
many candidates, and it is hard to decide which, if any, is appropriate.
Average absolute error is a common measure, but should the error on a very
high demand item be divided by some factor before adding it to the error on
a low-demand item? Should the same error on two items that are widely
different in unit costs be weighted equally? If the error is twice as large,
should the penalty be twice as heavy - or should it be heavier as in a squared
error criterion? Is it reasonable to assign as much weight to an over-
prediction error as to an under-prediction error? Many economic studies use
percentage error, but many of our items have a “true demand” of zero. This
causes problems as a divisor.

Our view is that aircraft availability should be used, because the
objective of demand prediction on a group of items is to maximize
availability for a specified budget. The formula for availability was derived
in Equation 2.18, and is reproduced in Table C-3 below where we have
assumed that the quantity of each item in the aircraft is one, and the number
of aircraft is 100.
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The data for this demand prediction experiment were taken from 16
quarters of D041 data. We drew on the first 12 quarters for historical data
and used the last 4 quarters to evaluate the accuracy of each prediction
technique. The data used in the calculations are listed in Table C-4. We
assume that each demand is repairable at the base or at the depot; there are
no condemnations. The average repair time by item is the sum of: (1) the
average fraction base repairable multiplied by the base repair time and (2)
the average fraction depot repairable multiplied by: (the order-and-ship time
plus the average depot delay caused by not having an item on the shelf). We
assumed an order and ship time of 2 weeks. The average depot delay is
unknown, but it will tend to be longer if the depot repair time is longer. As
an arbitrary but reasonable procedure, we, assumed that the depot delay
would be 0.3 times the depot repair time. (We also used 0.1 with
qualitatively similar results.)

The prediction process for each technique, summarized in Table C-4,
consists of taking the 12 historical quarters of demand data and estimating
the mean and variance-to-mean ratio of demand for each item. The mean
demand over the repair time and the variance-to-mean ratio are used to
estimate the two parameters of a negative binomial distribution of demand.
This demand distribution is used to calculate the backorders as a function of
the stock level for each item. Then these backorder functions are used with
unit cost to marginally allocate the fixed budget optimally across all first-
indenture items on the aircraft. (This is precisely what we did with marginal
analysis in Chapter 2). By using the same budget for each prediction
technique, we can compare performance of the techniques.

The result is a set of stock levels and a predicted availability for each
technique. In the case of the Holt second-order smoothing which predicts
trend, stock levels from the marginal allocation will be different for each of
the four predicted quarters.

We evaluated the prediction techniques as summarized in Table C-5. The
inputs for the evaluation are the actual demands during the last 4 quarters,
not used for prediction, and the stock levels by item. Unfortunately, we do
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not know the day on which each demand occurred, only the total quarterly
demand. The only option is to use a random number generator to draw the
day during the quarter for each demand. Of course, the random assignment
of demands across a quarter may smooth out the real, unknown daily
demands, but most of the demand fluctuation is captured with the four
quarterly totals. On the basis of the item data on repair times, we compute
the day on which repair of the item will be completed. (The average repair
time for the item is used, not a draw from a probability distribution with that
mean.) The same sequence of demands and repair times is used for all
techniques.
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The output of this activity is an “attained availability” for each technique.
We have put quotes around this availability because it was attained in a
simulation of the last year, not actually observed in the field. The availability
is computed daily and averaged for each of the 4 quarters and for the entire
year. Availability with cannibalization, consolidation of shortages onto the
smallest number of aircraft, is also computed.

C.4 Results of the Demand Prediction Experiment for
C-5 Airframe

Each of the next three sections provides the results of the demand
prediction experiments for a particular aircraft system: C-5 airframe, A-10
airframe, and F-16 engine/airframe respectively. A separate section is
devoted to each aircraft type, because the demand prediction techniques
differed somewhat. In the case of the F-16 there were dramatic increases in
the flying program over the sixteen quarters. Consequently, it was necessary
to investigate whether demand per flying hour was a better predictor than
demand per quarter.

One problem with D041 quarterly demand data is that all demand at
bases is aggregated. For our demand prediction experiments it would be
preferable to have demand data by base. As our first aircraft system, we
selected the C-5, a large transport aircraft operated by the Military Airlift
Command, because it operates from only two home bases. Worldwide
demand, as drawn from the D041, is therefore not too different from base
level demand, although demands do occur at other en route bases during
flight. All non-engine, first-indenture items (line-replaceable-units) with
some demand were used. There were 560 such items on the C-5 airframe.

We selected 17 candidate techniques in Table C-6 that had shown
promise in earlier studies. By a “technique”, we mean a combination of a
procedure for estimating the annual mean and a procedure for estimating the
variance-to-mean ratio. For example, the first four techniques in Table C-6
use the same “objective” Bayesian procedure described in Section 4.10 to
estimate the variance-to-mean ratio, but different procedures to estimate the
mean itself.

One departure from the Bayes procedure in Section 4.10 is used for items
with more than 1,200 demands annually during the first 12 quarters of
demand history. For the 39 C-5 items with this property, the Bayesian
procedure underestimates significantly the true mean demand (because it
combines the information on all 560 items). For these items, we apply
Technique 11 which produces the best results in Table C-7 ($80 million
budget) and Table C-8 ($100 million budget).
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Technique 5 is the constant, Poisson assumption that the variance-to-
mean ratio equals one; Technique 6 is a constant variance-to-mean ratio of 3.
Techniques 7 through 11 use power curve relationships for the variance-to-
mean ratio based on the estimate of annual demand, m, whereas techniques
12 through 14 are based on estimates of the average pipeline, mT.

The parameter values for Techniques 7-14 are variations on values
obtained by nonlinear estimation applied to Air Force Logistics Command
(AFLC) data in Sherbrooke (1984). We will see below that Techniques 7 -
11 tend to perform better than Techniques 12 - 14. A detailed comparison of
the two approaches is presented below in Section C.7.

Technique 15 estimates the variance-to-mean ratio for the item from the
12 quarters of demand history on the item. Technique 16 applies the results
of recent forecasting literature where the suggestion is made that forecasts
derived from combinations of techniques often outperform the individual
techniques.

Technique 17 is the only one that attempts to predict trend in the mean
demand. It combines exponential smoothing with a second trend parameter
with the limit described above on the rate of increase or decrease per quarter
to 15% of the mean demand. The equations are not presented here because
the results, as described below, were extremely poor.
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As noted in the previous section, the value of each demand prediction
technique is assessed by two availabilities: the attained availability and its
relationship to the predicted availability. In each table of results we show the
attained availability first, because a high value during the prediction year is
the more important consideration. A less important but desirable property is
to have a predicted availability that is fairly close to the attained availability.

Our choice is Technique 11, marked with asterisks in Tables C.7 and C.8,
because it has the highest attained availability for a budget of $80 million
and the fourth highest availability for a budget of $100 million. The three
Bayesian techniques that finish ahead of Technique 11 in Table C-8 are
overoptimistic; their predicted availabilities always exceed the attained.
Technique 11 produces predicted availabilities that are reasonably close to
the attained values. The Bayesian techniques have the additional
disadvantages of being significantly more complex and unsuitable in an
initial support planning context, because they require some observed demand
data to estimate variance-to-mean ratios; the other techniques require only an
estimate of the mean. Also, the Bayes techniques would have done
substantially worse if we had not altered the predictions for items with more
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than 1,200 demands per year during the 12 quarters of history. Note that the
results for Techniques 1 and 2 are quite similar, indicating a degree of
robustness to the smoothing constant value. However, the smoothing
constant of 1 for technique 3 produces distinctly inferior results. This is not
too surprising, because this is equivalent to a Markov process assumption
where demand in the last quarter contains all useful information.

A few comments should be made about the other techniques. Technique
5, the Poisson assumption, yields especially poor attained availabilities
results, particularly as we move to predicted quarter 4; Technique 6, with a
constant variance-to-mean ratio of 3, produces better though similar results.
Not surprisingly, Techniques 7-11, as a group produce similar results. It is
surprising to note that the 8 quarter moving average, Techniques 4 and 8, is
quite inferior to exponential smoothing techniques with the same variance-
to-mean ratio procedure at a budget of $80 million; quite similar at a budget
of $100 million. It is a little unexpected that Technique 9 did not outperform
Technique 11, because nonlinear estimation techniques were used to
estimate the best relationship for the C-5 from its own data.
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Techniques 12-14 use a variance-to-mean ratio based on the estimate of
the average pipeline. The poor performance of these techniques was a little
hard to understand at first. Since the mean repair/resupply times vary by
item from 6 to 57 days, the values of the average pipeline, mT, are much
smaller than the item annual demand, m. Accordingly, larger coefficients are
needed for comparable variability. However, it appears that these techniques
are inferior to Technique 11, because it is not the variability over the
repair/resupply time that is important, but the drift in the mean demand rate
over the year.

The mean annual demand influences the variance-to-mean ratio of
Techniques 7-14, but Techniques 12-14 depend on the mean repair time, T,
as well. Table C-9 compares the variance-to-mean ratio as a function of
repair time for the best technique in each group, as well as that for Equation

which is considered in Section C.7 below. As
noted earlier the maximum variance-to-mean ratio is set at 20, and a
minimum of 1 for Equation C.1.

Technique 15 reinforces the results of other studies that suggest the item
variance-to-mean ratios estimated from past history on the item tend to be
very unstable, particularly since we believe the item means are drifting over
time. Technique 16 does not seem to be an improvement over its
components, Techniques 7 and 15. Finally, the attempts to predict trend in
the mean value from Technique 17 are consistent with results reported in
Sherbrooke (1984). In both Tables C.7 and C.8 the trend technique gives
results that worsen with time, the opposite of what we might hope. Our
explanation is that the trend technique, and second-order smoothing, suffer
because of “regression to the mean”; it is highly unlikely that a series of data
with a significant trend will continue indefinitely. It is like predicting a
larger rainfall next year when we have just had a 50-year flood.

Though demand means tend to drift over time, we have been unable to
predict the direction of this drift for individual items.

Demand Prediction Studies 273



C.5 Results of the Demand Prediction Experiment for
A-10 Airframe

Similar comparisons were made on the 480 items of the A-10 airframe.
Ten of the more promising techniques from the 17 in Table C-6 were
chosen; the results re given in Table C-10. Technique 11M is like Technique
11 of Table C-6, except that the mean is estimated with the 8 quarter moving
average. Since both techniques employ the same variance-to-mean ratio
relationship, this enables us to compare the moving average and exponential
smoothing procedures for predicting the mean.

Technique 11 is the best technique for the A-10 aircraft, indicated by the
asterisks in Table C-10, confirming the results for the C-5 aircraft found
earlier. It gives the highest attained availability, 97.7% (only 3 quarters are
shown); it yields the average availability of 98.0% in the last column when
full cannibalization, consolidation of shortages on the fewest aircraft
possible, is practiced. Technique 11M (moving average) is far inferior to
Technique 11 (exponential smoothing with a constant of 0.4). The other
moving average, Technique 4, produces the worst results of all techniques.
The agreement between predicted and attained availabilities is poor for all
techniques except Technique 11, and the second best, Technique 6, which is
a variance-to-mean ratio of 3 on all items.
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C.6 Results of the F-16 Demand Prediction Experiment

Table C-l 1 provides results for the 720 first-indenture items on the F-16
engine and airframe. The same 10 techniques were compared, and
Technique 11 again came out best. It has a slightly lower attained
availability than Technique 13, but the predicted availability is in better
agreement. We note that many of the predicted availabilities are too high,
because the flying hours and demands increased substantially over the 16
quarters. For example, the demand rate during the last 4 quarters was about
41% greater than during the first 12 quarters. However, excellent availability
was attained with Technique 11, when this was not taken into account
(except in the sense that exponential smoothing weights recent data more
heavily in estimating the mean demand).

Some other observations concerning Table C-11 are noted here. The
three Bayesian techniques (1, 2, and 4) and the Poisson technique (5)
produced extremely low attained availabilities. Again Technique 11M
(moving average) is far inferior to Technique 11 (exponential smoothing
with a constant of 0.4).

In the F-16 case, we looked at the items that were primarily responsible
for the degradation in each technique. The Bayesian techniques and the
Poisson did badly on five or six items that showed a rapid increase in usage
over the 12 quarter base period. The best variance-to-mean ratio performed
much better on these items, particularly when it was used with the more
responsive exponential smoothing instead of an 8 quarter moving average.

Because of the increase in the F-16 flying-hour program, we consider
demand estimates based on demand per flying hour in the next section.
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C.7 Demand Prediction for F-16 using Flying Hour Data

The items were divided into two groups using the first 12 quarters of
historical data as follows: Group A. lower variance-to-mean ratio for
demand per quarter; Group B. lower variance-to-mean ratio for demand per
flying hour.1 Then two demand prediction techniques were applied to each
group separately and compared:

1) Technique 11 of Table C-6: exponential smoothing with a smoothing
constant of 0.4 to predict the mean and a variance-to-mean ratio given by
Equation but not larger than 20.

2) A procedure based on research by Stevens and Hill (1973) that is used
currently by the Air Force Logistics Command (AFLC) in some
applications. It consists of an 8 quarter moving average for the mean and
a variance-to-mean ratio, V, given by Equation

 is the predicted average pipeline and V is constrained to be no less
than 1 and no more than 5.

We used two techniques, because Technique 11 had performed best in all
of the previous comparisons, and the AFLC technique is actually used in
some Air Force applications. As shown above in Table C-9, the variance-to-
mean ratio for the AFLC technique of Equation C.1 varies with the repair
time.

The details of how the sample was divided into two groups follow. First,
the original sample of 1,214 items from the D041 data system for the F-16
engine and airframe was reduced by 281 items for which there was no
demand during the first 12 quarters. In a real application it may be necessary
to stock some of these items, but both prediction techniques estimate zero
demand. Of the remaining 933 items, demand per flying hour could not be
computed for 159; the flying hours were missing in the item data for one or
more quarters in which demand was positive. For each of the remaining 774
items, the following equations were computed over n = 12 quarters of
history:

1 For some items the program element is sorties or operating hours. Since the program
element on most items is flying hours, we will use that terminology for any program
element.
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where and are the demand and flying hours in quarter i. We have used
the symbol for the mean demand per quarter and for the mean demand
per flying hour, since the numerical values will be very different. Equations
C.5 and C.7 are the variance-to-mean ratios for demand per quarter and
demand per flying hour respectively. Equation C.5 is Equation 2.2 with
division by n - 1 to provide an unbiased estimate of variance and by the
mean to yield a variance-to-mean ratio. Similar divisions are used in
Equation C.7, which is justified at length in Hodges (1985). When Equation
C.5 is multiplied by (n - 1), it is the Poisson index of dispersion of Equation
4.38 with (n -1) degrees of freedom.

Of the 774 items for which both Equations C.5 and C.7 could be
computed, the latter was smaller for 511 items which were placed in Group
B. The balance of the original 933 items were put in Group A. This is
summarized below in Table C-12.
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The average variance-to-mean ratio over the 12 quarter base period for
each group of items is shown at the bottom of Table C-12. Note that these
variance-to-mean ratios are used only for separating the items between
Group A and Group B, not for predicting demand. The reason for breaking
the sample into two groups was to use demand per quarter or demand per
flying hour, depending on stability.

Table C-13 shows that over the entire group of 933 items with some
positive demand during the first 12 quarters, average demand per item
increased from 22.0622 in quarter 1 to 50.9528 in quarter 16 (131%
increase). When split into the two groups according to stability, average
demand for Group A items increased from 21.3483 in quarter 1 to 30.3175
in quarter 16 (42% increase); the average demand per flying hour for Group
B items increased from 27.0444/1,326 = 0.0204 in quarter 1 to
70.1919/2,154 = 0.0326 in quarter 16 (59% increase). The percentages for
each of the two groups are much lower than the original percentage of 131%
for all items, indicating that the program element does improve stability over
time.
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We are making the assumption that an item placed in Group B because of
a lower variance-to-mean ratio in the 12 quarter base period can be predicted
more accurately from demands/flying hour. Of course, this really depends on
how accurately we can forecast flying hours over the next year. If we had no
such ability, a forecast of demand/flying hour would be useless. Earlier
research has shown that if our flying hour forecasts are within about 20% of
the true value, demand/flying hour will give better predictions than
demand/quarter for items in Group B. Since planned flying constitutes a
major portion of the flying hour program, a forecast within 20% seems
likely.

The final number of items was reduced to a multiple of 20 for ease of
processing, i.e., 420 items for Group A and 500 items for Group B. A budget
of $110 million was divided in rough proportion to the number in each
group, $50 million and $60 million, respectively.

Table C-14 shows the results for items in Group A and Table C-15 the
results for Group B. The procedure was to use the first 12 quarters of D041
to predict the mean and variance-to-mean ratio over the next 4 quarters, as
described above. Then an optimal availability model was used to allocate
investment across items. Actual demands during the next 4 quarters were
used in a simulation to assess prediction accuracy as in the earlier
comparisons. The attained availability was computed across the group of
items on a daily basis and averaged over each quarter. Both attained
availability under no cannibalization and with cannibalization are shown.

Technique 11 performs better than the AFLC technique in all
comparisons. The availabilities with no cannibalization are more relevant,
because that was the objective we set out to maximize with our availability
model. Thus it is not surprising that the availability differences under
cannibalization are smaller.
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However, a comparison of availabilities tends to underestimate the
margin of superiority enjoyed by Technique 11. For example, in Table C-14
an improvement in availability from 53.2% to 74.6% is more than a 40%
improvement, because availability does not increase linearly with cost.
(Figure 2.5 showed a typical availability versus cost curve where each
successive increase in availability is more expensive). A better estimate of
the margin of superiority for Technique 11 is the average number of
backorders, which are reduced by 53% in Table C-14 and 57% in Table C-
15.

The overall availability for the 920 items of the F-16 is obtained by
multiplying the availabilities for group A and B. The availabilities are 43.3%
for Technique 11 and 20.1% for the AFLC technique. Since these
availabilities are so low and to insure that the superiority of Technique 11
does not depend on the budget level, we performed the analysis again with a
budget of $180 million split equally between groups A and B. This resulted
in availabilities of 70.4% for Technique 11 and 40.8% for the AFLC
technique; backorders averaged three times as large under the latter
technique.

One technical note should be added. The variance-to-mean ratios over the
first 12 quarters (3 years) exceed 44 for demand (Group A) and 34 for
demand per flying hour (Group B), as can be seen from the bottom of Table
C-11. These variance-to-mean ratios are extremely high, because they are
computed over a long period of time, using the 12 quarter means; in fact, we
believe that the means are changing, which would reduce the variance, but in
an unknown way. By contrast, the variance-to-mean ratios in our predictions
from Technique 11 are much smaller (exceeding 10 for only 4 items and
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never reaching the limit of 20). The reason is that the variance-to-mean ratio
in the predictions is only over a year, and it increases with the length of the
period.

When the backorders on each item are examined, it appears that about
two-thirds of the total improvement due to Technique 11 is because of
exponential smoothing, one-third to the variance-to-mean ratio formula and
the higher limit of 20.

Similar calculations were performed for the A-10 with comparable
results. For example, on the 320 items where demand per program element
was the better predictor the average availability with no cannibalization and
a budget of $50 million was 94.3% for Technique 11 and 85.5% for the
AFLC technique. The average backorders were 5.9 and 19.6, respectively.

C.8 Correlations

In this section we want to look at the “physics” of the demand process by
examining the correlation of demand in different quarters. The correlation
coefficient is defined as:

where and are the observations to be correlated, and are the
means. The correlation coefficient is defined between -1 and +1. In many
applications the and are observations from two different sets of data.
Here we want to compute the autocorrelation function where the are
identical with the but displaced in time. For example, if each
the function is called the autocorrelation with lag 3. Since there are 16
quarters of data on each item, there are 15 pairs of adjoining quarters (lag 1),
14 that are separated by a quarter (lag 2), etc. Our objective is to examine the
behavior of the autocorrelation function as the lag increases from 1 to 15.

Unfortunately, the data series on each item is very short. As the lag
increases, the number of pairs available for autocorrelation decreases. With
16 quarters we can only compute meaningful correlations for the first 11 lags
or so. Each computed correlation can be compared with the tabled value in a
statistics text to test1 whether it is significantly different from zero. For
example, with the 15 observations at lag 1 the observed correlation must

1 The tables are percentiles of the distribution of observed correlations when
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exceed .514 to be significant at the 95% level; with the 5 observations at lag
11 the observed correlation must exceed .878.

With a rapidly increasing flying-hour program, such as that of the F-16, it
is appropriate to compute the correlations between demand per program
element since the program element change may differ from item to item.
When this is done for all 615 items on the F-16 with program element
information in each of the 16 quarters, the results are shown in Table C-16.

Over the entire group of 615 items, the average correlation is significant
at the 95% level for intervals of lengths 1 through 3. On an individual item
basis, it is seen that many items have a significant positive correlation for
intervals of lengths 1 through 4. After that point (a 1 year separation), the
number of positive correlations that are significant tends to be only slightly
larger than the number of significant negative correlations. Note that with a
95% significance level and 615 items, we would expect that about 31 items
would appear to have significant correlations, positive or negative, by
chance.

In order to examine the relationship between demands in quarters with
greater lags, we have used the correlation formula from Equation C.8 in a
second, non-standard way. Instead of and being the means over the
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quarters for an item, we let them be the means over all items and quarters.
This increases the sample size dramatically, so that even at lag 15 the
number of pairs equals the the number of items. These “correlations” are
shown in the last column of Table C-16. Note that the values are near one
because each pair is from a particular item, but the means, and
are from all items. The numerical values themselves are meaningless since
they will be larger if the item means have greater dispersion, and vice-versa.

We cannot use statistical tests of significance on these values in the last
column of Table C-16, but we can look at how they change as a function of
the number of quarters between observations. Although the values do not
decrease uniformly, there is a clearly decreasing pattern that confirms the
correlation results by item. The implication of this analysis is that demand
prediction techniques should give more weight to more recent data.
Exponential smoothing is such a technique, and this helps to explain why its
performance was so much better than the moving average.

Table C-17 shows that analysis of the A-10 aircraft yields similar results.
over the entire group of 444 items, the average correlation is significant at
the 95% level for intervals of lengths 1 through 4; the number of items with
significant positive correlation is also substantially greater than the number
with significant negative correlation for intervals 1 through 4.

All data analyzed in this report have been quarterly D041 data, where all
base demands on a given aircraft type have been aggregated. It is important
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to be sure that demand at an individual base is not fundamentally different
from the sum of demand at all bases; that demand over shorter time periods
does not behave differently. For this reason, we obtained the transaction data
showing the date of each demand at a base during a 2 year period. The base
was England Air Force Base, Mississippi, with A-10s, and the data covered
the period from April 1982 through March 1984. The demands for each
repairable item were aggregated in 2-week periods as the fundamental unit
of analysis. The smallest meaningful period would have been a week, since
we do not want the lighter flying schedule on weekends to bias the results. A
2 week period was selected so that demands during the period would be
slightly larger; this gave us 52 periods for correlational analysis.

The results of similar correlational analysis on the 2-week demands at
England Air Force Base are shown in Table C-18. Some major differences
are noted from the previous correlations. The number of items whose
correlations are positive and statistically significant when the periods are
adjoining is only 95/741, or 12.8%, as compared with about 25% for Tables
C.15 and C.16. The reason is that the average demands per period are much
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smaller and the variability in this number across items is much smaller (the
average item demand per 2 week period at England Air Force Base is about
0.2, as compared with quarterly demand across all F-16 bases of 35).

The correlations in the last column of Table C-18 decrease fairly
uniformly (only the first 20 intervals are shown in the table, but the
correlations decrease to .201 for the largest separation of 51 periods). The
first value of .505 is much smaller than the first value in the other
correlational analyses across items in Tables C.15 and C.16, due to the low
values of demand. However, the qualitative behavior of the demand for 2-
week periods is consistent with the D041 data providing further support for
our major conclusions.

C.9 Smaller Smoothing Constant for Low-Demand
Items

There was some suspicion that predictions for very low-demand items
could be improved by incorporation of a longer history, equivalent to a
smaller constant in the exponential smoothing. Our procedure was to use a
smoothing constant of 0.1 on any items with fewer than 10 demands in the
first 12 quarters (typically about 20% of the items). Though the predicted
availabilities were very slightly higher, the actual attained availabilities were
slightly higher in only one case and lower in seven. This is shown in Table
C-19. It should be noted that the values of 0.1 and 10 demands are arbitrary.
Different values will give somewhat different results.

In Table C-19, the attained availabilities are generally higher than the
predicted availabilities for the C-5 engine, lower for the A-10 and F-16. The
reason is that the annual dollar value of demand for the C-5 engine
decreased during the period being predicted to only 62.6% of its value in the
base period, while the value increased 19.5% for the A-10 and increased
41.4% for the F-16.

However, the allocation of investment appears to have been very good.
Results for an 8-quarter moving average are shown at the highest budget
level for each weapon system. Note that in two of the three cases, the
moving average leads to severe degradation in attained availability.

In summary, Technique 11 with a smoothing constant of 0.4 for all items
appears to be best.
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C.10 Summary

The major conclusions are summarized below:

1. Demand prediction techniques should give more weight to recent data,
because the mean demand tends to drift with time. Demand in any period of
time tends to be more highly correlated with demand in adjoining time
periods than with those further away.
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2. Exponential smoothing is consistently the best technique of those
tested for estimating mean demand. With quarterly data, a smoothing
constant of about 0.4 appears best. (or about 0.15 on monthly data).

3. Use of Poisson or a constant variance-to-mean ratio assumption leads
to poor allocations of investment, because system availability attained during
the prediction period is low. For each aircraft type analyzed (C-5, A-10, F-
16), a “good” choice for variance-to-mean ratio, V, over a predicted year as a
function of the estimated annual mean, m, is:

with a maximum value of 20. For a fixed investment of $80 million on the
C-5 airframe, the Poisson assumption leads to an attained availability of
56.6%; the formula above leads to 82.8% for the next year. Alternatively, the
same availability could be attained with 20% less investment and the
variance-to-mean ratio formula above.

Our previous work, including Slay and Sherbrooke (1988), indicates that
a Poisson process is still the best description of how demands are generated.
But, the assumption of a Poisson process with stationary increments where
the mean stays constant is the most optimistic and unrealistic type of Poisson
process.

Note that the independent variable, m, is the annual mean, rather than the
average pipeline as used by AFLC. It is the drift in mean demand over the
prediction period that is important. Equation C.9 above for the variance-to-
mean ratio in combination with exponential smoothing for mean demand led
to backorder reductions of over 50% for the F-16 and A-10 when compared
to the AFLC variance-to-mean formula combined with an 8 quarter moving
average.

This system approach to estimating variance-to-mean ratio is much better
than using past history on each item. The latter is too unstable, particularly
when the mean demand is changing.

4. When program element data, such as flying hours, are available and
demand per program element is more stable, they should be used for
prediction. If demand per quarter is more stable over the base period, that
should be used, instead. In our analyses, slightly more than half the items
were in the former group. The same prediction technique is recommended
for both groups of items, but the choice of technique is more critical for the
former group.

5. The use of an availability model to evaluate the accuracy of prediction
techniques is a powerful approach, and is highly recommended to other
investigators. We noted that previous research by others such as Stevens and
Hill (1973) has provided estimating relationships for the variance-to-mean
ratio, but failed to evaluate the predictive accuracy.
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The findings below are less definitive than the conclusions above,
because they depend on the techniques used in this study. It is possible that
other researchers may devise new techniques that will alter one or more of
these findings:

1. Techniques for predicting trend were unsuccessful. We believe that the
lack of success with second-order smoothing, observed in our earlier
research as well, is due to a phenomenon called “regression to the mean”.1

Since mean demand drifts with time, this implies that variance increases as
the period being predicted moves into the future or becomes longer.

2. Combinations of techniques did not improve predictions. An example
of a combination technique is a variance-to-mean ratio that is the average of
a power curve prediction and a sample estimate based on historical data for
the item.

3. Bayesian techniques used in this study were good but not best. The
attained availabilities were fairly high in most cases, but the predicted
availabilities were almost always too high. The good performance was due
in part to some arbitrary adjustments that had to be made for high demand
items. Bayes is more complicated and has the further limitation that it cannot
be used for initial procurements, since it uses demand data.

4. A smaller exponential smoothing constant for low-demand items did
not improve predictions.

These conclusions and findings appear to hold consistently across the C-
5, A-10, and F-16 weapon systems as represented in 16 quarters of D041
data. Further support was found in an analysis of daily demand data over a 2
year period from a single A-10 base, England Air Force Base. Data has been
analyzed, both with and without program element information.

Some words of caution are in order. There are a few items with very
large and highly variable demand. System availability is critically influenced
by how well the prediction technique performs on those items.
Unfortunately, there is no way around this fact of life, which seems to be
true of most complex systems. This is not a defect in the evaluation measure;
rather, it is related to the “physics” of our problem. The practical
implications are that the technique for the variance-to-mean ratio that is
“best” for one weapon system is not likely to be “best” for all others,

1 There is a story about pilot training in the Israeli Air Force some years ago. The instructors
noticed that after a particularly good landing causing praise from the instructors, the next
landing tended to be closer to an average quality landing; after a poor landing and some
“chewing out”, the next landing tended to be better. This is simply an example of
“regression to the mean” where a particularly good or bad landing is more likely to be
followed by one closer to average quality, regardless of instructor feedback.
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principally because of the behavior of a few items. However, we have found
techniques that appear to do a good job across weapon systems and appear to
be substantially better than techniques now in use.

We have done some preliminary work on demand prediction over periods
of time longer than a year or further in the future as reported in Sherbrooke
(1987). The results suggest that the variance-to-mean ratio in these cases
should be larger. However, there is a practical question as to whether all of
the variance in demand should be reflected in the inventory policies, as the
repair system has an important adaptive capability to change repair
priorities.

Another point of caution is that a number of items show no demand over
the base period. Having no basis for picking one prediction technique over
another for these items, we have excluded them from predictions. There are
two implications: First, it is desirable to retain data history longer to improve
detection of items whose “true” mean demand is not zero. Second, it may be
necessary to estimate some positive demand for items with no observed
demand (e.g., using a Bayesian procedure as discussed in Section 4.10). If
this is not done, the resulting value for aircraft availability is likely to be
unsatisfactory.

We have attempted to understand the “physics” of the demand process,
not just compare different demand prediction techniques. It is our hope that
the results of our analysis will be useful in other applications, and that the
approach itself will have even greater applicability. While no claim to
optimality can be made for our empirical work on demand prediction, it is
important to reiterate that the optimal availability models in this book are
useful only if the required data can be estimated.

Appendix F shows a Windows tool, the Demand Analysis System, that
can be used to perform all the analyses above in an efficient fashion.
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Appendix D

PREDICTING WARTIME DEMAND FOR AIRCRAFT
SPARES

If an elderly but distinguished scientist says that something is possible he is
almost certainly right, but if he says it is impossible he is very probably
wrong. -Arthur C. Clarke

D.1 Appendix Overview

The research reported on here was performed by the author in
collaboration with Michael Slay of the Logistics Management Institute and
Lt. Colonel Dave Peterson of the Air Force (Slay et al. 1996). There is also a
more detailed report (Sherbrooke 1997). The research came about because of
the surprisingly small number of demands for spares in Desert Storm during
1991, despite the large number of flying hours. Longer sorties were flown
than in peacetime, but the demand per sortie remained about the same.

Since peacetime data are used to forecast wartime requirements and
peacetime sorties are much shorter than those of Desert Storm and probable
future wartime scenarios, it is critical to know whether spares demand is
driven by sorties, flying hours, or some combination of them. In this
appendix we review the Desert Storm experience, review the literature,
consider the advantages of a controlled experiment, and then report on our
analysis of over 200,000 sorties. Although this appendix is concerned with
the military and wartime planning, it has implications for commercial
aircraft and peacetime spares prediction as well.



Desert Storm ExperienceD.2

Table D-1 shows the results for one F-15C/D squadron of 24 aircraft
during the first 30 days of Desert Storm; they flew 236% of the planned
flying hours, but only 85% of the planned sorties. Actual demand was much
less than forecast on the basis of flying hours. Item-by-item predictions
based on sorties were better for 214 items as compared with 58 for flying
hours. Similar results were obtained for 72 F-16C/D aircraft.

Literature ReviewD.3

Table D-2 summarizes some Air Force studies on the effect of sortie
duration on spares demand. A slope of 100% (45 degrees on a graph where
sortie length is plotted on the horizontal axis and spares demand on the
vertical axis) indicates that spares demand is proportional to sortie length,
whereas a slope of 0% indicates that sortie duration has no effect.
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Most of the slopes are more consistent with the assumption that sortie
length has little or no effect (the slope for the P-3C is negative, but not
significantly different from zero). There are only two exceptions: 1) a slope
of 77% for the 727; 2) a slope of 100% for the C-141 in a 1978 study. The
first is of limited relevance because the 727, a commercial aircraft, flew very
short sorties of 45 minutes to 1½ hours, and the demand rates are an order of
magnitude less than for military aircraft; the second is an anomaly because
the 50,000 sorties were drawn in an unknown way from the 835,000 sorties
used in the 1980 study of the C-141 which resulted in a slope of only 28%.

The results are of limited relevance to our problem of tactical aircraft
flying multi-hour sorties. The studies are all over 20 years out of date, and
the studies were primarily briefings without detailed methodological
support.

Proposal for a Controlled ExperimentD.4

We suggested to the Air Force that a controlled experiment would be
desirable to study the effects of sortie duration on the demand for spares on
tactical aircraft. The experiment would control for age and material
condition of the aircraft, pilot proficiency, and other factors that might
contaminate an uncontrolled study.

As an example of the problems that can arise in an experiment without
control, consider the hypothetical situation depicted in Table D-3. Assume
that there is some new maintenance/operating procedure that is applied to
half the fleet chosen at random. Since the number of broken aircraft (one or
more demands per sortie) in the control group exceeds the number in the
treatment group, we would conclude that the new treatment is not effective.

But, suppose some bright-eyed analyst then comes up and says, “We
should have broken the aircraft into two groups based on age, because the
older aircraft are likely to require more spares.” After the results are broken
down by age, they might look like Table D-4. Note that in each of the two
age-specific groups the treatment aircraft now look better than the control
aircraft, contradicting our earlier results. (Of course, the totals in the sub-
groups must add up to the group totals in Table D-3, e.g. the broken aircraft
in the two age-specific treatment groups of 26 + 2 = 28 of the combined
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Table D-3). This is a classical statistical problem known as Simpson’s
Paradox.

It is difficult to know what to conclude. The problem arises, of course,
because more of the older aircraft happened to land in the treatment group in
our hypothetical experiment. This problem would not have arisen if the
original experiment had controlled for aircraft age. Similarly, we wanted the
Air Force to have a controlled experiment with controls on any variable
suspected to affect spares demand. If we controlled on variables that later
had no affect, it would make no difference to the analysis.

Unfortunately, the Air Force decided against a controlled experiment on
the grounds that it would severely impact their peacetime training program.

Data Analysis – F-15 C/D AircraftD.5

The data source was the Core Automated Maintenance System (CAMS)
which supplied: 1) operational data such as tail number, sortie length, time
of the sortie, takeoff and landing locations, and mission type; 2) maintenance
data such as tail number, start time, work unit code (item identification),
how malfunctioned, when discovered, and action taken. The supply data
could not be related to sorties, so we had to use the maintenance data as a
proxy for supply data. We used only that maintenance data that reflected a
remove-and-replace action, excluding time-change items and aircraft
modifications.

For the 68 aircraft based at Langley, Va. We found that the highest
number of demands occurred on the last sortie of the day, as shown in Table
D-5. The number of demands tended to decrease by sortie when there were
multiple sorties, until that last sortie. This is an important variable that had
never been identified in earlier studies, but tactical aircraft with training
sorties of 1-2 hours have the opportunity of flying many more sorties in a
day than the aircraft in Table D-2 (one aircraft in Table D-5 flew 7 sorties).
The sortie lengths preceding the last sortie of the day also tended to be
shorter as the number of sorties by an aircraft increased, but far less
dramatically.
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A logical question is whether the last sortie of the day is the result of a
grounding failure, or planning. It is clear from several sources of evidence
that the last sortie of the day is usually planned, and that the higher
maintenance following the last (or only) sortie is the result of deferred
maintenance. One example of the deferred maintenance is that the average
demand per sortie originating and landing at Langley, the home base, is 0.34.
On sorties originating at Langley, but landing elsewhere the rate is 0.19,
whereas sorties originating elsewhere and terminating at Langley had a rate
of 0.67.

The type of mission also had a large effect on demand per sortie. In aerial
combat training, the aircraft may pull as much as eight G’s. Longer missions
such as cross-country and training deployment are less stressful as seen in
Table D-6. If we did not control for mission type, the effect of sortie length
on demand would be understated.

We analyzed the group of 7,108 aerial combat training missions that took
off from and landed at Langley. One of the highest demand rates was for the
88 sorties lasting less than 0.8 hours. We excluded these because of the high
prevalence of functional check flights and air aborts. Functional test flights
are very short, very high-failure post-maintenance test flights (where the
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failures are really related to an earlier flight). We would have retained the air
aborts if we had known the planned sortie durations, but these were not
collected.

The resulting regression was for 7,020 sorties with durations between 0.8
and 7.3 hours. The regression slope was 18% which is statistically
significant at the 95% level (there is less than a 5% chance that such a large
slope could occur by chance if there were no relationship between sortie
duration and demand).

When we add another independent variable for last (or only) sortie of the
day, the slope of demand as a function of sortie length drops to 13% (still
statistically significant). The reduction in slope occurs because the last (or
only) sortie of the day, which has more demand, tends to be slightly longer
as shown in Table D-5.

D.6 Analysis of Other Data Sets

We analyzed several other data sets as well with the results shown in
Table D-7. The tactical aircraft are listed first, followed by the A-10 used in
close air support, two bombers (B-1 and B-52H), a transport (C-130H), a
gunship (AC-130) and a tanker (KC-135). The F-16 C/D had the largest
slope for tactical aircraft, after correcting for the influence of last sortie, tied
at 13% with the Langley F-15 C/D analyzed above. The largest corrected
slope for all aircraft was 20% for the B-52H, which was the same slope that
was estimated for the B-52D in Table D-2; the latter was probably the best
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earlier study because it contained roughly equal numbers of 4, 8, and 12
hour sorties from three bases in Southeast Asia, providing a particularly
good basis to estimate the slope of demand versus sortie length.

One interesting result came about in the analysis of the A-10, OA-10
aircraft. The original regression showed a very steep slope, unlike any other
data set. When we examined the data more closely, we found that the bases
with higher average demand (and slightly longer sorties) were regular USAF
bases; the others were Reserve and National Guard bases. This is shown in
Figure D-1, where each data point on the graph represents the mid-point for
a group of sorties at a particular location. When we analyzed the two groups
separately and combined the results, we obtained the slopes shown in Table
D-7 for the A-10, OA-10.
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We don’t know exactly why the USAF bases had such high demand
rates. It has been suggested that the Reserve and National Guard pilots are
usually retired USAF and thus have more experience; perhaps more
importantly the same is true for maintenance personnel. Another factor is
that some of the Reserve and National Guard bases are located near
metropolitan areas (e.g. Kansas City), where the use of live ordnance is
restricted, also contributing to the shorter sortie lengths. For the purposes of
the analysis of demand versus sortie length, the explanation is not critical,
provided that we analyze the two groups separately.

SummaryD.7

We asked ourselves if there could have been any reasons in our analysis
that a real effect of sortie length influencing demand might have been
obscured. Some of the possibilities include:

1). There were very few long sorties in most of the data sets, making it
difficult to estimate the slope. For example, in the case of the F-15C/D,
50% of the sorties were between 1.1 and 1.5 hours and 90% were
between 0.4 and 2.1 hours.

2) Some of the shorter sorties may be more stressful missions, even
within a group such as aerial combat. For example, the F-15C/D can pull
8 G’s with a center-line fuel tank, but only 6 G’s with wing tanks. The
latter tend to be longer sorties, and probably have fewer demands; but,
the mission code is the same in the CAMS data.

3) Demands are estimated from maintenance actions, rather than supply
data. Unfortunately, we had no alternative.

Nevertheless, the results of Table D-7 suggest that sortie length has a
modest effect on demand. The slopes for all the data sets average 10%
before and 7% after adjustment for the last sortie effect, and both are
statistically significant. Only one slope exceeded 13% (the B-52H at 20%).

Some of our other conclusions were:

1) Demand rates increase slightly with the number of days since the last
sortie (F15C/D, F-16C/D), but the results were not statistically
significant.
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2) Aircraft do not consistently have higher or lower demand rates. That
is, there appears to be no potential for assignment bias of “peaches” or
“lemons” to particular missions (F-16C/D).

3) We did find larger slopes of 30% for Electronic Warfare Systems and
20% for Fire Control (F-16C/D). However, this may be partly due to the
fact that those systems tend to get exercised only on longer missions (see
above discussion of the A-10 results for the USAF versus Reserve and
National Guard).

The Air Force implemented our conclusions, settling on a 10% slope for
the effect of sortie duration on spares demand for tactical aircraft. They still
collect peacetime demand data on a per-flying-hour basis. The demand per
flying hour, d, is converted for wartime planning, so that a tactical aircraft
sortie of x hours is assumed to have d + (x - 1)d/10 demands – a 10% slope
for sortie duration.

The Air Force estimates that it would have overstated wartime spare
requirements for tactical fighters by $1.1 billion in 1993 otherwise. We are
inclined to quote the late Senator Dirksen, “A billion here, a billion there.
Pretty soon it adds up to real money.”
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Appendix E

VMETRIC MODEL IMPLEMENTATION

Common sense is the collection of prejuduces acquired by age eighteen.
- Albert Einstein

Chapter OverviewE.1

In this chapter we illustrate an implementation of the VARI-METRIC
theory in the VMetric model. The purpose is to demonstrate that personal
computers can provide sufficient power and elegant user interfaces. It is not
intended as a user’s manual or a tutorial on how to build the most efficient
computer program. The VMetric model is a product of the Tools for
Decision (TFD) group, located in Monterey, CA., whose web-site is
www.tfdg.com. The VMetric engine was written by the author.

The several Windows computer screens are shown as a user would
encounter them in the process of doing a VMetric optimization problem. Of
course, the limitations of black-and-white reductions required to fit this book
do not do justice to the actual appearance of the screens.

We list the variables used by the model. Only a small number of
variables on each item are actually required, but with hundreds or thousands
of items in a typical computation the data management tasks are significant;



there are a number of optional variables that allow the user to fine-tune his
solution to particular needs.

VMetric has no limitation on the number of items, sites, indentures, or
echelons. It does require that the sites can be organized into a tree structure
as shown in Figure 1-3, where each site has a specific support site identified,
either within the organization or a contractor outside. The physical location
of the support sites for different items may differ. (For example, the Air
Force has several depots, each of which handles certain types of items).

We will use a standard application to illustrate VMetric, but the reader is
reminded of the large number of different applications that can be optimized
with VMetric as discussed in Chapter 9.

E.2 VMetric Screens

When VMetric begins, Figure E-1 appears. The logic is that after loading
a file, the user normally uses the buttons from left to right as described
below. In this illustration we have loaded an actual Coast Guard data base
with 951 items on the HH-60 Helicopter.
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When the user clicks on the left-most button, the Parts Library appears as
in Figure E-2. A number of variables appear in the column headings, some
of which are required and some of which are optional (the columns for
required information are colored, but it is impossible to distinguish in black
and white). Part uniqueness is determined by the combination of reference
number or, if no reference number, item name and Commercial and
Government Entity (CAGE) Code with a null CAGE being allowed. So only
item name or reference number must be populated to generate a unique part.
All other identifying fields are optional, including National Stock Number
(NSN):
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Required Variables
Item Name
Item Price
PLT - Procurement Lead Time
MRR6 - Demands per Million Hours (alternatively MTBF, NFF,

and RIP below can be entered).

Optional Variables
Reference Number
CAGE code - Manufacturer identification
National Stock Number
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Material Class - When left blank the default is miscellaneous
(Misc). It is possible to enter other material classes such as
electronics or airframe. Then in the default screen below,
one set of values for Repair Cycle Time, Order and Ship
Time, and NRTS can be entered and automatically copied for
all items in a material class. Very useful in early provisioning.

VM Ratio - Item override of the global variance-to-mean ratio from
the power curve where m is average annual demand.

Criticality - Default criticality (of LRUs) is 1; can be set higher or
lower to reflect relative importance of a backorder.

MTBF - Mean Time Between Failures (instead of MRR6)
NFF - No Fault Found Rate in the range 0-1 (default = 0)
RIP - Repair in Place in the range 0-1 (default = 0)
Resale Price - If resale of existing stock is an option
Setup Cost - If one or more units of an item is purchased in an

initial procurement, this cost is added

When the user clicks on the second button from the left, Structures, the
indenture structure of items from the Parts Library of Figure E-2 appears.
The level of indenting in Figure E-3 indicates the indenture. For example,
the Engine is an LRU, followed by two SRUs, the second of which contains
two sub-SRUs (indenture level 3). This convention gives an unambiguous
definition of all the parent-child relationships. The parent of any item is that
item above it in the list which is closest, similarly for the grandparent. Thus,
the LINER, COMBUSTION is a child of Module, Hot Section, and a grand-
child of ENGINE.

In this view there are two additional variables by item, as well as two that
can be accessed with the configuration tab:

Optional Variables
Weight - Only used in multiple constraint problems
Volume - Only used in multiple constraint problems

Required Variables
QPA(n) - Quantity per next higher assembly
QPA(k) - Quantity required for next higher assembly to operate.

Only for LRUs where redundancy is allowed in the case of a
single end-item.
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The third button, Site Library, is just a list of site names with their
support site. In general there will be one site whose support site is contractor
for the replenishment of condemnations. The fourth button, Projects, enables
the user to give the run an identifying name and description as well as some
additional system variables. The first five variables are used to calculate
reorder points and order quantities; they are optional because they do not
affect initial procurement quantities.

Optional Variables
Internal Order Cost - The cost of ordering from a support site

within the logistics system. Usually a nominal value like $5.
External Order Cost - The cost of placing an order on a contractor.
Order Cost Threshold - An item cost times quantity above which the

high order cost is used for external orders
Order Cost High
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Holding cost rate - An annual rate that reflects the cost of
borrowing, warehouse costs, and some obsolescence.

Lateral Supply Time - The number of days that it takes to ship a
depot-repairable LRU from a base with stock to a base with a
backorder.

Variance-to-mean ratio parameters, A, B, and VMax for the
power curve relationship: where m is the average
annual demand. The default is Poisson with a constant mean.

Resale Factor- If resale price is not set, resale factor is multiplied
by item price to generate a resale price if resale is allowed.

The fifth button, Deploy, shows the following by site:

Number of identical sites of this type (default is 1)
Site Name
Essentiality - These are weights applied to the sites to obtain an

optimal solution for site specific goals (see the footnote
following Figure E-7).

Weight Price (Optional - only used for multiple constraints)1

Volume Price (Optional - only used for multiple constraints)
End Item Name

When the user clicks on the End Item Name, the details are provided for
each site:

Number of the end-item type at the site
Name of the end-item
Operating Hours/week
Maintenance Availability (Optional - default is 1)

There are a set of tabs on this screen, one for each material type. Misc. is
the default. (We have a second material type in the illustration called joe).
This provides information on the following for each operating site:

Support Site
Repair Cycle Time
Order and Shipping Time
NRTS

1 The weight price and volume price are Lagrange multipliers which must be adjusted
iteratively to meet the site weight and volume constraints. They are precisely analogous to
the site essentialities discussed in the footnote following Figure E-7. See also Figure 6-3.
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When the Misc. tab is selected, the above information is displayed as
shown in Figure E-4. The display also shows three sites including
Clearwater, all of which are supported by Clearwater Support (as discussed
in Section 9.9). Similarly, the display shows that all other sites including
AR&SC Ops are supported by AR&SC. This is an example of what we
mean by ragged echelons as depicted in Figure 1-3.

As mentioned earlier, the idea of the material types is that if one is
assigned to each item, it is possible to set defaults easily for the latter three
quantities on all items of a material type. This is particularly useful in early
model runs when the data is still tentative.

The sixth button is Parts at Site, a complete tableau of every variable at
every site. The user need not enter anything on this screen as it has been
populated by the earlier screens; however, the user may override any entry,
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in which case the entry is shown in bold-face to distinguish it from default
values entered elsewhere.

We are now ready to make a VMetric model run. The seventh button
provides many choices in two groups, Starting and Stopping:

Starting Choices
Fill pipelines to a specified fraction (shown to the right) - Used

primarily for preliminary runs to speed up the calculation.
Use Initial Stock - Yes indicates that stockage should include these.
Use Minimum Stock - Yes indicates min stocks by location for each

item should be used.
Include Initial Stock in Budget - Yes indicates that the value of initial

stocks should be added to the cost of items bought.
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Use Resale Price - Yes indicates that Sale Prices should be used, if
present, or Resale Factor to allow owned items to be sold if optimal.

Use Shadow Prices - Yes means that the problem is multi-resource
(e.g. weight or volume as well as cost). Use the weight and volume
prices by site.

Use deterministic lot size calculation - If the economic order quantity
at the depot for reprocurement times the item cost exceeds the order
cost threshold, use the larger external order cost

Redistribute Initial Stock - Yes means that the stock already owned
should be optimally redistributed before more is purchased.

Use Maximum Stock - Yes indicates max stocks by location and
overall for each item should be used.1

Use Shortage Cost - Yes indicates that values by item and location
should be used.to weight backorders. Default is 1.

Use Setup Cost - Yes indicates that this cost should be added to the
first unit of an item that is procured.

Emulate MOD-METRIC - Yes causes VMetric to ignore demand for
SRUs and below that generates during repair at support sites (see
Section 5.4).

Stopping Choices
Evaluate Only - Yes causes VMetric to evaluate initial stocks only.
Set Goals by Project, by Site, by System, or by System and Site.
Goals - One or more of the following with the goal value:

Operational Availability
Budget Constraint
Slope
Fill Rate
Average Days Delay

1 The maximum stock capability was used in the applications of Sections 9.4, 9.9, and 9.13. It
is important not to use maximum stocks on too many items, particularly with a high
availability goal, as it may prevent VMetric from achieving the goal.
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When we make the run, an availability fraction of 0.90094 is obtained for
the Project at a cost of $60,507,180. The individual site availabilities range
from 0.84080 to 0.94530. Let’s see how much more investment is required
to obtain .90 goals by site using the Goals by Site button instead of the Goals
by Project in Figure E-6.

Now the Progress Screen looks like Figure E-7 with the overall
availability vs. cost screen on the right and the individual sites on the left
with meters showing their availability at each step of the calculation. When
the calculation is finished. Figure E-8 appears. The summary screen shows a
budget of $65,897,160 (8.9% more than for the .90 Project availability goal)
and an overall availability of 0.92257. The individual site availabilities can
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be seen by using the Summary by Site tab which shows a range from
0.90200 to 0.93889.1

1 If the site essentialities are adjusted by trial and error (this took two iterations), it is possible
to meet the individual site availability goals of .90 in a more optimal fashion. It is easy to
see that the correct site essentialities provide an optimal solution, because they are actually
Lagrange multipliers that represent the cost of meeting each site constraint. The final
essentialities ranged from 0.5 to 2.0 and the availabilities ranged from 0.902 to 0.924 by
site. The overall availability was 0.910 and the budget of $62,805,270 was only 3.8%
more than for the original Project goal availability of 0.90. See also Section 8.14.

When I was in graduate school, one of my mathematics instructors said that Lagrange
multipliers for constraints made no intuitive sense to him. But to any economist (and most
mathematicians), they are the prices of constrained resources.
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The Reports Screen also shows a Fill Rate of 85.6% for LRUs at
operating sites and an Average Delay per LRU demand at operating sites of
0.43 days; the Availability with Cannibalization is 0.930135, Availability
with a 3 Day Lateral Supply Time is 0.97958, and the Availability with Both
is 0.98190. The reason that cannibalization shows such a small improvement
is that there are very few helicopters at each site.

Annual costs of consumption or condemnations are $3,564,484. The
annual holding and ordering costs are shown, but these are not out-of-pocket
costs; they are accounting costs which have already been incurred by having
a logistics system with item managers, equipment specialists, storage
facilities, etc.
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Of course, complete details are available by using the tabs: Summary by
Site, Spares by Site, or Details by Site, Details by Item, and Details by
Iteration. The latter shows the “shopping list” at each step of the calculation.
Various graphical outputs are available as well.
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Appendix F

DEMAND ANALYSIS SYSTEM

Part of the inhumanity of the computer is that, once it is completely
programmed and working smoothly, it is completely honest. -Isaac Asimov



The demand prediction studies in Appendix C were performed with a
primitive version of the Demand Analysis System,1 described in this
appendix. The methodology was explained and justified in Section 4.15 and
Appendix C so we will not repeat those arguments here.

First, we bring in a data file2 with item data on unit cost, average repair
time, and by period (monthly or quarterly) demand, flying hours, sorties,
number of end-items. Then there are three types of analyses that can be
performed as shown in Figure F-1: stability, correlation, and prediction.

1 DAS has a Windows interface with brilliant colors that the reader will have to imagine.
This is data on the F-16, not the b version, and these 605 items are not the same as the 933 in

Appendix C.

2
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Demand Analysis System 317

Stability analysis has the ability to compare up to four quantities such as
demand, demand/flying hour, demand/sortie, and demand/end-item to see
which is most stable over the base period (12 quarters in the cases of
Appendix C). In Figure F-2 there were data only for the first two quantities
on the F-16. On the right-hand side of Figure F-2 demands have a coefficient
of variation (square root of demand divided by the mean) of 0.174 as
compared to demand/hour whose coefficient of variation is 0.047. Clearly
demand per hour is much more stable, and should be selected (the number of
aircraft and flying hours increased dramatically over the 12 months). On the
left hand side of Figure F-2 are the individual item variance-to-mean ratios
computed over the 12 quarters. Some are very high (one exceeds 81),
suggesting that the means over 12 quarters are not really constant.

Then correlation analysis is used to determine whether exponential
smoothing is recommended. It can be seen from Figure F-3 that 9.784% of
items have a positive correlation that is significant at the 95% level; since
this is substantially higher than the threshold of 2.5% which would be appear
to be significant by chance, exponential smoothing looks attractive. DAS
computes an estimate of 0.167 and recommends exponential smoothing.

Figure F-4 compares the predictive accuracy of three procedures for the
mean and variance-to-mean ratio: (1) an 8 quarter moving average and
Poisson variance-to-mean ratio = 1; (2) exponential smoothing with a
constant of 0.2 and Poisson variance-to-mean ratio = 1; (3) exponential
smoothing with a constant of 0.2 and variance-to-mean ratio:

with a maximum of 20.
The base period is quarters 1-12 and the prediction period is quarters 13-

16. A total of $145M is allocated by each procedure. Note that we have
selected demand /hour because of the earlier stability analysis.
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In Figure F-5 we see the results of the three procedures. While the
predicted availabilities were all near one, the “actual” availabilities over the
prediction year were 24%, 63%, and 78% for no cannibalization and 31%,
66% and 81% with cannibalization.

The quarterly availabilities shown in Figure F-6 are even more revealing.
Looking at the “actual” availability columns, we see that procedure 3 has the
lowest availability in the first predicted quarter of the three procedures; but it
wins in the other three quarters and is incredibly high at 85% in the last
predicted quarter, suggesting that it might perform well even in later
quarters, because it takes into account means that change with time.

In conclusion we ask the reader to think of how much more budget he
would normally require to move from an availability of 24% to 78%. Here it
is obtained at no extra cost by proper demand prediction procedures.

DAS automatically loads VMetric with the optimal demand rates by item
obtained with the best demand prediction procedure. Normally a user would



rerun DAS to update the item demand rates prior to making a VMetric
optimization.
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AAM (Aircraft Availability Model), 228
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ACIM (Availability Centered Inventory
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280-281
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Army, 230
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ASM (Aircraft Sustainability Model),

194-195
Autocorrelation, 248, 281-284, 317-318.

See also Correlation
Availability:

achieved, 37-38
attained in demand prediction

experiments, 88, 269-275, 279,
285, 287-288

average, 152-153
backorder relationship, 28, 39-40
cannibalization, 15-17, 269, 313
vs. cost curve, 40-41
definition of, 2, 39
end-of-cycle, 164-165
inherent, 37
maintenance, 38, 122, 166
operational, 38
predicted, 86, 188
supply, 38-39
time dependent, 130-132
underestimation for aircraft, 124

Axsater, S., 247

Backorders:
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definition of, 3, 7, 11
expected, 20, 26



probability distribution of, 133-136
variance of, 68

Bathtub curve, 167-168, 172, 176
Bayesian analysis:

empirical, 79-80
initial estimate and observed data, 80-

81
objective, 75-80, 85, 89, 225, 265

Binomial pdf:
and convexity, 183, 208
definition, 90-92
distribution of depot backorders to
bases, 103-105, 109, 112
independent increments, 97
infinite population assumption, 1, 62,

95, 96, 207
James-Stein estimation, 83
K of N systems up, 142, 157
Palm’s theorem, 240
recursion, 91, 97
state probabilities for wear out, 175-
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Birth and death process, 241
BSM (Base Stockage Model), 10-12

CAGE (Commercial and Government
Entity) Code, 303-304

CAMS (Core Automated Maintenance
System), 294, 298

Cannibalization, modeling of, 181-193
Carrillo, M.J., 194
Chi-square pdf, 92-95, 98
Clark, A., xxiv, 231
Coefficient of variation, 317
Cohen, M., 232
Combinations, mathematical, 96
Compound Poisson pdf, definition, 47-48,

64,78
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shrinking, see James-Stein Estimation
smoothing, see exponential smoothing
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Convex hull, 36-37, 41-42, 112, 143, 185
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Convexity, 33-34, 36, 41
Convolution, 97, 134-136, 141
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backorder, 3, 35
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marginal, 3, 57
order, 4, 49, 115, 306
setup, 305, 310
shortage, 310
stockout, 3
transportation, 46-47
unit, 5-6

Crawford, G.B., 241-242
Culosi, S.J., xxix, xxx, 247

Defense Logistics Agency, 13, 218, 229
Delay per demand (for LRUs at operating

sites):
average, 216, 219, 310
probability distribution, 216-218

Demand
lead time, 13, 15, 115-116, 120, 126.
See also Pipeline
mean, 61, 73, 79, 85, 113, 133-136,

168, 234, 261, 265, 277
prediction, 85-89, 225, 261-289, 315-

320
random, 13, 60
rates, 15-17, 24, 47, 60, 62, 65, 67, 72-

73, 78-81, 107-108, 124, 223, 225,
250, 255, 292

time dependent, 72
variance-to-mean, 17, 47-48, 60-61,

88, 227, 263
wear-out, 89-91, 113, 158, 163, 167-

177
Demand Analysis System (DAS), 315-

320
Desert Storm, 10, 194, 291-292
Distribution problem, 206. See also

Redistribution
DRIVE, See also OVERDRIVE:

assumptions with, 197-198
distribution algorithm for, 200-206
field test, 201
implementation problems with,.199-

200
purpose of, 195-197
repair algorithm for, 196-197, 206

DSO (Direct Support Objective),
definition, 29

Dyna-METRIC, 194-195
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Echelon:
definition, 2
ragged, 8

Efron, B., 81-83
End-item, definition, 56-57
Erlang pdf, 173-175
Essentiality, base, 202-205, 307
Estimation, robust, 17, 126, 152, 154,

223, 226-227, 272
Expediting, 14, 23, 227, 232, 242, 245,

250
Experiment, controlled, 293-294
Exponential pdf, see also Exponential

smoothing:
and compound Poisson, 47
definition, 61
and Erlang distribution, 173-174, 176
memoryless, 62
and Poisson process, 21, 60, 63
repair times, 23-24, 217, 248
wear-out model, 89, 168-169

Exponential smoothing, 87, 88, 96, 261,
263-265, 270, 288, 317-318

Express, see DRIVE

Federgruen, A., xxiv
Feeney, G.J., xxix, 20, 28, 43, 79, 182,

237
Feller, W., 64, 241, 243
Field tests:

airlines, 212
C-5, 229-230
Coast Guard, 231-232
DRIVE, 201
George AFB, 10-12
Hamilton AFB, 9

Fill rate
delayed, 216-218
expected, 23, 26-28, 42, 219, 310, 313
observed, 2-3, 10-12, 25

Fisher, W., 20
Flushout, 54
Flyaway kits, 214-215

Gamma function, 76, 98, 100
Gamma pdf, see also Gamma function:

and Bayesian analysis, 76-80
definition, 76
and Erlang distribution, 175

wear out distribution, 89-90, 176
Geisler, M., 31
Geometric pdf, 47
George AFB, 10-12
Goodness-of-fit tests, 92-95
Graves, S.C., 71, 102
Gross, D., 23-24, 248
Gross, O., 30

Hadley, G., xxv, 115-117, 221, 237
Hamilton AFB, 9
Harris, C.M., 248
Harris, F., 5
Heller, J., 20
Hibon, S., 265
Higa, I.A., 217
Hill, J.M., 262, 276, 287
Hillestad, R.J., 194
Hillier, F.S., xxx, 32
Hodges, J.S., 277
Hoel, P.G., 92
Howell, L.D., 292
Hypergeometric pdf, 98, 137-139, 142,

160

Implementation:
Air Force, 228-230
Army, 230
Coast Guard, 231-232
DRIVE, problems with, 199-200
Navy, 231
worldwide, 232

Indenture, definition, 2
Independent increments, 64, 97-98
Index of dispersion:

binomial, 94
Poisson, 94-95, 98, 99, 277

Inspection, periodic, 123, 214
Inventory, see also Item; Stock:

net, 239-240
position, 24-25, 116-118, 121, 249

Isaacson, K.E., 142, 150, 156-157, 194
Item, see also Inventory; Stock:

approach, 3-4, 13-17, 35, 147, 234
common, 9, 114, 177-178, 206, 216
condemnations, 47, 178-179, 196,

213, 306, 313
none, 24
numerical example, 120-122



order quantities and reorder points,
114-120

consumable, see condemnations
criticality, 122-123, 212, 218, 305
interchangeable and substitute, 199,

220
material class, 305
performance measures, 25-28
recoverable, definition, 1
repairable, definition, 1
serviceable, 164, 170, 196, 200-201,

248

James-Stein Estimation, 81-83
vs. Bayes, 85
experiment, 83-85

Kaplan, A.J., 157, 160, 230, 235
King, R.M., xxx, 194
Kline, R.C., xxix
Kotkin, M., 30, 230
Kruse, K.C., 102

Lagrange multiplier, 35, 55, 118, 143,
204, 307, 312

Laplace pdf, 115-120
Lateral supply, 245-259
Lead time, procurement, 115, 179, 195-

196, 216, 304
Lee, H.L., 247
Lieberman, G.J., 32
LMI (Logistics Management Institute),

xxix, 207
Log normal pdf, 79
Logarithmic Poisson pdf, 64
Lost sales case, 3, 221, 237-238
LRU (line-replaceable unit), definition, 9

Makridakis, S., 266
Manifest, shuttle, 158, 164, 179, 233
Marginal analysis, 30-37, 51-56, 185-186
McCormick, R., xxx, 207
MCMT (Mean Corrective Maintenance

Time), 37-38
MDT (Mean Delay Time), 37-38
METRIC (Multi-Echelon Technique for

Recoverable Item Control), 45-57
Miller, L.W., xxix, 195
Millhouse, J., 55

MOD-METRIC, 65-67, 71, 108, 228, 310
Model, see acronyms for specific models:

analytic, 97
assumptions, 9, 23-24, 46-48, 65, 85,

112-113, 197-200, 211
hierarchies, 232-233
multi-echelon, 8-9
multi-echelon and multi-indenture,

107-112
multi-indenture, 9-10
single-site, 19-43

Moore, R., xxx, 207
Morris, C., 81-83
MPMT (Mean Preventive Maintenance

Time), 37-38
MRR6 (Maintenance Replacement Rate

per Million Hours), 304-305
MTBF (Mean Time Between Failures),

37-38, 219, 304-305
MTBM (Mean Time Between

Maintenance), 37-38
MTTR (Mean Time to Repair), 37-38,

219
Muckstadt, J., xxix, 65, 114

Navy, 8, 9, 231
Negative binomial pdf:

and compound Poisson, 64
and convexity, 183, 208
definition, 62-64
goodness-of-fit, 95
independent increments, 98
pipeline estimation, 71-72
and Poisson, 17, 69-70
and Poisson process with non-
stationary increments, 64, 72
recursion formula, 63, 96

Neuman, C.J., 195
Normal pdf, 95, 116
NRTS (Not Repairable This Station/Site),

120-122, 213, 221, 305

Optimization:
availability, 39-40
backorders, 36
multi-echelon, 8-9
multi-echelon and multi-indenture,

107-112
multi-indenture, 9-10
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multi-item, 7
OPUS, 232
Order quantity, 5-6, 18, 25, 47, 114-120
ORU (Orbital-Replacement Unit),

definition, 130

Palm’s theorem:
applications of, 26-29, 56, 183, 215,

217
assumptions of, 23-24
dynamic form of, 240-241
extension to finite populations, 241
proof of, 237-243
statement of, 22

PARS (Prioritization of Aircraft
Recoverable Spares), see DRIVE

Parzen, E., 104
Payne, J.E., 195
Physics description:

demand process, 223, 227, 263, 281,
288-289
repairable item problem, 6-7, 9, 22
space station, 154, 156

Pipeline,
expected, 15-17, 29-30, 48-49, 66-67
variance of, 65, 67-71, 90, 103-106

Planning horizon, 198-201, 249
Poisson pdf: see also Poisson process:

and compound Poisson, 47
and convexity, 42
definition, 21-22
demand, 13-16
and negative binomial, 17, 69-70
pipeline estimation, 49
recursion formula, 42
state probabilities, 60

Poisson process, 47-49, 61-64, 72-73, 239
non-stationary increments, 21-22

Population, calling:
finite, 157, 160, 241
infinite, 142, 156-157

Power curve, see Variance-to-mean ratio
Presutti, V.J., 115-120
Prices, shadow, 310. See also Lagrange

multipliers
Probability:

computation, see Recursion
conditional, 73-74, 106, 238, 240
cumulative, 136, 183, 185, 188, 207

joint, 73-74, 238
of sufficiency, 28, 133, 147
of y or fewer aircraft down, 29, 184,

187, 190-192, 207-208
posterior, 75-81, 265
prior, 75-81, 85, 95-96, 265
state, 47

Probability distribution function (pdf),
see specific pdfs:

memoryless, 21, 62
steady-state, 22, 26, 179, 182-183,

186-187, 196
Program element:

definition, 262
stability analysis, 278, 281-283, 315-
316

Protection level, 13-14, 18, 116, 171-172,
234

Queue, see also Palm’s theorem:
finite channel, 23-24
infinite channel, 22-23, 66, 156, 248

QPA (Quantity per Next Higher
Assembly), 111, 209, 305

RAND Corporation, xxix, 6. 45, 81, 195
Ready rate, 28
Recursion:

binomial, 91, 97
expected backorders, 42
fill rate, 42
Poisson, 42
negative binomial, 63, 96
variance of backorders, 69

Redistribution, 199, 201, 206, 213, 246.
See also Distribution problem

Redundancy:
block diagram, 145-146
modeling, 129, 136, 142, 153-154,

160, 167, 209, 220-221, 305
Regression:

linear, 254-257, 292, 296
calibration of, 254

to the mean, 273, 288
Reorder point, 5, 25, 115-120
Repair:

catch-up, 197, 206
contractor, 216
delay time distribution,
in-place, 215-216



keep-up, 197
opportunistic, 124
skill, 235

Resupply:
continuous, 6-7
none, 214-215
periodic, 213-214

Robbins, H., 79
robustness, see Estimation, robust
Russell, J., xxx, 230

(s, s) policy, 25, 232
(s-1, s) policy, 25
Sale of assets, 213
Scarf, H., xxiv, 231
Schultz, C.R., 43
Schwarz, L., 24
Scurria, N., xxx, 232
SEASCAPE, 231
Separability, 37, 188
Service rate, 28
SESAME (Selected Essential-Item

Stockage for Availability Method),
229

Shaw, C.C., 292
Sherbrooke, C.C., 20, 28, 43, 45, 65, 72,

79, 85, 102, 182, 217, 237-238, 241-
242, 261-265, 270, 273, 287, 291

Simon, R.M., 101-102
Simpson’s paradox, 294
Simulation:

vs. analytic model, 97
availability underestimates with
sorties, 124
demand prediction, 88-89, 269
finite calling population, 157, 160
George AFB, 12
James-Stein, 83-85
lateral supply, 245-259
LRU backorders and cannibalization

workload, 210
multi-indenture, 67
repair shop management, 23

Slay, F.M., xxix, xxx, 71-71, 102, 185,
194, 246, 263, 291

Smith, J., 20
Smoothing, see Exponential smoothing
SRA (shop-replaceable assembly),

definition, 9

SRU (shop-replaceable unit), definition, 9
Standard deviation, 13, 95, 116, 120, 126,

249
Standards, use of, 225-226
Standby:

cold, 127, 148
warm, 148, 157

Stevens, R.J., 262, 276, 287
Stock, see also Inventory, Item:

due-in, 24-25
level, 24-25
minimum, 33, 309
maximum, 214, 217, 220, 310
on hand, 24-27, 48-49, 118
safety, 2, 13, 117, see also Protection
level
special level, 11

Svoronos, A.P., xxiv, 68
Syski, R., 66
System(s):

approach, 2-4, 7, 14-17, 89, 224, 234
cost-availability curves, 4
demand variance-to-mean estimation,

263, 270, 305, 307
K of N redundant, 126, 140, 153, 158,

160
multiple sub-systems, 219
performance measures, 28-29
pull, 199
push, 199
warehouse cost estimation, 236

Taylor, V., 6
TFD (Tools for Decision) Group, 55, 229,

260, 301
Time:

lateral supply, 46-47, 245-259, 307
lead:

demand, 13, 15, 45, 115-120, 126,
see also Demand

procurement, 115, 120, 179, 195-
196, 216, 304

on-time departure rate, 212-213
order-and-ship, 48
repair/resupply,

distribution, 22
independence assumption, 22-24

Tracking, 171-175
Trepp, R.C., 115-120
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