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Preface 

I finished writing the book The Science of Financial Market Trading in 
2002. The book was written for the general public, with intended 
audience being the traders and investors. A number of computer 
programs have been included in the book for ease of application. The 
mathematics was kept to a minimum in the main text while the bulk of 
the mathematical derivations was placed in the Appendices. However, 
the book was actually purchased mainly by libraries and bookstores of 
some of the major universities and research centers around the world. It 
was further adopted as a textbook for a graduate course in mathematical 
finance by an American university. 

This pleasant surprise may reflect the change in perspectives of 
university educators toward the trading arena for the last few years. A 
new discipline called "Financial Engineering" has appeared due to the 
demand from the financial services industry and economy as a whole. 
The explosive growth of computer technology and today's global 
financial transaction have led to a crucial demand of professionals who 
can quantify, appraise and predict increasingly complex financial issues. 
Some universities (mostly in the U.S. and Canada) are beginning to offer 
M.Sc. and even Ph.D. programs in financial engineering. Computing 
and trading laboratories are set up to simulate real life situations in the 
financial market. Students learn how to employ mathematical finance 
modeling skills to make pricing, hedging, trading, and portfolio 
management decisions. They are groomed for careers in securities 
trading, risk management, investment banking, etc. 

The present book contains much more materials than the 
previous book. Spectrum analysis is again emphasized for the 
characterization of technical indicators employed by traders and 
investors. New indicators are created. Mathematical analysis is applied 
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to evaluate the trading methodologies practiced by traders to execute a 
trade. In addition, probability theory is employed to appraise the utility 
of money management techniques. The book is organized in fourteen 
chapters. 

Chapter 1 describes why the book is written. This book aims to 
analyze the equipment that professional traders used, and attempt to 
distinguish the tools from the junk. 

Chapter 2 presents the latest development of scientific 
investigation in the financial market. A new field, called Econophysics, 
has cropped up. It involves the application of the principles of Physics to 
the study of financial markets. One of the areas concerns the 
development of a theoretical model to explain some of the properties of 
the stochastic dynamics of stock prices. There exist also growing 
evidences that the market is non-random, as supported by new statistical 
tests. In any case, market crashes have been considered to be non-
random events. What the signatures are before a crash and how a crash 
can be forecasted will be described. 

Chapter 3 analyzes the trending indicators used by traders. The 
trending indicators are actually low pass filters. The amplitude and 
phase response of one of the most popular indicators, the exponential 
moving average, is characterized using spectrum analysis. Other low 
pass filters, the Butterworth and the sine functions are also looked into. 
In addition, an adaptive exponential moving average, whose parameter is 
a function of frequency, is introduced. 

Chapter 4 modified the exponential moving average such that 
new designs would have less phase or time lag than the original one. It 
also pointed out that the "Zero-lag" exponential moving average recently 
designed by a trader does not live up to its claim. 

Chapter 5 describes causal wavelet filters, which are actually 
band-pass filters with a zero phase lag at a certain frequency. The 
Mexican Hat Wavelet is used as an example. Calculation of the 
frequency where the zero phase lag occurs is shown. Furthermore, it is 
demonstrated how a series of causal wavelet filters with different 
frequency ranges can be constructed. This tool will allow the traders to 
monitor the long-term, mid-term and short-term market movements. 



Preface IX 

Chapter 6 introduces a trigonometric approach to find out the 
instantaneous frequency of a time series using four or five data points. 
The wave velocity and acceleration are then deduced. The method is 
then applied to theoretical data as well as real financial data. 

Chapter 7 explains the relationship between the real and 
imaginary part of the frequency response function of a causal system, 
H(co). Given only the phase of a system, a method is implemented to 
deduce H(co). Several examples are given. The phase or time response 
of a system or indicator is important for a trader tracking the market 
movements. The method would allow them to predetermine the phase, 
and work backward to find out what the system is like. 

Chapter 8 depicts several newly created causal high-pass filters. 
The filters are compared to the conventional momentum indicator 
currently popular with traders. Much less phase lags are achieved with 
the new filters. 

Chapter 9 describes in detail the advantages and limitations of a 
new technique called skipped convolution. Skipped convolution, applied 
to any indicator, can alert traders of a trading opportunity earlier. 
However, it also generates more noise. A skipped exponential moving 
average would be used as an example. Furthermore, the relationship 
between skipped convolution and downsampled signal is illustrated. 

Chapter 10 analyzes and dissects some of the popular trading 
tactics employed by traders, in order to differentiate the truths from the 
myths. It explains the meaning behind divergence of momentum (or 
velocity) from price. It unravels the significance of the MACD (Moving 
Average Convergence-Divergence) line and MACD-Histogram, but 
downplays the importance of the MACD-Histogram divergence. 

Before putting up a trade, traders would look at charts of 
different timeframes to track the long-term and short-term movements of 
the market. The advantages and disadvantages of a long-term timeframe 
are pointed out in Chapter 11. This chapter also discusses how a trading 
plan should be put together. The popular Triple Screen Trading System 
is used as one of the examples. 
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The market is assumed to be random in Chapters 12 and 13. 
This modeling is good as a first approximation, and renders the 
application of probability theory to money management techniques 
practiced by traders. Chapter 12 discusses the profitability of the market 
at any moment in time. Chapter 13 derives and computes how traders 
can optimize their gain by moving the stop-loss. 

The final chapter, Chapter 14, discusses the reality of financial 
market trading. It takes years of hard work and training to be a 
successful trader. In addition, the trader needs to update himself of 
current technology and methodology in order to keep ahead of the game. 

Most of the mathematical derivations and several computer 
programs are listed in the Appendices. 

Writing this book takes many hours of my time away from the 
company of my two adorable children, Angela and Anthony; and my 
beautiful wife, Margaret, whom I am very thankful for. 

D. K. Mak 

2005 
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Chapter 1 

Introduction 

Scientific theories quite often go through three stages of development: -
(1) Absurdity - the idea or theory sounds so absurd that one wonders 
why someone would have suggested it, (2) Familiarity - there appears to 
be growing evidence to support the hypothesis, and people begin to 
familiarize themselves with the concept, and (3) Inevitability - the theory 
becomes so obvious in hindsight that people would think why it was not 
recognized earlier and why it has taken so long for the community to 
come to accept it. 

Is the financial market not random? Fifty years ago, the 
academia would think it was ridiculous to say that the market was non-
random. Since then, there have appeared journal papers challenging the 
random walk theory. At the moment, some academics would conclude 
that the market is non-random (see details in Chapter 2). However, the 
debate is still on, and there could be many years before the final verdict 
is in. 

During all these time, the market traders could not care less what 
the academics think. They swear, by their own observation and 
experience, that the market is not random. Some even claim even if it 
were random, with good money management, they can still make a profit 
from the market. They facilitate their own methods to trade. Some do 
consistently make money from the market year after year. They design 
indicators to forecast which way the market is heading. And they devise 
trading systems to enter and exit the market. However, no trader seems 
to care to analyze their indicators and methodologies mathematically, nor 
do they try to characterize them. Their tools range from the very useful 
to complete garbage. 

1 



2 Mathematical Techniques in Financial Market Trading 

This scenario is somewhat similar to alternative medicine thirty 
years ago. Then, alternative medicine was unconventional, unproven, 
and unorthodox, and was ignored by the mainstay medical researchers. 
However, some of the alternate approaches do represent many years of 
experience of the practitioners by trial and error, and can contain some 
truths. They may even depict innovative means to problems 
conventional medicine has no cure. But, then, of course, some of the 
alternative medicine is eccentric and harmful. It was fortunate that 
medical researchers did finally take a serious note at these alternative 
therapies, and apply scientific methods to study them. It would be up to 
them to differentiate the grass from the weeds. 

The tools employed by the market traders have a similar script. 
Some professional traders, by trial and errors, pick certain indicators as 
their arsenals, and make consistent profits from the market, even though 
they do not exactly understand the properties of their accouterments. 
Other traders advertise their indicators, and black box methodologies, 
and claim they can perform miracles. Believers wind up losing their 
shirts in the market. 

It is the purpose of this book to analyze their tools 
mathematically, and display their characteristics. Spectrum analysis is 
emphasized. Some of the ideas have been presented earlier [Mak 2003]. 
We will expand on those ideas. We will point out why some of the 
traders' techniques work, and why some do not. In addition, we will also 
look at how a good trading plan can be put together, and how, according 
to probability theory, some of the money management techniques 
employed by traders do make profitable sense. Furthermore, we will 
invent some new indicators, which have less time or phase lag than the 
ones currently used by traders. These would allow them to pick up 
market signals earlier. We hope that this presentation will be useful to 
the trading community. 



Chapter 2 

Scientific Review of the Financial 
Market 

How the financial market has been modeled in different endeavors has 
been described by Mak [2003]. From all perspectives, it seems as if it 
would be best modeled as a complex phenomenon. A complex system 
contains a number of agents who are intelligent and adaptive. The agents 
make decisions on the basis of certain rules. They can modify old rules 
or create new rules as new information arises. They know at most what a 
few other agents are doing. They then decide what to do next based 
upon this limited information [Waldrop 1992, Casti 1995, Johnson et al 
2003]. Scientists and mathematicians have been trying to draw some 
conclusions from the complex financial system. Some of their recent 
attempts are described below. 

2.1 Econophysics 

Over the past two decades, a growing number of physicists has become 
involved in the analysis of the financial markets and economic systems. 
Using tools developed in statistical mechanics, they were able to 
contribute to the modelling of the dynamics of the economy in a practical 
fashion. A new field, known as econophysics, has thus emerged 
[Mantegna and Stanley 2000]. The field benefits from the large database 
of economic transactions already recorded. Several findings are 
described below. 

2.1.1 Log-Normal Distribution of Stock Market Data 

In 1900, Bachelier wrote that price change in the stock market followed 
a one-dimensional Brownian motion, which has a normal (Gaussian) 

3 
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distribution [Mandelbrot 1983, 1997]. Since the 1950's, the distribution 
of the stock price changes has been considered by several 
mathematicians. The Gaussian distribution was soon replaced by the 
log-normal distribution. Stock prices are performing a geometric 
Brownian motion, and the differences of the logarithms of prices are 
Gausssian distributed. A full review of these investigations can be found 
in Crow and Shimizu [1988]. 

Recently, Antoniou et al [2003] analyzed the statistical relations 
between prices and corresponding traded volumes of a number of stocks 
in the United States and European markets. They found that, for most 
stocks, the statistical distribution of the daily closing prices normalized 
by corresponding traded volumes (price/volume) fits well the log-normal 
function. The statistical distribution is given by: 

f ( x ) = - T ^ e x p - ( 1 / 2 t j 2 ) ( l n x ^ 2 (2.1) 

where x = price/volume, 
A is a normalizing factor, 
O" is the dispersion, 
u, is the mean value. 

For some other stocks, the log-normal function is attained after 
application of a detrending process. 

They have also discovered that the distributions of the 
stocks' traded volumes normalized by their trends fit closely the log-
normal functions. However, market indices have significantly more 
complicated characters, and cannot be approximated by log-normal 
functions. 

Other stock market models have been proposed by other 
researchers. They are particularly employed to explain the observation 
that the tails of distributions in real data are fatter than expected for a 
log-normal distribution. 
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2.1.2 Levy Distribution 

Among the alternative models proposed is the conjecture that price 
change is governed by a Levy stable distribution [Mandelbrot 1983, 
1997]. The distribution is leptokurtic, i.e., it has wings larger than those 
of a normal process. It has described well the price variations of many 
commodity prices, interest rates and stock market prices [Mandelbrot 
1983]. 

In 1995, Mantegna and Stanley showed that the central part of 
the probability distribution of the Standard & Poor 500 index (S & P 
500) can be described by the Levy stable process. Furthermore, when 
the process is rescaled, the transformations fit well time intervals 
spanning three orders of magnitude, from 1,000 min to 1 min. The Levy 
distribution will be described in more detail in Chapter 12. 

2.1.3 Tsallis Entropy 

Time evolving financial markets can be described in terms of 
anomalously diffusing systems, where a mean-square displacement 
scales with time, t, according to a power-law, ta [Michael and Johnson, 
2002]. Anomalously diffusion systems can be treated by employing the 
nonlinear Fokker-Planck equation associated with the Ito-Langevin 
process [Tsallis and Bukman 1996]. The solution of the equation is a 
time-dependent probability distribution which maximize the Tsallis 
entropy. The probability distribution can be written as : 

P(x,t) = [1/Z(t)]{l + p(t)(q-l)[x - x^ t ) ] 2 }- 1 ' ^ (2.2) 

where x is a price change during a time interval t, 
x* is the mean, 
Z ( a normalization constant) and P are Lagrange multipliers, 
q is a Tsallis parameter. 

The 1-min-interval data of the S & P 500 stock market index 
collected from July 2000 to January 2001 has been used as a test case. A 
nonlinear %2 fit of Eq (2.2) for t = 1 minute yields q = 1.64 +/- 0.02, P = 
4.90 +/- 0.11. Z can be calculated to be 1.09 +/- 0.02. The data fits the 
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the probability distribution, P, quite well. P, using the above parameters, 
are plotted in Fig 2.1. 

It can be shown that, in compliance with probability theory : 

jP(x , t )« l (2.3) 

The data were then fitted to different time intervals t, viz, 10 min 
and 60 min with q = 1.64 fixed, and P determined by the fit. These data 
again fit the Tsallis distribution, P, quite well. This shows that P yields a 
solution to the time evolving Fokker-Planck equation, which describes an 
anomalously diffusing system. Anomalus diffusion implies that price 
changes during successive time intervals are not indpendent. This is 
consistent with traders responding to earlier price changes. The diffusion 
of the financial market indicates correlation, and hence a non-trivial time 
dependence. 

S & P 500 
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Fig 2.1 Tsallis distribution, P, of the 1-min-interval data of the S & P 500 index. 
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Symmetrical probability distributions of market price changes 
can imply that the market is random. To a first approximation, it 
probably is. However, looking at the market in more detail, is it really 
random? We will take a look at this issue in the next section. 

2.2 Non-Randomness of the Market 

The academia has been insisting that the market can be described by the 
Random Walk Hypothesis. The randomness is achieved through the 
active participation of many investors and traders. They aggressively 
digest any information that is available, and incorporate those 
information into the market prices, thus eliminating any profit 
opportunities. Therefore, in an informationally efficient market, price 
changes must be unforecastable. The Efficient Market Hypothesis 
actually states that, in an active market that includes many well-informed 
rational investors, securities will be appropriately priced and reflect all 
available information. The Efficient Market Hypothesis is considered as 
a close relative of the Random Walk Hypothesis. 

2.2.1 Random Walk Hypothesis and Efficient Market Hypothesis 

In the last decade or so, some academics are having a second thought 
about the randomness of the market. In the book "A Non-Random Walk 
Down Wall Street", Lo and MacKinlay [1999] has demonstrated 
convincingly that the financial markets are predictable to some degree. 

They first pointed out that the Random Walk Hypothesis and the 
Efficient Markets Hypothesis are not equivalent statements. One does 
not imply the other, and vice versa. In other words, random prices does 
not imply a financial market with rational investors, and non-random 
prices does not imply the opposite. The Efficient Market Hypothesis 
only takes into account the rationality of the investors and information 
available, but not of the risk that some investors are willing to take. If a 
security's expected price change is positive, an investor may choose to 
hold the asset and bear the associated risk. On the contrary, if the 
investor wants to avert risk at a certain time, he may choose to dump his 
security to avoid having unforecastable returns. At any time, there are 
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always investors who have unexpected liquidity needs. They would 
trade and possibly lose money. This does not mean that they do not 
know the information, nor are they irrational. 

Lo and MacKinlay [1999] further employed a variance-ratio test 
(see section 2.2.2) to show that the market was not random. They also 
discovered that they were not the first study to reject the random walk. 
Papers describing the departures from random walk have been published 
since 1960, but were largely ignored by the academic community. They 
then concluded that the apparent inconsistency of their findings and the 
general support of the Random Walk Hypothesis is largely caused by the 
misconception that the Random Walk Hypothesis is equivalent to the 
Efficient Market Hypothesis, and the dedication of the economists to the 
latter. 

2.2.2 Variance-Ratio Test 

Lo and MacKinlay [1999] has proposed a test for the random walk based 
on the comparison of variances at different sampling intervals, as 
variance is considered a more sensitive parameter than a mean when data 
is sampled at finer intervals. The test makes use of the fact that the 
variance of the increments of a random walk is linear with respect to the 
sampling interval. If stock prices are induced by a random walk, then, 
the variance of a monthly sample must be four times as large as that of a 
weekly sample. 

They employed for computation the 1216 weekly observations 
from September 6, 1962 to December 26, 1985 of the equal-weighted 
Center for Research in Security Prices (CRSP) returns index. The 
modified variance ratios of the 2-week, 4-week, 8-week and 16-week 
returns to the 1-week return were calculated. All these ratios are 
statistically different from 1 at the 5% level of significiance. This can be 
compared with the random walk where the modified variance ratio is 1. 
Thus, they concluded that the random walk null hypothesis could be 
rejected. They further pointed out that the modified variance ratio of 
2-week return to 1-week return should be approximately equal to 1 plus 
the first-order autocorrelation coefficient estimator of weekly returns. 
The first-order autocorrelation for weekly returns thus calculated is 
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approximately 30%. Therefore, the random walk null hypothesis can be 
easily rejected even on the basis of autocorrelation alone. Using the 
same variance analysis with daily returns, they also found that the case 
against the random walk was equally compelling. 

They then changed the base observation period to 4 weeks. The 
modified variance ratios of the 8-week, 16-week, 32-week and 64-week 
returns to the 4-week return were calculated. The ratios showed that the 
random walk model could not be rejected. The result is consistent with 
previous studies which have also found weak evidence against the 
random walk when using monthly data. 

All these results are further supported by a modified R/S statistic 
test which will be described in the next section. 

2.2.3 Long-Range Dependence? 

There are many theories that business cycles exist, and economics time 
series can exhibit long-range (monthly and yearly) dependence. To test 
this dependence, Lo and MacKinlay [1999] modified a "range over 
standard deviation" ("R/S") statistic which was first proposed by the 
English hydrologist Harold Edwin Hurst and later refined by Mandelbrot. 
The R/S statistic is the range of partial sums of deviations in a time series 
from its mean, rescaled by its standard deviation. However, it cannot 
distinguish between short-range and long-range dependence. The R/S 
statistic has to be modified so that its statistical behavior is invariant over 
short-term memory, but deviates over long-term memory. The modified 
statistic was then applied to daily and monthly CRSP stock return 
indexes over several sample periods. After correcting for short-range 
dependence, there was no evidence that long-range dependence existed. 
The test showed that there was little dependence in daily stock returns 
beyond one or two months. 

Furthermore, the autocorrelograms of the daily and monthly 
stock return indexes were also plotted, with a maximum lag of 360 for 
daily returns, and 12 for monthly. It was found that for both indexes, 
only the lowest order autocorrelation coefficients were statistically 
significant. 
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Thus, the long-range dependence of stock returns uncovered by 
previous studies may not be the long-term memory in the time series, but 
simply the result of short-range dependence. 

2.2.4 Varying Non-Randomness 

In an update to their original variance ratio test for the weekly US stock 
market indexes, Lo and MacKinlay [1999] found that the more current 
data (1986 - 1996) conformed more closely to the random walk than the 
original 1962 - 1985 data. Upon investigation, they discovered that over 
the past decade, a few investment firms had exercised daily equity 
trading strategies devised to exploit the kind of patterns they revealed in 
1988. This can provide a plausible explanation why recent data is more 
random. This observation also supports the idea that the market is a 
complex system. Traders, being very adaptive, will learn new 
information, and actively modify their rules to their advantages [Mak 
2003]. This, in turn, will affect the market, and narrow any profitable 
opportunities. 

2.3 Financial Market Crash 

While probability distributions, like the Levy distribution, describes the 
central part of the distribution of market price variation quite well, they 
do not match the rare events, like the market crashes. Market crashes are 
outliers. Outliers are extreme values that do not fit the model. If so, 
another model needs to be considered to explain these rare occurrences. 

2.3.1 Log-Periodicity Phenomenological Model 

Sornette [2003] first formed an hypothesis that the time evolution of 
market prices were random walks. Using this hypothesis, he derived a 
result where the distribution of market drops would be exponential. 
Comparing this result with that constructed from indices of various 
countries, he found an apparent discrepancy, especially with respect to 
the large market drops usually known as crashes. It was then concluded 
that crashes could not be completely random. If so, they might be 
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somewhat forcastable as other catastrophes, like earthquakes and 
ruptures of pressure tanks. 

Sornette [2003] drew comparison of crashes to critical 
phenomena and nonlinear interactions in modern physics. He proposed a 
signature before a crash, a "bubble", as a log-periodic correction imposed 
on a power law for an observable exhibiting a singularity at time tc, 
where tc is the time where the crash has the highest probability to occur. 
The oscillatory market index data is fitted to the following mathematical 
expression: 

F, p(t) = A2 + B2(tc -1 ) m [1 + C cos(co log((tc - t)/T))] (2.4) 

The power law, A2 + B2(tc - 1 ) m , represents the advancing price 
in the bull market. The price accelerates and eventually ends in a spike. 
This corresponds to a pattern described as a "half moon" by technical 
analysts [Prechter and Frost 1990]. Sornette noted the presence of 
oscillatory-like deviations in the trend. The oscillation is described by 
the cosine function of the logarithm of (tc - t)/T. A2 , B2, tc, m, C, CO and 
T are all fitting parameters. These parameters, of course, vary for 
different bubbles. 

It should be noted that, unlike some catastrophes like 
earthquakes, bubbles and crashes are events occurred in financial 
markets, which are complex systems. A complex system contains a 
number of agents, who are intellegent and adaptive [Waldrop 1992; Casti 
1995; Mak 2003]. They make decisions and behave according to certain 
rules. They can change the rules as new information arises. Thus, 
phenomena of natural disasters may be quite different from rare events in 
the financial markets. 

Furthermore, critical phenomena and phase transitions in 
thermodynamics and statistical mechanics are interesting and significant 
areas to be studied [Stanley 1971; Huang 1963]. Nevertheless, 
comparing market crashes to these critical events can only be qualitative. 
In the market, rules can be changed. For example, following the market 
crash of October, 1987, the U. S. Securities and Exchange Commission 
installed the so-called circuit breakers to head off one-day stock market 
tumbles in the future. The market will be halted after a one-day decline 
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of 10% in the Dow Jones Industrial Average. This inactive period will 
allow the traders to pause and evaluate their positions. These circuit 
breakers will definitely affect market crashes as well as their precursory 
patterns in the future. 

2.3.2 OmoriLaw 

The relaxation dynamics of a financial market just after a crash can be 
viewed in terms of a complicated system when the system experiences an 
extreme event. The relaxation is described by a power-law distribution, 
which implies that rare events can occur with a finite non-negligible 
probability. It has been shown that the dynamics follow the Omori Law 
[Lillo and Mantegna 2003]. The law describes the nonstationary period 
observed after a big earthquake. It says that, after a main earthquake, the 
number of aftershock earthquakes per unit time measured at time t, n(t), 
decays as a power law. The law is written as 

n(t) = K(t + T)- p (2.5) 

where K and % are two positive constants, and p is the exponent. The 
cumulative number of aftershocks, N(t), observed until time t after the 
earthquake can be obtained by integrating Eq (2.5) between 0 and t. N(t) 
is thus given by 

N(t) = K[(t+T)1-p - T1-p]/(l-p) p * 1 (2.6a) 

= K ln(t/x +1) p = 1 (2.6b) 

When the 1-min logarithm changes of the S & P 500 index, r(t), 
(a quantity essentially equivalent to index return), is investigated after a 
financial crash, it has been found that the number of times lr(t)l exceeds a 
given threshold, behaves like the Omori Law - somewhat similar to n(t). 
While the value of the exponent p for earthquakes ranges between 0.9 
and 1.5, p for the financial market varies in the interval between 0.70 and 
0.99. It has been further noted that the index return cannot be modeled in 
terms of independent identically distributed random process after a 
market crash. This observation would substantiate the claim that the 
market is not a random phenonmenon. 



Chapter 3 

Causal Low Pass Filters 

Trending indicators are used by traders to identify trends. They 
basically smooth the input data [Mak 2003]. They are actually low pass 
filters which filter off the high frequencies, leaving the low frequencies 
behind. 

A filter is said to be causal if the output of the filter depends only 
on present and past inputs, but does not depend on future inputs [Proakis 
and Manolakis 1996, Strang and Nguyen 1997]. For traders, the 
indicators have to be causal as no future data is available. 

3.1 Ideal Causal Trending Indicator 

An ideal causal trending indicator to the traders would look like a brick 
wall filter whose bandwidth ranges from 0 to a cutoff frequency coc. (co, 
in units of radians, is quite often called the circular frequency, and is 
equal to 2itf, where f is the reciprocal of the period, T ). Frequencies 
larger than coc would be eliminated, while frequencies larger than 0 
and less than coc will be kept with amplitude unchanged. In addition, 
for those frequencies kept, the phase would be unchanged, i.e., there 
is no time or phase lag. However, this design is mathematically 
impossible. 

We have to live with something less ideal. One of the causal 
trending indicators favored by traders is the exponential moving average 
[Pring 1991, Elder 1993, 2002, Mak 2003]. This indicator will be 
described in the next section. 

13 
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3.2 Exponential Moving Average 

An exponential moving average (EMA) is a better tool than a simple 
moving average (SMA). A simple moving average takes the average 
of the input data with equal weights [Elder 1993, Mak 2003]. An 
exponential moving average gives greater weight to the latest data and 
thus responds to changes faster. It does not drop old data suddenly the 
way an SMA does. Old data fades away. 

The equation for the output response of an EMA is given by 

y(n) = ax(n) + (l-a)y(n-l) (3.1) 

where a = 2/(M+l) (3.2) 

M is a positive integer chosen by the trader and is often called 
the length of the EMA. Thus, a has to be equal or less than 1. 

Equation (3.1) makes use of an output response that has already 
been processed. Filters that employ previously processed values are 
sometimes called recursive filter. To calculate the frequency response of 
EMA, the z-transform of Eq (3.1) is taken [Broesch 1997, Proakis and 
Manolakis 1996]. 

Y(z) = ocX(z) + (l-a)z"1Y(z) (3.3) 

where z = r exp(i©) is a complex number in the complex plane, r being 
the magnitude of z. Y(z) is the transform of the output and X(z) is the 
transform of the input. 

Defining the transfer function as the output of the filter over the 
input of the filter 

H(z) = Y(z)/X(z) (3.4) 
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we get, for EMA 

H(z)= r (3.5) l-a-coz-1 

The EMA has a single pole in its transfer function. A pole is a zero of 
the denominator polynomial of the transfer function H(z). Restricting z 
in the complex plane to exp(ico) on the unit circle (i.e. r = 1), the 
frequency response function H(co) is given by 

H(co) = (3.6) 
l -( l -a)exp(-ico) 

The magnitude of H(co) is given by [Lyons 1997] 

|H((0)|= — - (3.7) 
[ l - 2 ( l - a ) c o s c o + ( l - a ) 2 ] 1 / 2 

The phase is given by 

- (1 - a) sin co 
(j>(co) = tan l 

1 - (1 - a) cos co 
(3.8) 

The magnitude and phase of H(eo) of EMA are plotted in Fig 3.1(a) and 
(b) respectively for M = 3 and M = 6, from co = 0 to n. 

Traders quite often like to express the phase lag in terms of a lag 
in the number of data points (bars) [Ehlers 2001]. The lag in the number 
of data points can easily be calculated by dividing the phase, (j), by the 
circular frequency, CO. Fig 3.1(b) can be re-plotted in Fig 3.1(c) in terms 
of the lag in the number of bars. It should be noted that for M = 3, the 
phase lag is less than 1 bar. This small lag makes the EMA a rather 
popular tool for traders. 
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Exponential moving average, with M=3 (+) and M=6 (x) 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 3.1(a) Amplitude response of an exponential moving average with M = 3 
(marked as +) and M = 6 (marked as x) is plotted versus circular frequency CO 
from 0 to JI. 

Exponential moving average, with M=3 (+) and M=6 (x) 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 3.1(b) Phase response of an exponential moving average with M = 3 
(marked as +) and M = 6 (marked as x). 
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Exponential moving average, with M=3 (+) and M=B (x) 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 3.1(c) Phase response in terms of the number of bars lag of an exponential 
moving average with M = 3 (marked as +) and M = 6 (marked as x). 

3.3 Butterworth Filters 

One of the most commonly used low pass filters among electrical 
engineers is the Butterworth filter [Hamming 1989, Oppenheim et al 
1999, Hayes 1999, Ehlers 2001]. We will analyze this filter for 
comparison purpose. The system function, H(s) of the Butterworth filter 
can be given by [Hayes 1999]: 

H(s) = 

where 

1 
N N-l 

s +ajs + + aw_iS + a, 

(3.9) 
l N - l J T 4 N 

s=jco/ooc 

©c is the 3-db cutoff circular frequency 
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N is the order of the filter (number of poles in the transfer function) 

a's are coefficients of the polynomial and can be found in Hayes [1999]. 

The amplitude and phase of Eq (3.9) for N = 1, 2, 3, 4 with coc = 1 are 
plotted in Fig 3.2(a) and 3.2(b) respectively. From Fig 3.2(a), it can be 
seen that the amplitude response of the filter decreases monotonically 
with co. As the filter order N increases, the transition band, the region 
between the passband, where signals are passed, and the stopband, 
where signals are filtered off, becomes narrower. From Fig 3.2(b), we 
can see that a single pole Butterworth filter has a much larger phase lag 
than the single pole exponential moving average. As the number of 
poles increase, the phase lag gets larger. Thus, while the Butterworth 
filter is a very useful filter for electrical engineers, it is not so useful 
to traders. 

Butterworth filter, , N = 1 (.), N = 2 (o), N = 3 (+) , N = 4 (*) 

0.5 1 1.5 2 2.5 3 3.5 
Circular Frequency (radians) 

Fig 3.2(a) Amplitude response of the Butterworth filter for N - 1, 2, 3, 4 with 
Cflfc= 1. 
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Butterworth filter, N = 1 (.), N = 2 (o), N = 3 (+) , N = 4 (*) 

Circular Frequency (radians) 

Fig 3.2(b) Phase response of the Butterworth filter for N = 1, 2, 3, 4 with 
G u c = l . 

3.4 Sine Function, n = 2 

Sine functions have been mentioned in Mak [2003]. They can be 
considered as scaling functions, which are the father of wavelets 
[Hubbard 1998]. Scaling functions are actually low-pass filters while 
wavelets are band-pass filters. Wavelets will be considered in more 
detail in Chapter 5. Here we discuss the sine functions, which can be 
regarded as ideal low-pass filters [Strang 1997]. A sine function is 
considered a very good low pass filter as the frequency response looks 
like a step function with a cutoff frequency, 0)c, eliminating signals with 
frequencies above the cutoff. It looks like a brick wall filter. 

The discrete sine function can be written as: 

. 7tk 
sin — 

hn(k) = 5_ where n= 1,2,3 (3.10) 
7tk 
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Eqn (3.10) can be considered as the scaling function for the sine 
wavelets [Mak 2003, P211]. For n = 2, the discrete since function is 
written as 

. Tik 
sin — 

h2(k) = — - ^ - (3.H) 
mc 

The coefficients, h2(k) is the unit impulse response of a low pass 
filter. They are plotted in Fig 3.3 for k = 0,1, ....120. For k larger than 
120, h2(k) is approximately equal to zero, and does not have a large 
impact on the moving average of the data that it is convoluting. The 
coefficients h2(k) are listed in Appendix 1. 

Sine function, n = 2 
0.5' 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

0 20 40 60 80 100 120 
k 

Fig 3.3 The coefficients, h2(k), of the sine function with n = 2. 

The Fourier Transform of h2(k) can provide the frequency 
characteristics of the low pass filter. The amplitude and phase of the 
Fourier Transform are plotted in Fig 3.4(a) and (b) versus circular 
frequency co. Fig 3.4(a) shows that the low pass filter has a cutoff 
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Sine function, n = 2 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 3.4(a) Amplitude response of the sine function with n = 2. 

Sine function, n = 2 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 3.4(b) Phase response of the sine function with n = 2. 
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frequency at n/2. Fig 3.4(b) shows that it has a phase lag of less than 
0.41 radians for circular frequency less than 1.3 radians. This means that 
it has less phase lag than the exponential moving average with M = 3 for 
this frequency range. However, for frequencies close to n/2, the phase 
lag increases drastically. 

3.5 Sine Function, n = 4 

For n = 4, the discrete sine function is written as 

sin — 
h4(k) = — J - (3.12) 

jtk 

The coefficients, li4(k) is the unit impulse response of a low pass 
filter. They are plotted in Fig 3.5 for k = 0,1, ....120. For k larger than 
120, lu(k) is approximately equal to zero, and does not have a large 
impact on the moving average of the data that it is convoluting. The 
coefficients li4(k) are listed in Appendix 1. 

The Fourier Transform of li4(k) can provide the frequency 
characteristics of the low pass filter. The amplitude and phase of the 
Fourier Transform are plotted in Fig 3.6(a) and (b) versus the circular 
frequency co. Fig 3.6(a) shows that the low pass filter has a cut-off 
frequency at n/4. Fig 3.6(b) shows that it has a phase lag of less than 0.4 
radians for circular frequency less than 0.5 radians. This means that it 
has less phase lag than the exponential moving average with M = 3 for 
this frequency range. However, for frequencies close to n/4, the phase 
lag increases drastically. 

Despite some of its shortcomings, the sine functions can be 
useful low-pass filters or trending indicators for traders due to 
their brick wall nature and small phase lag for part of the frequency 
range. They can be particularly useful when the sine wavelet filters 
are used at the same time [Mak 2003]. Their potentiality should be 
exploited. 
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Sine function, n = 4 
0.25 

100 120 

Fig 3.5 The coefficients, h4(k), of the sine function with n = 4. 

Sine function, n = 4 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 3.6(a) Amplitude response of the sine function with n = 4. 
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Sine function, n = 4 

.2 -0.6 
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0.5 1 1.5 2 2.5 3 3.5 
Circular Frequency (radians) 

Fig 3.6(b) Phase response of the sine function with n = 4. 

3.6 Adaptive Exponential Moving Average 

Moving averages that will adapt to the market environment have been 
suggested [Ehlers 2001]. One possibility is to vary the parameter, a, in 
the original exponential moving average. Several illustrations have been 
given by Ehlers [2001]. Here, we create one example where a is a 
function of the circular frequency co. The estimation of co will be 
considered in Chapter 6. 

The equation for the output response of an EMA has been given 
by (Eq (3.1) and (3.2)): 

y(n) = ax(n) + (l-a)y(n-l) (3.13) 

where a = 2/(M+l) (3.14) 
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To make the EMA adaptive, a would be made a variable ranging 
between a maximum c (< 1) when CO is less than or equal to o>o and a 
minimum value when co is equal to n. The maximum and minimum 
values will be chosen by the trader. Thus, a would be dependent upon 
the circular frequency oo, and can be written as follows: 

cc = ̂  (3.15) 
[a/co + b co0<co<7t 

Thus, for large oo, a will be smaller and M would be larger. 
This simply means that noisier data would be smoothed with an 
EMA with a larger M. We will set the maximum value of a to be 
0.5 and the minimum value of a to be 0.05. When co is less than or equal 
to 1 radian, a will be set to 0.5. When co is equal to % radian, a will 
be set to 0.05. Thus, substituting (1, 0.5) and (71, 0.05) into Eqn (3.15) 
will yield: 

f 0.5 co<l 
a = \ (3.16) 

0.66/CO-0.16 l<CO<7t V ' 

The amplitude and phase of the transfer function H(z) for 
a = 0.5 (i.e. M = 3), a = 0.05 (M = 39) and the adaptive a is plotted 
in Fig 3.7(a) and 3.7(b) respectively. It can be noted that the phase 
of the adaptive EMA is always less than 0.7 radians. The number 
of bars lag for different oc's are plotted in Fig 3.7(c) and expanded in 
Fig 3.7(d) for a = 0.5 (i.e. M = 3) and the adaptive a, showing that 
the adaptive EMA has at most 1 bar lag. Thus, this adaptive EMA is 
a much better trending tool than the original EMA. However, it has 
the disadvantage that the circular frequency, 00, has to be estimated 
accurately. 

In the next chapter, we will see how the lag of an EMA can be 
reduced by some other means. 
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Exponential moving average, with M=3 (+), M=39 (x) and M adaptive (.) 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 3.7(a) Amplitude response of the exponential moving average with M = 3 
(plotted as +), M = 39 (plotted as x), and an adaptive M (plotted as . ) . 

Exponential moving average, with M=3 (+). M=39 (x) and M adaptive (.) 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 3.7(b) Phase response of the exponential moving average with M = 3 
(plotted as +), M = 39 (plotted as x), and an adaptive M (plotted as . ) . 
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Exponential moving average, with M=3 (+) , M=39 (x) and M adaptive (.) 
0 | • 1 — i IN l i l iH M H ' M I I ' t t 
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Fig 3.7(c) Number of bars lag of the exponential moving average with M = 3 
(plotted as +), M = 39 (plotted as x), and an adaptive M (plotted as . ) . 

Exponential moving average, with M=3 (+) and M adaptive (.) 
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Circular Frequency (radians) 
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Fig 3.7(d) Number of bars lag of the exponential moving average with M = 3 
(plotted as +) and an adaptive M (plotted as .). 



Chapter 4 

Reduced Lag Filters 

We can see from the last chapter that the popular exponential moving 
average (EMA) has a much less phase lag than some other filters, e.g., 
the Butterworth filter. Thus, it would be encouraging to modify the 
EMA such that it can have a lesser phase lag, at least in the pass-band 
where signals are passed. 

In 1960, Dr. R. E. Kalman applied the concept of optimal 
estimation to terrestrial and space navigation system. The technique has 
proven to be a very useful tool. Some traders have modified his filtering 
technique to tracking the market. Basically, they make use of a 
forecasted price which is a function of the current price and an estimated 
velocity (or slope) of the price. One modification has been created by 
Ehlers [2001], and is called the zero-lag EMA (ZEMA). 

4.1 "Zero-lag" EMA (ZEMA) 

Dr. Ehlers [2001] has simplified the Kalman filter to a single equation. 
The modified EMA, called the Zero-lag EMA (ZEMA) would be 
written as: 

ZEMA = a x (CURRENT PRICE + K V) + (1 - a) x (OLD ZEMA) 

(4.1) 

where 

a = 2/(M + 1) (4.2) 

28 
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K is an adjustable parameter 

V is an estimate of the velocity of market price (see, e.g., below) 

(CURRENT PRICE + K V) is used to estimate what the next price 
would be. 

More specifically, he wrote: 

V = Current Price - Price of 3 bars ago 

K = 0.5 

a = 0.25, which means that M = 7. 

In Fig 4.1 the S & P 500 daily data are plotted together with 
ZEMA (thick line) and EMA with a = 0.25 (thin line). The software 
used for the charting is TradeStation 2000i manufactured by Omega 
Research. The prices within a one-day interval is plotted as a Japanese 
candlestick, which looks like a candle with wicks at both ends. The body 
of each candle represents the absolute difference between the opening 
and closing prices. If the closing price is lower than the opening, 
the body is black. If the closing price is higher, the body is white. The 
tip of the upper wick represents the high within the one-day interval, 
and the bottom of the lower wick represents the low within the 
one-day interval. 

The zero-lag EMA did produce less lag than the original EMA 
with a = 0.25. However, to check whether ZEMA has zero lag, we need 
to take a look at the phase plot of its response function, which is derived 
in Appendix 2. The amplitude and phase of the ZEMA response 
function are plotted in Fig 4.2(a) and (b). From Fig 4.2(a), it can be seen 
that the amplitude of ZEMA is somewhat larger than that of its original 
EMA for almost all frequencies. From Fig 4.2(b), it can be seen that the 
phase lag of ZEMA is much, less than that that of its original EMA for 
a large portion of the frequency range. However, its phase lag can be 
larger for a certain range of frequencies. In general, ZEMA cannot be 
described as zero lag, or even near zero lag. 



30 Mathematical Techniques in Financial Market Trading 

P I H H B B i B I8PXIAST-D»lly 01103/2003 H=911.0B L>903.94 V>1 II7344000 MovAq EnpoiwnflatCCIost.rj) 09430 
-InM 

CfamdwNlTlldeSulion2O00^0inag4Ae»«di<M9 

Fig 4.1 The S & P 500 daily data are plotted together with the zero lag 
exponential moving average (ZEMA) (thick line) and EMA with a = 0.25, i.e., 
M = 7 (thin line). Chart produced with Omega Research TradeStation 2000L 

"Zero Lag" Exponential moving average (x), original ema (+), M=7 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 4.2(a) Amplitude response of the zero-lag exponential moving average 
(ZEMA) (plotted as x). Amplitude response of the exponentail moving average 
(EMA) with M= 7 (plotted as +) is plotted in comparison. 
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"Zero Lag" Exponential moving average (x), original ema (+), M=7 
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Circular Frequency (radians) 
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Fig 4.2(b) Phase response of the zero-lag exponential moving average (ZEMA) 
(plotted as x). Phase response of the exponentail moving average (EMA) with 
M= 7 (plotted as +) is plotted in comparison. 

"Zero Lag" exponential moving average 

Fig 4.2(c) The indicator coefficients, h(k), of the zero-lag exponential moving 
average (ZEMA). 
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ZEMA, just like EMA, can be considered as an infinite impulse 
response filter, i.e., it has an infinite number of nonzero filter (or 
indicator) coefficients, h(k) [Mak, 2003]. However, for all practical 
purpose, it can be translated to a finite impulse response filter (see 
Appendix 2). The indicator coefficients of a finite impulse response can 
give us insight as to how an output signal is transformed from an input 
signal. The indicator coefficients, h(k), of ZEMA is plotted in Fig 4.2(c), 
where k = 0, 1, 2, 3,... It can be seen from the figure that all the 
coefficients are positive and the first three coefficients are much larger 
than the rest, meaning that the first three price data points play a much 
larger role in determining the ZEMA output. 

In the next section, we will attempt to modify Eq (4.1) to see 
whether we can come up with a low pass filter which has much less 
phase lag. 

4.2 Modified EMA (MEMA) 

We modify Eq (4.1) and write 

MEMA = a x (CURRENT PRICE + V) + (1 - a) x (OLD MEMA) (4.3) 

where 

a = 2/(M + 1) (4.4) 

V is an estimate of the velocity 

M will be chosen to be 6. (CURRENT PRICE + V) is used to 
estimate what the next price would be. The cubic velocity indicator 
would be used to estimate V. Cubic velocity indicator has been 
described in Mak [2003] and will also be discussed in Chapter 8. 

4.2.1 Modified EMA (MEMA), with a Skip 1 Cubic Velocity 

The skip 1 cubic velocity mentioned in this section is actually exactly the 
same as the cubic velocity indicator. In the following two sections, we 



Reduced Lag Filters 33 

will be using skip 2 and skip 3 cubic velocity, as velocity is estimated 
using non-consecutive or skipped past price data. The concept of 
skipping came from a new idea, skipped convolution, introduced by 
Mak [2003]. Skipped convolution will be discussed in more detail in 
Chapter 9. 

Eq (4.3) can be written as 

y(n) = a { x(n) + [llx(n)/6 - 3x(n-l) + 3x(n-2)/2 - x(n-3)/3 ] } 

+ (1- a) y(n-l) (4.5) 

where 

y(n) is the output response 

y(n-l) is the output response of one bar ago 

x(n) is the closing price 

x(n-l) is the closing price of one bar ago 

x(n-2) is the closing price of two bars ago 

x(n-3) is the closing price of three bars ago. 

Fig 4.3 shows the S & P500 data plotted with the modified 
EMA (thick line), which is compared with the original EMA 
with M = 6 (thin line). While the modified EMA does have a faster 
response than the original EMA, the response is not smooth. Before we 
attempt to improve on its smoothness, we will first take a look 
at the amplitude and phase of the response function of the modified EMA 
(Fig 4.4 (a) and (b) ). From Fig 4.4(b), we can see that the modified 
EMA has a much less phase lag than that of the original EMA, and that 
makes it rather suitable for trading purpose. However, from Fig 4.4(a), 
we can see that it is not exactly a low pass filter, as it allows high 
frequencies to pass through, which makes its output response rather 
not smooth. 
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Fig 4.3 The S & P 500 daily data are plotted together with the modified 
exponential moving average (MEMA) with a skip 1 cubic velocity (thick line) 
and an EMA with M = 6 (thin line). Chart produced with Omega Research 
TradeStation 2000L 

Modified EMA, with skip 1 velocity (x), original ema (+). M=6 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 4.4(a) Amplitude response of the modified exponential moving average 
(MEMA) with a skip 1 cubic velocity (plotted as x). Amplitude response of the 
exponential moving average with M = 6 is plotted in comparison (plotted as +). 
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Modified EMA, with skip 1 velocity, (x), original ema (+), M=6 
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0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 4.4(b) Phase response of the modified exponential moving average (MEMA) 
with a skip 1 cubic velocity (plotted as x). Phase response of the exponential 
moving average with M = 6 is plotted in comparison (plotted as +). 

ema6mod1 

Fig 4.4(c) The indicator coefficients, h(k), of the modified exponential moving 
average (MEMA) with a skip 1 cubic velocity. 
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For the sake of scientific insight, we will take a look at the 
indicator coefficient if we translate Eq (4.5) into a finite impulse 
response filter (see Appendix 2). Fig 4.4(c) plots the indicator 
coefficients of the modified EMA. It can be noted that the second 
coefficient is negative. This can be compared with the indicator 
coefficients of other low pass filters, (e.g., EMA [Mak 2003, PI 19, 
120]), where all coefficients are positive. 

4.2.2 Modified EMA (MEMA), with a Skip 2 Cubic Velocity 

The output response of the modified EMA, with a skip 1 velocity can be 
smoothed if we increase the skip of the velocity. 

Eq (4.3) can be written as 

y(n) = a { x(n) + V2 [llx(n)/6 - 3x(n-2) + 3x(n-4)/2 - x(n-6)/3 ] } 

+ (1- a) y(n-l) (4.6) 

where 

y(n) is the output response 

y(n-l) is the output response of one bar ago 

x(n) is the closing price 

x(n-2) is the closing price of two bar ago 

x(n-4) is the closing price of four bars ago 

x(n-6) is the closing price of six bars ago. 

Because we use a skip 2 velocity, the factor Vz in Eq (4.6) is necessary 
for yielding the correct velocity estimate. 

Fig 4.5 shows the S & P500 data plotted with the modified EMA using a 
skip 2 velocity (thick line), which is compared with the original EMA 
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with M = 6 (thin line). The modified EMA have a faster response than 
the original EMA. Furthermore, the response is smoother than that of the 
modified EMA with a skip 1 velocity. We will take a look at the 
amplitude and phase of the response function of this modified EMA (Fig 
4.6 (a) and (b)). From Fig 4.6(a), we can see that the modified EMA is a 
low pass filter. From Fig 4.6(b), it can be seen the beginning part of the 
low frequencies being passed through has an approximately zero phase 
lag. However, the latter part of the low frequencies being passed through 
does have a larger phase lag than that of the original EMA. This, in 
general, would make this indicator a reasonable moving average for 
trading purpose. We will take a look at the indicator coefficient if we 
translate Eq (4.6) into a finite impulse response filter (see Appendix 2). 
Fig 4.6(c) plots the indicator coefficients of the modified EMA. It can be 
noted that the third and fourth coefficients are negative. 

Oadodwth TMdeSwkxiam by 0a*» Rateatdi ® 1999 

Fig 4.5 The S & P 500 daily data are plotted together with the modified 
exponential moving average (MEMA) with a skip 2 cubic velocity (thick line) 
and an EMA with M = 6 (thin line). Chart produced with Omega Research 
TradeStation 20001 
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Modified EMA, with skip 2 velocity (x), original ema (+). M=6 
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Fig 4.6(a) Amplitude response of the modified exponential moving average 
(MEMA) with a skip 2 cubic velocity (plotted as x). Amplitude response of the 
exponential moving average with M = 6 is plotted in comparison (plotted as +). 

Modified EMA, with skip 2 velocity, (x), original ema (+), M=B 
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Fig 4.6(b) Phase response of the modified exponential moving average (MEMA) 
with a skip 2 cubic velocity (plotted as x). Phase response of the exponential 
moving average with M = 6 is plotted in comparison (plotted as +). 
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ema6mod2 

Fig 4.6(c) The indicator coefficients, h(k), of the modified exponential moving 
average (MEMA) with a skip 2 cubic velocity. 

4.2.3 Modified EMA (MEMA), with a Skip 3 Cubic Velocity 

The output response of the modified EMA, with a skip 2 velocity can be 
further smoothed if we increase the skip of the velocity even further. 

Eq (4.3) can be written as 

y(n) = a { x(n) + 1/3 • [x(n)/6 - 3x(n-3) + 3x(n-6)/2 - x(n-9)/3 ] } 

+ (1- a) y(n-l) (4.7) 

where 

y(n) is the output response 

y(n-l) is the output response of one bar ago 

x(n) is the closing price 
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x(n-3) is the closing price of three bar ago 

x(n-6) is the closing price of six bars ago 

x(n-9) is the closing price of nine bars ago. 

Because we use a skip 3 velocity, the factor 1/3 in Eq (4.7) is 
necessary for yielding the correct velocity estimate. 

Fig 4.7 shows the S & P500 data plotted with the modified EMA 
using a skip 3 velocity (thick line), which is compared with the original 
EMA with M = 6 (thin line). The modified EMA have a faster response 
than the original EMA. Furthermore, the response is smoother than that 
of the modified EMA with a skip 2 velocity. We will take a look at the 
amplitude and phase of the response function of this modified EMA (Fig 
4.8 (a) and (b)). From Fig 4.8(a), we can see that the modified EMA is a 
low pass filter with a lesser bandwidth than that of the modified EMA 
with a skip 2 velocity. From Fig 4.8(b), it can be seen the beginning part 
of the low frequencies being passed through has an approximately zero 
phase lag. However, the latter part of the low frequencies being passed 
through does have a larger phase lag than that of the original EMA. 
This, in general, would make this indicator a reasonable good moving 
average for trading purpose. From Fig 4.8(a), it can be seen that the 
amplitude has a peak when circular frequency is equal to % (i.e. 180 
degrees). This can increase noise to the output. The indicator coefficient 
can be viewed if we translate Eq (4.7) into a finite impulse response filter 
(see Appendix 2). Fig 4.8(c) plots the indicator coefficients of the 
modified EMA. It can be noted that the fourth, fifth and sixth 
coefficients are negative. 

The exponential moving averges modified with cubic velocity 
do have certain advantages. Phase lag in their low pass bands are 
generally less than those of the original exponential moving average. 
Comparing the amplitude and phase responses of the MEMA with a 
skip 1, 2 and 3 cubic velocity, it appears that the one with a skip 2 
cubic velocity would provide the smoothest low pass filter for trading 

purposes. 
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Fig 4.7 The S & P 500 daily data are plotted together with the modified 
exponential moving average (MEMA) with a skp 3 cubic velocity (thick line) 
and an EMA with M = 6 (thin line). Chart produced with Omega Research 
TradeStation 2000L 

Modified EMA, with skip 3 velocity (x), original ema (+), M=6 
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Fig 4.8(a) Amplitude response of the modified exponential moving average 
(MEMA) with a skip 3 cubic velocity (plotted as x). Amplitude response of the 
exponential moving average with M = 6 is plotted in comparison (plotted as +). 
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Modified EMA, with skip 3 velocity (x), original ema (+), M=6 

0.5 1 1.5 2 2.5 3 3.5 
Circular Frequency (radians) 

Fig 4.8(b) Phase response of the modified exponential moving average (MEMA) 
with a skip 3 cubic velocity (plotted as x). Phase response of the exponential 
moving average with M = 6 is plotted in comparison (plotted as +). 

ema6mod3 

Fig 4.8(c) The indicator coefficients, h(k), of the modified exponential moving 
average (MEMA) with a skip 3 cubic velocity. 
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4.2.4 Computer Program for Modified EMA (MEMA) 

In the EasyLanguage code of Omega Research's TradeStation2000i, the 

program for calculating the modified EMA can be written as follows:-

Description : This Indicator plots Exponential Moving Average 
that has been modified with the cubic velocity indicator which was 
calculated at interval of d, d=l,2,3,4,5,...., d is called the skip. 

Inputs: d(3),Length(6); 
Plotl(XAVERAGE(c + l/d*(l l/6*c-3*c[d]+3/2*c[2*d]-l/3*c[3*d]), Length), 
"plotl"); 

XAVERAGE is a build-in exponential moving average function 
written by TradeStation2000i. The first input parameter of XAVERAGE 
signifies the modified closing price series to be smoothed, while the 
second input parameter indicates the length, M, of the EMA. c 
represents the closing price of the current bar. c[d] represents the closing 
price of d bars ago. c[2*d] represents the closing price of 2*d bars ago, 
and c[3*d] represents the closing price of 3*d bars ago. d is an input 
parameter, and can be changed. It is taken to be 3 by default. The 
closing price, c, is modified by the skipped cubic velocity indicator. 
Length, M, of the Exponential Moving Average is taken to be 6 by 
default. 



Chapter 5 

Causal Wavelet Filters 

Wavelet analysis is a mathematical tool introduced in the nineteen 
eighties. The technique has been discussed in detail in several books, 
e.g., Strang and Nguyen 1997, Rao and Bopardikar 1998, Burrus et al 
1998, Daubechies 1992, Mallat 1999 and Kaiser 1994. It is particularly 
useful for analyzing signals of short duration. A brief summary is given 
in Mak [2003]. It has also been pointed out that wavelets can be an 
advantageous instrument for dissecting market data [Mak 2003]. 

Wavelets are actually bandpass filters and are adaptable to 
investigate market movements of long or short interval. Bandpass 
filters are filters that eliminate low and high frequency signals, retaining 
signals of middle frequencies. In that sense, they eliminate the slow 
trend and the noise of market actions. They can be further divided 
into different bands, thus giving traders the market rhythms in more 
details. 

There are different kinds of wavelets, each one has its own 
father, which is called the scaling function. Scaling function is actually a 
low pass filter, which can yield the trend of the market. It has a cutoff 
frequency, coc . Signals above (0C will be eliminated. However, the 
eliminated signals can be analyzed by wavelets. Thus, together with 
their father, wavelets can tell the trader what the market is up to. 

The cutoff frequency, coc, of the scaling function can be chosen 
arbitrarily. To draw an analogy: imagine an onion with 12 layers. It can 
be divided into a center core of 4 layers and then other outer layers, or it 
can be divided into a center core of 6 layers, and other outer layers, or ... 
The center core is the scaling function, and the outer layers are the 
wavelets. In the terminology of electrical engineering, if there is a brick 

44 
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wall filter ranging in circular frequency from 0 to %, it can be divided 
into a low pass filter ranging in circular frequency from 0 to 7t/8 and then 
other bandpass filters, or it can be divided into a low pass filter ranging 
from 0 to 7i/4 and then other bandpass filters, or ... 

Sine wavelets are one kind of wavelets, and have been described 
in Mak [2003]. Their scaling function is described in Chapter 3 of the 
present book. In this chapter, we will describe another popular wavelets 
called the Mexican Hat wavelets. As will be shown later, the causal 
Mexican Hat wavelet has much fewer filter coefficients than the sine 
wavelets, thus making it a more convenient tool for computational 
purpose. The Mexican Hat scaling function does not have an analytical 
form [Mallat 1999], and would not be investigated here. 

5.1 Mexican Hat Wavelet 

Mexican Hat wavelet can be expressed as 

vK(t) = (l-2t2)exp(-t2) (5.1) 

This wavelet, different from the sine wavelet, has the advantage 
that it has a compact support in time, t, i.e., it spans in time with finite 
duration. It is obtained by taking the second derivative of the negative 
Gaussian function exp(-t2/2). y(t) is plotted in Fig 5.1. The Fourier 
Transform, ^(co), of \|/(t) is given by [Rao 1998 P13, Mallat 1999 P80]. 

F{v|/(t)} = T(co)= Jy(t)e-jaDtdt = —roe - 0 5 / 4 (5.2) 

Amplitude of ¥((0) is plotted in Fig 5.2. It can be seen that the wavelet 
is a band-pass function. A function is a band-pass function if its Fourier 
Transform is confined to a frequency interval (H\ < |co| < co2 , where coi 
> 0 and ©2 is finite. The Fourier Transform of the Mexican Hat wavelet 
peaks at exactly 2 radians. Thus the wavelet provides a filter which 
centers at 2 radians. 
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Mexican Hat Wavelet 

Fig 5.1 Mexican Hat wavelet in the time domain. 

Fourier Transform of Mexican Hat wavelet 

2 3 4 5 
Circular frequency (radians) 

Fig 5.2 Amplitude of the Fourier Transform of the Mexican Hat wavelet plotted 
in circular frequency CO from 0 to 27t.. 
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5.2 Dilated Mexican Hat Wavelet 

The Fourier Transform of a wavelet which is dilated by a factor of 'a' is 
given by [Rao and Bopardikar 1998, Brigham 1974]. 

F{y(t/a)} = lara'(aa>) (5.3) 

where \|/(t) is called the mother wavelet, 
lal is the absolute value of a. 

The center frequency of F{\j/(t/a)} is 1/lal times the center 
frequency of the Fourier Transform of the mother wavelet, F{\)/(t)}. 
When y(t) is the Mexican Hat wavelet, its Fourier Transform centers at a 
frequency of 2 radians. Therefore, the Fourier Transform of its dilated 
waveform centers at 2/lal radians. Thus, the larger the value of lal, the 
smaller the center frequency is. 

The magnitude of the frequency response, i.e., the absolute 
value of the LHS of Eqn (5.3), for different values of a, of the Mexican 
Hat Wavelet, are shown in Fig 5.3. The magnitude of the peaked 
frequencies, when divided by the respective lal, are equal to each other. 

5.3 Causal Mexican Hat Wavelet 

It should be noted that the RHS of Eqn (5.2) is real, i.e., there is no phase 
shift for all frequencies. This is because \j/(t) is integrated in t from -oo to 
+°°. In real time data analysis, since we have only past data and no 
future data, the data would exist only from -°° to 0. Referring to the 
convolution formula, this will translate into integrating \|/(t) in t from 0 to 
+oo [Proakis and Manolakis 1996]. The Fourier Transform, ^(oo) will 
form a causal filter, and will be given by 

¥i(a>) = Jv(t)e~j<Btdt (5.4) 
o 
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Fourier Transform of Mexican Hat wavelet, . a = 1, x a = 2, * a = 4 
61 1 1 1 1 1 1 

2 3 4 5 
Circular frequency (radians) 

Fig 5.3 Amplitude of the Fourier Transform of the Mexican Hat wavelet for 
a - 1 (plotted as .), a = 2 (plotted as x) and a = 4 (plotted as *). 

Substituting (5.1) into (5.4) for the Mexican Hat Wavelet, 
Eqn (5.4) can be expressed as 

^(co) = — coV f f l2 /4 + jfcoeQ,2/4 - {e"t2 sincotdt 
4 V o 

= R + jI (5.5) 

where R and I are the real part and imaginary part of ^1(0)) respectively. 

The phase of ^i(tt)) is given by 

<t>j(co) = tan ! 
Y T A 

VRJ 
(5.6) 
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This would mean that if I = 0, (j)i(co) = 0. Referring to Eqn (5.5), 
this implies the phase of *Pi(co) is zero when 

coe<D2/4=Je-t2sin(Bt dt (5.7) 
o 

Thus, market price signal of that particular frequency GO will 
experience a zero phase shift (i.e., no time delay) after being filtered by 
the Mexican Hat wavelet. As the center frequency of a Fourier Transform 
of a wavelet can be shifted by dilating the wavelet, the circular frequency 
co, which corresponds to zero phase shift, can be varied. 

This would mean that if we are interested in filtering out a 
particular frequency in a signal, we can vary 'a' in Eqn (5.3) such that the 
filter can output that frequency with a zero phase shift. This method has 
been suggested in the application of the sine wavelet filter [Mak 2003]. 

5.4 Discrete Fourier Transform 

We have been dealing with continuous Fourier Transform. As market 
data are discrete data, we need to use discrete Fourier Transform, which 
is given by 

H(co) = Zh(n)e- jn0) (5.8) 
o 

The filter coefficients, h(n), would replace \j/(t) for t = n. When 
\l/(t) is dilated to \|/(t/a) = \|/(t') , the dilated filter coefficients, h a(n) 
would be equal to \|/(t') when t' = n. For example, when a = 2, \|/(t) in 
Fig 5.1 will be stretched horizontally by a factor of 2 to V|/(t'). 
Choosing t' = 0, 1,2,3, 

h 2 = ( l 0.3896 -0.3679 -0.3689 -0.1282 -0.0222 -0.0021 -0.0001 

0.0 0.0 ) (5.9) 

The h 2 's are shown in Fig 5.4 
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Fig 5.4 The filter coefficients h 2 (n) of the discrete Mexican Hat wavelet with 
a = 2, plotted against n. 

From Eqn (5.8), the phase of H(co) is given by 

(|)H(co) = tan_1 

( -Sh(n)sin(nco)^ 

X)h(n)cos(nco) 
V n 

(5.10) 

(])H(IO), for a - 2 (i.e., when h = h 2) is plotted in Fig 5.5 as dots. 
It can be observed that it begins at zero phase at CO = 0, and terminates at 
zero phase at co = n. This is called a minimum-phase system [Proakis 
and Manolakis 1996]. Between co= 0 and co = n, the phase becomes 
zero at a frequency which we will call COQ . The phase of the continuous 
Fourier Transform, <))i(co), given by Eqn (5.6) is also plotted in Fig 5.5 for 
comparison purpose. <))i(co) also has a zero phase at an co close to coo . 
But as it is calculated from a continuous Fourier Transform, it has a 
different value from coo . 

The amplitude of H(co) in Eqn (5.8) for a = 2 for the Mexican 
Hat wavelet is plotted in Fig 5.6 as dots. The amplitude of the 
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Mexican Hat wavelet filter, .discrete, 0 continuous 

1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 5.5 The phase of the discrete Mexican Hat wavelet (plotted as .). The phase of 
the continuous Mexican Hat wavelet is plotted here as comparison (plotted as o). 

Mexican Hat wavelet filter, . discrete, 0 continuous 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 5.6 The amplitude of the discrete Mexican Hat wavelet (plotted as .). The 
amplitude of the continuous Mexican Hat wavelet is plotted here as comparison 
(plotted as o). 
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continuous Fourier Transform ^(aco) is calculated from Eqn (5.5). It is 
then multiplied by lal in accordance with Eqn (5.3), and plotted in Fig 5.6 
for comparison purpose. It has approximately the same shape as the 
amplitude of H(co). However, H(co) has an undesirable amplitude of 0.5 
for a signal whose frequency is co = 0. The factor 0.5 can be obtained by 
substituting the filter coefficients in Eqn (5.9) into Eqn (5.8) with the 
frequency co = 0. This means that the real time discrete Mexican Hat 
wavelet filter, while mostly functioning as a band-pass filter, cannot 
block out some of the low frequencies. This is a disadvantage. 
Nevertheless, it should be noted that the co which corresponds to the 
maximum amplitude of H(co) in Fig 5.6 approximately equals to the co 
which has zero phase in Fig 5.5. This is a very advantageous feature of 
the filter. 

5.5 Calculation of Zero Phase Frequencies 

The phases for a = 1, 2, 4 and 8 calculated using Eqn (5.10) are plotted in 
Fig 5.7. The frequencies, COo's, which correspond to zero phases for 
different a's, can be exactly located by using numerical analysis. They 
are listed in Table 5.1. The co^s, which correspond to the maximum 
amplitude of H(co)'s for different a's can also be found using numerical 
analysis. They are also listed in Table 5.1. 

Table 5.1 

a 

64 
32 
16 
8 
4 
2 

3/2 

2/a 

0.03125 
0.0625 
0.125 
0.25 
0.5 
1 

4/3 

COo (radians) 
(zero phase) 

0.0289 
0.0578 
0.1156 
0.2316 
0.4670 
0.9686 
1.3558 

C0i (radians) 
(maximum 
amplitude) 

0.0345 
0.0689 
0.1371 
0.2712 
0.5311 
1.0198 
1.3233 
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Mexican Hat wavelet filter, . a=1, +a=2, 0 a=4, x a=8 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 5.7 The phase of the discrete Mexican Hat wavelet for a = 1 (plotted as .), a 
= 2 (plotted as +), a = 4 (plotted as o) and a = 8 (plotted as x). 

Had the filter been non-causal and continuous as in Eqn (5.2), 
the zero phase co0's would be exactly equal to 2/a, and the Fourier 
Transform would attain maximum amplitude at that frequency. 
However, because of its causality, it can be seen from Table 5.1 that the 
zero phase con is only approximately equal to 2/a. Furthermore, the zero 
phase coo's are approximately equal to the o>i's where the filter attains 
maximum amplitudes. In spite of these, the Mexican Hat wavelet can 
make a very good band-pass filter. As the zero phase co0 is 
approximately equal to 2/a, this would imply that if we know the 
frequency of a signal, then we can find 'a' of the causal discrete Mexican 
hat wavelet filter which will render a zero phase shift after the signal is 
filtered. In order to determine 'a' more accurately, 2/a is curve fitted to 
the frequency <B0. The fitted 2/a, (2/a) f , is given by Eqn (5.11) 

(2/a)f =1.091co0-0.071co0
2 (5.11) 
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It is is listed in column 3 of Table 5.2. a f can then be calculated as 2 
times the reciprocal of column 3 and is listed in column 4. It can be seen 
that a f is approximately equal to a, which is listed in column 5. 

Table 5.2 

coo(radians) 
(zero 

phase) 
0.0289 
0.0578 
0.1156 
0.2316 
0.4670 
0.9687 
1.3558 

2/a 

0.03125 
0.0625 
0.125 
0.25 
0.5 
1 

1.3333 

(2/a)f = 
1.091Wo-
0.07 lcoo2 

0.031478 
0.062837 

0.1252 
0.2489 
0.494 
0.990 
1.349 

af 

63.54 
31.83 
15.97 
8.035 
4.048 
2.02 
1.483 

a 

64 
32 
16 
8 
4 
2 

1.5 

As the amplitude of the filtered signal is different from that of 
the original signal, we would like to normalize the discrete Fourier 
Transform such that the filtered signal would have the same amplitude as 
the original signal for frequency COQ. The amplitude, IH(cOo)l, which 
corresponds to the CDo with zero phase shift, is listed in column 3 of Table 
5.3. This amplitude is calculated when we arbitrarily assumed that the 
number of filter coefficients could be truncated at 41. Increasing the 
number of filter coefficients would only have slightly changed the 
amplitude. IH((Oo)l are curve fitted to a f , yielding an IH(<Bo)I f : 

IH((Oo)lf =0.488+ 0.646 a f +0.0001 a f
2 (5.12) 

This is listed in column 4 of Table 5.3. They compared reasonably with 
IH((Bo)l listed in column 3. An input signal of unit amplitude of 
frequency (flo will yield an output signal of amplitude IH(fflo)l after 
filtering. To normalize any output signal of frequency COQ, the amplitude 
of the filtered signal will be divided by IH(tt)o)l f , where IH((Oo)l f is 
calculated from Eqn (5.12). 
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Table 5.3 

COo (radians) 
(zero phase) 

0.0289 

0.0578 

0.1156 
0.2316 

0.4670 

0.9687 

1.3558 

af 

63.54 

31.83 

15.97 

8.035 

4.048 

2.02 

1.483 

IH(COo)l 

41.75 
21.12 

10.81 

5.66 

3.08 

1.80 

1.48 

IH(cOo)l t 

41.95 

21.16 

10.83 

5.69 

3.11 

1.79 
1.45 

5.6 Examples of Filtered Signals 

We will now look at the output response of a real time Mexican Hat 
wavelet filter when the input signal has one or more than one 
frequencies. We would assume that we know the frequencies of the 
input signal and would like the signal of one of the frequencies, (OQ,, to be 
filtered out with a zero phase shift (i.e., no time lag). Knowing C0Q , the 
computer program will calculate af from Eqn (5.11) and IH(cOo)l f from 
Eqn (5.12). The filter coefficients, ha(n) = \|/(t/af = n) are calculated and 
used to convolute with the input signal. The number of coefficients 
needed can be set to 4 x round(a f) as the other coefficients are 
approximately zero in value and would hardly affect the computation 
(see Fig. 5.4). The functional value of round(a f) is equal to an integer 
after a f is being rounded off. 

5.6.1 Signal with Frequency nl4 

An input signal of price, p = sin(n7i/4), is plotted as 'o' in Fig 5.8. It was 
then filtered by the Mexican Hat wavelet. The filtered signal is plotted 
as Y in the same figure. The two signals almost overlap each other. 
This implies that the filtered output signal has negligible phase shift from 
the input signal. 
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As described in Mak [2003], the first and second derivatives can 
be used to forecast the direction of the market. The cubic velocity and 
acceleration indicators can simulate the first and second derivative 
respectively [Mak 2003]. We will therefore take a look at the two 
derivatives. The first derivative of p, i.e. (7i/4)cos(n7i/4), is plotted in 
Fig 5.9(a) and compared with the velocity obtained by operating on 
the filtered signal with the cubic velocity indicator. (Cubic velocity 
indicator is described in Chapter 8). The agreement is reasonably 
well. The second derivative of p, i.e., -(7t/4)2sin(n7t/4), is plotted in 
Fig 5.9(b) and compared with the acceleration obtained by operating 
on the filtered signal with the cubic acceleration indicator. (Cubic 
acceleration indicator is described in Chapter 8). The agreement is still 
reasonable. 

1.5 [ 1 1 1 1 r 

1 -

0.5 -

0 -

-0.5 -

-1 -

" '255 260 265 270 275 280 285 290 
0 price, x price after being filtered by Mexican Hat wavelet 

Fig 5.8 An input signal of price, p = sin(n7t/4), is plotted as 'o' . The signal is 
filtered by the Mexican Hat wavelet and the output response is plotted as 'x'. 
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(a) 0 first derivative of price, x vel of price after being filtered by Mexican Hat wavelet 
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(b) 0 second derivative of price, x accel of price after being filtered by Mexican Hat wavelet 

Fig 5.9(a) The first derivative of p, i.e. (jt/4)cos(nJt/4), is plotted as 'o' and 
compared with the velocity (plotted as x) obtained by operating on the Mexican 
Hat wavelet filtered signal with the cubic velocity indicator. 
(b) The second derivative of p, i.e., -(7tf4)2sin(n7i/4), is plotted as V and 
compared with the acceleration (plotted as x) obtained by operating on the 
Mexican Hat wavelet filtered signal with the cubic acceleration indicator. 

5.6.2 Signal with Frequency 71/32 

We will try the filter on an input signal with a lower frequency. An input 
signal of price, p = sin(n7t/32), is plotted as 'o' in Fig 5.10. It was then 
filtered by the Mexican Hat wavelet. The filtered signal is plotted as 'x' 
in the same figure. The two signals almost overlap each other. This 
implies that the filtered output signal has negligible phase shift from the 
input signal. 

The first derivative of p, i.e. (rc/32)cos(n7i/32), is plotted in Fig 
5.11(a) and compared with the velocity obtained by operating on the 
filtered signal with the cubic velocity indicator. The two signals almost 
overlap each other. The second derivative of p, i.e., -(7t/32)2sin(nrc/32), 



58 Mathematical Techniques in Financial Market Trading 

240 2B0 280 300 320 340 360 
0 price, x price after being filtered by Mexican Hat wavelet 

Fig 5.10 An input signal of price, p = sin(n7t/32), is plotted as 'o' . The signal is 
filtered by the Mexican Hat wavelet and the output response is plotted as 'x'. 
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(a) 0 first derivative of price, x vel of price after being filtered by Mexican Hat wavelet 

-0.01 
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(b) 0 second derivative of price, x accel of price after being filtered by Mexican Hat wavelet 

Fig 5.11(a) The first derivative of p, i.e. (;t/32)cos(Mi/32), is plotted as 'o' and 
compared with the velocity (plotted as x) obtained by operating on the Mexican 
Hat wavelet filtered signal with the cubic velocity indicator. 
(b) The second derivative of p, i.e., -(jt/32)2sin(nrc/32), is plotted as 'o' and 
compared with the acceleration (plotted as x) obtained by operating on the 
Mexican Hat wavelet filtered signal with the cubic acceleration indicator. 
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is plotted in Fig 5.11(b) and compared with the acceleration obtained by 
operating on the filtered signal with the cubic acceleration indicator. 
Again, the two signals almost overlap each other. The agreement is much 
better than the higher frequency of 7t/4 because the cubic velocity and cubic 
acceleration indicators have much less phase shifts at lower frequencies. 

5.6.3 Signal with Frequencies 7d4, and 7i/32 

We will try the filter on an input price, p, with a high frequency signal pi 
superimposed on a low frequency signal p2 with larger amplitude. 

p = pi + p2 = sin(mr/4) + 5 sin(nTC/32) (5.13) 

The low frequency component will be eliminated by the 
Mexican Hat wavelet. Fig 5.12(a) plots p! , p2 and the summation of pi 

290 

260 265 270 275 280 285 290 
(b) O p1, x Signal after filtered by Mexican Hat wavelet 

Fig 5.12(a) An input signal of price, p = pi + p2 = sin(n7i/4) + 5 sin(n7t/32), is 
plotted as '+' . The high frequency component, pi , is plotted as 'o' and the low 
frequency component, p2, is plotted as '.'. 
(b) The input signal is filtered by the Mexican Hat wavelet designed to eliminate 
the low frequency component. The output response is plotted as 'x'. The low 
frequency component of the original input signal, pi , is plotted as 'o' for 
comparison. 



60 Mathematical Techniques in Financial Market Trading 

and p2. Fig 5.12(b) shows the signal after being filtered. The frequency 
component pi is plotted as comparison. Some of the low frequency 
component has not been filtered off. This is comprehensible as the real 
time discrete Mexican Hat filter cannot filter off some of the low 
frequencies (see Fig 5.6). 

The first derivative of pi, i.e. (7l/4)cos(n7t/4), is plotted in Fig 
5.13(a) and compared with the velocity obtained by operating on the 
filtered signal with the cubic velocity indicator. The agreement is 
reasonably well. The second derivative of p b i.e., -(7t/4)2sin(n7t/4), is 
plotted in Fig 5.13(b) and compared with the acceleration obtained by 
operating on the filtered signal with the cubic acceleration indicator. The 
agreement is still reasonable. The cubic velocity and acceleration 
indicators are actually high pass filters. They therefore are able to 
eliminate the low frequency component that is not filtered off by the 
Mexican Hat wavelet. 
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(a) O first derivative of p1. x vel of price after being filtered by Mexican Hat wavelet 
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(b) 0 second derivative of p1, x accel of price after being filtered by Mexican Mat wavelet 

Fig 5.13(a) The first derivative of pi , i.e. (7t/4)cos(n;t/4), is plotted as 'o' and 
compared with the velocity (plotted as x) obtained by operating on the Mexican 
Hat wavelet filtered signal with the cubic velocity indicator. 
(b) The second derivative of pi , i.e., -(7t/4)2sin(nJt/4), is plotted as 'o' and 
compared with the acceleration (plotted as x) obtained by operating on the 
Mexican Hat wavelet filtered signal with the cubic acceleration indicator. 
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5.7 High, Middle and Low Mexican Hat Wavelet Filters 

If the frequencies of the signal are not known, we can attempt to use a 
series of Mexican Hat Wavelet filters to filter the signal. One series can 
be chosen to have a = 1.483 (high), 4.048 (middle), 15.97 (low) (see 
Table 5.3). The filter coefficients are then normalized by dividing by 
IH(oio)l f (see Table 5.3) and are listed as follows: 

hhigh(n) = ( 0.6897 0.0397 -0.2951 -0.0828 -0.0065 -0.0002 
0.0000) 

h middie(n) = (0.3215 0.2656 0.1289 -0.0183 -0.1154 -0.1434 
-0.1213 -0.0805 -0.0441 -0.0204 -0.0081 -0.0027 
-0.0008 -0.0002 0.0000) 

h iow(n) = (0.0923 0.0913 0.0880 0.0828 0.0758 0.0673 
0.0575 0.0469 0.0358 0.0245 0.0135 0.0029 
-0.0068 -0.0155 -0.0230 -0.0292 -0.0341 -0.0377 
-0.0399 -0.0411 -0.0411 -0.0403 -0.0387 -0.0365 
-0.0339 -0.0311 -0.0280 -0.0250 -0.0220 -0.0191 
-0.0164 -0.0139 -0.0117 -0.0097 -0.0080 -0.0065 
-0.0053 -0.0042 -0.0033 -0.0026 -0.0020) 

These coefficients are plotted in Fig 5.14. Amplitude of the 
Fourier Transform of these filter coefficients are plotted in Fig 5.15. 
Note that the amplitudes of the peaks are 1, as the filter coefficients are 
normalized. 

5.8 Limitations of Mexican Hat Wavelet Filters 

While the discrete causal Mexican Hat wavelet filters form a series of 
bandpass filters, they do not have very good resolutions. This, of course, 
has always been a problem with designing filters. As we can see from 
Fig 5.15, the amplitudes of their Fourier Transforms overlap each other. 
This would cause a signal of a single frequency to appear as a signal in 
all the filtered signals. 
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Fig 5.14 High (+), Middle (x) and Low (.) Mexican Hat Wavelet coefficients. 

Discrete Mexican hat, + high, x middle, . low 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 5.15 Amplitudes of the Fourier Transform of the High (+), Middle (x) and 
Low (.) Mexican Hat Wavelet coefficients. 
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Fig 5.16 shows an input sine wave with a single low circular 
frequency of 0.116 radians. It was filtered by the series of Wavelet 
filters. The output signal from the low wavelet filter (plotted as .) almost 
coincides with the input signal (plotted as o). However, the output 
signals from the high and middle wavelet filters also produce signals of 
lower amplitude. These signals are simply caused by their frequency 
bands spreading into the low frequency range, as can be observed in Fig 
5.15. 

Fig 5.17 shows an input sine wave with a single circular 
frequency of 0.467 radians. It was filtered by the series of Wavelet 
filters. The output signal from the middle wavelet filter (plotted as x) 
almost coincides with the input signal (plotted as o). However, the 
output signals from the high and low wavelet filters also produce signals 
of lower amplitude. Again, this is consistent with what is being shown in 
Fig 5.15. 
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Fig 5.16 The input signal (plotted as o) has a circular frequency of 0.116 
radians. It was filtered by the High, Middle and Low Wavelet filters. The 
output signal from the Low wavelet filter (plotted as .) almost coincides with the 
input signal (plotted as o). However, the output signals from the High and 
Middle wavelet filters also produce signals of lower amplitude. 
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Fig 5.17 The input signal (plotted as o) has a circular frequency of 0.467 
radians. It was filtered by the High, Middle and Low Wavelet filters. The 
output signal from the Middle wavelet filter (plotted as x) almost coincides with 
the input signal (plotted as o). However, the output signals from the High and 
Low wavelet filters also produce signals of lower amplitude. 

Fig 5.18 shows an input sine wave with a single circular 
frequency of 1.36 radians. It does not look like a pure sine wave 
simply because the sampled points are not dense enough to show a 
pure sine wave. The signal was filtered by the series of Wavelet filters. 
The output signal from the high wavelet filter (plotted as +) almost 
coincides with the input signal (plotted as o). However, the output 
signals from the middle and low wavelet filters also produce signals of 
lower amplitude. Again, this is consistent with what is being shown 
in Fig 5.15. 
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Fig 5.18 The input signal (plotted as o) has a circular frequency of 1.36 radians. 
It was filtered by the High, Middle and Low Wavelet filters. The output signal 
from the high wavelet filter (plotted as +) almost coincides with the input signal 
(plotted as o). However, the output signals from the Middle and Low wavelet 
filters also produce signals of lower amplitude. 

Compared to the sine wavelet filters [Mak 2003], the Mexican 
Hat wavelet filters use a much smaller number of coefficients, h(n), to 
convolute with the input signal. However, the sine wavelet filters have 
much sharper frequency bandwidths than the Mexican Hat wavelet 
filters. Other wavelet filters can be used. Their amplitude and phase 
characteristics should be inspected to exploit their properties. 



Chapter 6 

Instantaneous Frequency 

Traders quite often would like to know how fast the market is moving, 
and adjust their exponential moving average to adapt to the moving 
trend. One way to know how fast the market is changing is to estimate 
the frequency, CO, or cycle period, T ( = 27i/co ), of the market price. 
Knowing CO, one can vary the exponential moving average for smoothing 
the market movement. An example of this type of adaptive exponential 
moving average has been shown in Chapter 3. 

In addition, some traders believe that the market comes in cycles. 
Thus, they would like to ride the wave up when the market ascends by 
going long, and ride the wave down when the market descends by selling 
short. Thus, there is immense interest to find out what cycle periods are 
in the market data [Berstein 1991, Pring 1991, Ehlers 1992, 2001]. 

Furthermore, as discussed in the last chapter, knowing CO, one 
can pick a Mexican Hat wavelet filter, or maybe other wavelet filters, or 
other bandpass filters (see Chapter 10), such that the output signal has a 
zero phase or time lag. Thus, finding co would definitely be of great 
advantage to traders. 

To find cycles or frequencies in market data, the mathematical 
tool, Fourier Analysis can be used. Unfortunately, Fourier Analysis 
work well only with long, regular signals,, and not well with signals of 
short duration [Mak 2003], Thus, other methods have been suggested. 
One approach is to take an approximation, and assume that there is only 
one dominant cycle in the data A cycle would have a certain rate of 
phase change. Hilbert Transform is then used to generate the InPhase 
and Quadrature components, from which the phase at each bar is 
measured. ( A bar is one data point on the chart. For example, one bar 

66 
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in the daily chart represents one day). The rate of phase change is 
determined as the differential phase from bar to bar. Three different 
methods have been developed, and one of the methods, the Homodyne 
Discriminator is considered to be the most accurate [Ehlers 2001]. 
However, the Homodyne Discrimator produces a cycle period 
measurement with a lag of 20.5 bars. For a daily chart, the trader would 
only know the cycle period of 20.5 days back. As market can move 
rather quickly, this long lag can cause the information to be outdated. 
We will attempt to model the market data rather differently, so that 
the cycle period or frequency measurement has only a lag of 3 or 
3.5 bars. 

6.1 Calculation of Frequency (4 data points) 

We will model market price data as a single sine wave superimposed on 
a constant level. The equation can be written as 

x = A sin (cot + <|>) + D (6.1) 

where x is the market price, 
A is the amplitude of the sine wave, 
oo is the circular frequency of the sine wave, 
<)) is the phase when time t = 0, 
D is a constant. 

Eqn (6.1) has four unknowns, A, oo, (J) and D. Their solutions 
would require at least four data points (x, t). Details of the solution are 
given in Appendix 3. Specifically, the circular frequency, co, is given by 

oo 2 sin x 
( x _ x ^ 2 

X n * •_•! 

x - 2 J 
(6.2) 

where x0 is the closing price of the current bar, i.e., at t = 0 
x _i is the closing price of one bar ago, i.e., at t = -1 
x _2 is the closing price of two bars ago, i.e., at t = -2 
x .3 is the closing price of three bars ago, i.e., at t = -3 
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The period, T, of the sine wave can be given as 2n/(i>. Eqn (6.2) 
implies that CO or T can be calculated instantly, and the time delay is only 
2 bars, which is half the number of data points. 

6.2 Wave Velocity 

The wave velocity, v, which is defined as the slope or derivative of the 
price, x, is given by differentiating Eqn (6.1) 

v = A © cos(cot + (j)) (6.3) 

At t = 0, the current wave velocity, v0, can be written as 

v0 = A CO cos((j)) (6.4) 

6.3 Wave Acceleration 

The wave acceleration, a, which is defined as the slope of the slope 
or second derivative of the price, x, is given by differentiating 
Eqn (6.3) 

a = -A co2 sin(cot + <|>) (6.5) 

At t = 0, the current wave acceleration, ao, can be written as 

ao = -A co2 sin(<j)) (6.6) 

6.4 Examples using 4 Data Points 

Fig. 6.1(a) shows price data (marked as +) simulated as a sine wave 
plotted versus t, with A = 0.25, co = %IA = 0.7854, <|> = rc/3 and D = 0.6. 
For each instant of t, t is chosen to be 0 for the current data point in the 
calculation using the model of Eqn (6.1). This current data point, 
together with three previous data points are employed to solve for A, co, 
(|> and D. The estimated parameters are then used to calculate a current 
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price value (marked as o in Fig 6.1(a)) using Eqn (6.1) with t = 0. The 
first three points are not calculated, as it required four points to calculate 
the frequency. It can be seen that the calculated values agree very well 
with the original price data. The circular frequency, u), calculated at each 
point is shown in Fig 6.1(b), where a line representing the input 
frequency is also plotted. The calculated frequencies agree with the 
original frequency exactly. Fig 6.2(a) plots the velocity (marked as +) as 
derived from the original price data using Eqn (6.3), as well as the wave 
velocity (marked as o) calculated from Eqn (6.4) using the solved 
parameters. Fig 6.2(b) plots the acceleration (marked as +) as derived 
from the original price data using Eqn (6.5), as well as the wave 
acceleration (marked as o) calculated from Eqn (6.6) using the solved 
parameters. Both the calculated wave velocity and acceleration values 
agree with the theoretically derived data quite well. It should be noted 
that the calculated values has no phase shift or time lag. This makes 
modeling the price data with a sine wave more accurate than modeling 
with a polynomial function. 

1 | 1 , , , , 1 1 , 1 

' 0 5 10 15 20 25 30 35 40 45 

(a) p + , pfit o 
1 1 1 1 1 T 1 1 

? 0.7854 -
CD 

(b) 

Fig 6.1(a) Input price data (marked as + and joined by a line) simulated as a 
sine wave plotted versus time, t. The calculated price data points (marked as o) 
are also plotted. They agree exactly with the input price data. 
(b) Calculated frequencies (marked as x) are plotted. They agree exactly with 
the input frequency (drawn as a line). 
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' 0 5 10 15 20 25 30 35 40 45 
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(b) paccel + , paccelfil o 

Fig 6.2(a) Wave velocity (marked as o), calculated using the solved parameters, 
are plotted. The velocity (marked as + and joined by a line), as derived from the 
original input price data, is also plotted for comparison. 
(b) Wave acceleration (marked as o) calculated using the solved parameters, are 
plotted. The acceleration (marked as + and joined by a line) as derived from the 
original input price data, is also plotted for comparison. 

6.5 Alternate Calculation of Frequency (5 data points) 

Calculating the frequency using 4 data points can have a problem some 
of the time. The factor inside the square root sign in Eqn (6.2) can 
happen to be negative, or the argument of arsine can happen to lie 
outside the range of -1 to 1, implying that the data cannot be modeled as 
a sine wave imposed on a constant level. Furthermore, x_i - x.2 in Eqn 
(6.2) can equal to zero, or approximately equal to zero, causing co to be 
undefined or yielding a large error. In these cases, co cannot or should 
not be calculated from Eqn (6.2). When this happens, five data points 
could be used instead of four. As a matter of fact, four data points are 
still actually used, as x.2 is not employed in the calculation. The circular 
frequency, CO, would be given by: 
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_ 2 V x - i ~ x - 3 y _ 

where x^ is the closing price of four bars ago. 

Eqn (6.7) implies that CO or T can be calculated instantly, and the 
time delay is only 2.5 bars, which is half the number of data points. In 
Eqn (6.7), the argument of arccosine can lie outside the range of -1 to 1, 
implying that the data cannot be modeled as a sine wave imposed on a 
constant level. In these cases, to cannot be calculated from Eqn (6.7). 
Furthermore, x.i - x.3 can equal to zero or approximately equal to zero, 
causing co to be undefined or yielding a large error. We can calculate the 
errors of co from both Eqn (6.2) and (6.7) (see Appendix 3). The co 
which yields the lesser error would be chosen. 

6.6 Example with a Frequency Chirp 

The method with 4 or 5 data points is tested on a sine wave with a 
frequency chirp, which can be written as 

x = A sin ())] + D = A sin[ C0o (1+ct) t + <\>] + D (6.8) 

where (J>i is the phase 
COo is a fixed circular frequency 
c is a constant. 

As the circular frequency CO equals to the derivative of (j>i with 
respect to t, co is given by 

co = d<t>i/dt = cOo(l+2ct) (6.9) 

A signal with A = 0.25, COo = 7t/4, c = 0.1, <j> = 0 and D = 0.3 is 
plotted as + in Fig 6.3(a). The frequency co is calculated from Eqn (6.2) 
and (6.7). The co with the lesser error is chosen (see Appendix 3). The 
parameters A, § and D are then calculated and substituted in Eqn (6.1) to 
find x, which is plotted in Fig 6.3(a) as 'o'. It can be seen that the 
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calculated values agree with the data (marked as '+' and joined by a line) 
quite well. The calculated co (in 'x' and joined by a line) is plotted in Fig 
6.3(b) and is compared with the theoretical co (plotted as a straight line) 
calculated from the raw data using Eqn (6.9). It can be seen that the 
calculated co has a lag of about 2 to 2Vi data points (bars). This is, of 
course, caused by our using four or five data points to calculate co. Other 
than that, the calculated co's agree reasonably well with the theoretical 
ones. 
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Fig 6.3(a) The calculated price, x, is plotted as 'o'. The calculated values agree 
with the original data (marked as '+' and joined by a line) quite well. 
(b) The calculated co (in x and joined by a line) is plotted and is compared with 
the theoretical co (plotted as a straight line) calculated from the raw data using 
Eqn (6.9). 

Fig 6.4(a) plots the velocity (marked as +) as derived from taking 
the slope (first derivative) of the original price data from Eqn (6.8), as 
well as the wave velocity (marked as o) calculated from Eqn (6.4) using 
the solved parameters. Fig 6.4(b) plots the acceleration (marked as +) as 
derived from taking the slope of the slope (second derivative) of the 

5 10 15 20 25 30 35 40 45 
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Fig 6.4(a) The wave velocity (marked as o) calculated from Eqn (6.4) using the 
solved parameters, is plotted together with the velocity (marked as + and joined 
by a line) as derived from taking the slope (first derivative) of the original price 
data from Eqn (6.8). 
(b) The wave acceleration (marked as o) calculated from Eqn (6.6) using the 
solved parameters, is plotted together with the acceleration (marked as + and 
joined by a line) as derived from taking the slope of the slope (second 
derivative) of the original price data from Eqn (6.8). 

original price data from Eqn (6.8), as well as the wave acceleration 
(marked as o) calculated from Eqn (6.6) using the solved parameters. 
Both the calculated wave velocity and acceleration values agree with the 
theoretically derived data quite well. It should be noted that the 
calculated values has practically little phase shift, which makes modeling 
the price data with a sine wave more accurate than modeling with a 
polynomial function. 

6.7 Example with Real Financial Data 

We will now attempt to model real financial data piecemeal with 
Eqn (6.1) and see how well the method works. The top plot in Fig 6.5 
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shows the daily S&P500 data in Japanese Candlesticks smoothed with an 
adaptive moving average (ama) with a smoothness factor of 32 (shown 
as a line). The adaptive moving average constucted by Jurik research is 
employed here. The bottom (i.e., the fourth) plot shows the circular 
frequency, CO, calculated from four or five smoothed data points. Some 
of the frequencies are not calculated because the smoothed financial data 
points cannot be modeled as a sine wave superimposed on a constant 
level. The period, T, in days, can be calculated from T = 2TC/CO. The 
second plot shows the velocity (shown in dots) calculated from CO and 
other parameters using Eqn (6.4). They agree very well with the velocity 
(shown as a line) calculated using the cubic velocity indicator. The third 
plot shows the acceleration (shown in dots) calculated from co and other 
parameters using Eqn (6.6). They agree reasonably with the acceleration 
(shown as a line) calculated using the cubic acceleration indicator. 
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Fig 6.5 The top plot shows the daily S&P500 data in Japanese Candlesticks 
smoothed with an adaptive moving average (ama) with a smoothness factor 
of 32 (shown as a line). The bottom (i.e., the fourth) plot shows the circular 
frequency, co, calculated from four or five smoothed data points. The second plot 
shows the velocity (shown in dots) calculated from CO and other parameters using 
Eqn (6.4). They agree very well with the velocity (shown as a line) calculated 
using the cubic velocity indicator. The third plot shows the acceleration 
(shown in dots) calculated from CO and other parameters using Eqn (6.6). Chart 
produced with Omega Research TradeStation 2000L 
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The top plot in Fig 6.6 shows the same daily S&P500 data in 
Japanese Candlesticks but smoothed with an adaptive moving average 
(ama) with a smoothness factor of 3 (shown as a line). The bottom plot 
shows the circular frequency, CO, calculated from four or five smoothed 
data points. Again, some of the frequencies are not calculated because 
the smoothed financial data points cannot be modeled as a sine wave 
superimposed on a constant level. The period, T, in days, can be 
calculated from T = 2ft/co. The second plot shows the velocity (shown in 
dots) calculated from co and other parameters using Eqn (6.4). They 
agree reasonably well with the velocity (shown as a line) calculated 
using the cubic velocity indicator. The third plot shows the acceleration 

Cisated with TiedeStation 200Q by Omega H e w « h • 1999 

Fig 6.6 The top plot shows the daily S&P500 data in Japanese Candlesticks 
smoothed with an adaptive moving average (ama) with a smoothness factor 
of 3 (shown as a line). The bottom (i.e., the fourth) plot shows the circular 
frequency, CO, calculated from four or five smoothed data points. The second 
plot shows the velocity (shown in dots) calculated from co and other parameters 
using Eqn (6.4). They agree reasonably well with the velocity (shown as a line) 
calculated using the cubic velocity indicator. The third plot shows the 
acceleration (shown in dots) calculated from CO and other parameters using Eqn 
(6.6). Chart produced with Omega Research TradeStation 2000L 
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(shown in dots) calculated from co and other parameters using Eqn (6.6). 
They agree reasonably with the acceleration (shown as a line) calculated 
using the cubic acceleration indicator. The acceleration agreements are 
not as good as the velocity agreements in both Fig 6.5 and 6.6. This is 
simply because modeling piecewise financial data by a sine wave is not 
perfect, causing error in calculating the circular frequency co. This error 
propagates to calculating the velocity, which is the slope of the financial 
data. The error compounds even more when acceleration, the slope of 
the slope of the financial data, is calculated. It can be commented that 
when the sine wave velocity agrees with the cubic velocity, and the sine 
wave acceleration agrees with the cubic acceleration, the circular 
frequency co calculated is more reliable. The adaptive moving average of 
smoothness 3 (ama3) is very similar to the exponential moving average 
with length 6 (ema6), and thus has approximately a time lag of one data 
point (bar) (see Fig 3.1(c)). The circular frequency co calculated employs 
4 or 5 data points, and thus has a time lag of 2 or 2Vz data points (bars). 
As co is calculated on the smoothed line using ama3, the total time lag 
is 3 or 3V2 data points (bars). The time lag is thus much smaller than 
the lag of 20.5 data points (bars) in a recently proposed method of 
calculating frequency or period [Ehlers 2001]. However, because of 
different modeling techniques, the frequency calculated here may not be 
the same as those calculated at Ehlers [2001]. 

Computer programs, written in the EasyLanguage code of 
Omega Research's TradeStaion2000i, for calculating the frequency, 
wave velocity and wave acceleration are listed in Appendices A3.5 
and A3.6. 

6.8 Example with Real Financial Data (more stringent 
condition) 

A more stringent condition would be if either the 4 or 5 data points 
cannot fit the sine wave model, the error of omega would be arbitrarily 
set to 20. The circular frequency, co is then given an arbitrary negative 
number, so that it would not be plotted within the range specified (Fig 
6.7 and 6.8). Fig 6.7 is essentially the same plot as Fig 6.5, except that 
the more stringent condition is applied. Again, Fig 6.8 is essentially the 
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same plot as Fig 6.6, except that the more stringent condition is applied. 
It should be noted that Fig 6.7 and 6.8 have less frequencies plotted 
than in Fig 6.5 and 6.6. As well, many of the points where there 
are discrepancies between wave acceleration indicators and the cubic 
acceleration indicators in Fig 6.5 and 6.6 are eliminated in Fig 6.7 
and 6.8. 

TiadeSlairan 2DW by Oneg» Rot«*eti•1993 

Fig 6.7 The top plot shows the daily S&P500 data in Japanese Candlesticks 
smoothed with an adaptive moving average (ama) with a smoothness factor 
of 32 (shown as a line). The bottom (i.e., the fourth) plot shows the circular 
frequency, CO, calculated from four or five smoothed data points. The more 
stringent condition is applied to choose co The second plot shows the velocity 
(shown in dots) calculated from co and other parameters using Eqn (6.4). They 
agree very well with the velocity (shown as a line) calculated using the cubic 
velocity indicator. The third plot shows the acceleration (shown in dots) 
calculated from CO and other parameters using Eqn (6.6). Chart produced with 
Omega Research TradeStation 2000L 
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Cieated with TiadeSWwi 2000 by Onwg* RetMich • 1 9 9 9 

Fig 6.8 The top plot shows the daily S&P500 data in Japanese Candlesticks 
smoothed with an adaptive moving average (ama) with a smoothness factor 
of 3 (shown as a line). The bottom (i.e., the fourth) plot shows the circular 
frequency, co, calculated from four or five smoothed data points. The more 
stringent condition is applied to choose co. The second plot shows the velocity 
(shown in dots) calculated from CO and other parameters using Eqn (6.4). 
They agree quite well with the velocity (shown as a line) calculated using the 
cubic velocity indicator. The third plot shows the acceleration (shown in dots) 
calculated from CO and other parameters using Eqn (6.6). Chart produced with 
Omega Research TradeStation 20001 



Chapter 7 

Phase 

Traders depend on indicators to tell them where the market is heading. 
For example, trends can be identified by trending indicators, which are 
actually causal low pass filters with phase or time lag. As traders would 
like to know changing market movement as early as possible, reducing 
phase lag would be of particular interest. One approach to reduce the 
phase lag has been discussed in Chapter 4. Another approach is to ask 
whether it is possible to predetermine the phase with respect to the 
frequency range, and work backward to find out what the indicator 
should be? We will develop a method in this chapter to solve this 
problem - for limited cases. 

In signal processing, a system is an operator or a mapping that 
transform an input signal into an output signal by means of a fixed set of 
operations [Mak 2003]. A system is causal if the output of the system at 
any time depends only on present and past inputs, but not on future 
inputs. A system which is not causal is noncausal. A noncausal system 
has an output which depends on present and past inputs, as well as on 
future inputs. Thus, in real-time signal processing, as future values of 
the signal cannot be observed, a noncausal system is physically 
unrealizable. 

In trading the financial market, as no future value is available, 
only causal system can be implemented. Causality implies a strong 
relationship between HR(co) and H^co), the real and imaginary 
components of the frequency response H(co) of a system. This 
relationship is discussed in the next section. 

79 
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7.1 Relation between the Real and Imaginary Parts of the 
Fourier Transform of a Causal System 

The relationship between the real and imaginary components of the 
Fourier Transform of a causal system is given by [Proakis and 
Manolaskis 1996] : 

1 % co-A. 
HjCco) = - — j H R ( X ) c o t — - (& (7.1) 

27t_JC 2 

Thus, Hi(©) is uniquely determined from HR(C£>) through Eqn 
(7.1). The integral in Eqn (7.1) is called a discrete Hilbert Transform. 
As an example, we can take a look at the two point moving average, 
whose coefficients are given by (Vi, Vi). The Fourier transform of the two 
point moving average is given by [Strang 1997, Mak 2003]: 

H(co) = »/2 + Vi exp(-ico) = cos2(co/2) - i Vi sin(co) (7.2) 

Substituting the real part of H(co) into Eqn (7.1), we have 

Hr(co) = — - J c o s 2 - c o t - ^ ^ d X (7.3) 
1 27t 1% 2 2 

Writing X' = (co - X)/2 , Eqn (7.3) can be written as 

! (0)-7t)/2 f CO \ 
Hj(co) = - \ cos2 ^-X' cotX'dX' (7.4) 

7 1 (OH-7C)/2 

After simplifying, and using the fact that 

(oo-Jt)/2 

J cotA/dX' = 0 (7.5) 
(QH-JC)/2 
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we get 

EM©) = - Vi sin(oo) (7.6) 

which is the imaginary part of Eqn (7.2) 

7.2 Calculation of the Frequency Response Function, H(co) 

Eqn (7.1) implies that, for a causal system, if the phase <))(co) is 
given, it may be possible to calculate H(oo). The phase (j)(co) is 
given by 

tan <j)(co) = HiCco) /HR(GO) (7.7) 

Substituting Eqn (7.7) into Eqn (7.1) yields 

1 n GO-A, 
HR(co)tan(j)(co) = jHR(A)cot dX (7.8) 

27t _rt 2 

In computer calculation, the integral in Eq(7.8) needs to be 
changed to a discrete summation with 

-it = XQ, X\, X2, , Xn= 7t 

If <J)(GO) is known or given, setting GO to be one of the A;'s 
will yield n+1 equations, with n+1 unknowns HR(Aj). However, it 
would mean that in each equation, one of the cotangent term would 
become infinity when CO equals the X; that it is set equal to. Thus, we 
need to set each of the GO, GOj , to be slightly away from the Xi's , 
and then make the approximation on the LHS of Eqn (7.8) that HR(C0i) ~ 
HR(A,J) SO that the equations can be solved. In order to yield an accurate 
calculation of the integral, GOj has to be set equal to X\ + 5A 12, where 
OA = A,; - X j . 1 . 
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From Eqn (7.8), the n+1 equations can be written as follows: 

roto = - (r0coo + ric01 + r2c02 + + r„c0„) §X/(2n) 

tiU = - (r0c10 + riCn + r2cn + + rnci„) 8A/(27C) 

r2t2 = - (r0c2o + ric2i + r2c22 + + r„c2n) 8X7(271) 

rntn - " (roCnO + r l cnl + TiCn2 + .. + r„cnn) 8X/(2TC) (7.9) 

where r; = HR(Xj) ~ HR(C0;) 

tj = tan (j) (CO;) 

Cjj = cot[((Oi - A.j) /2] 

One of the HR(Xj) can be set arbitrarily. Since the magnitude of 
H(co) is usually equal to 1, and we would most likely prefer <|> (to = 0) = 
0, we can set rm = H R ^ = 0 ) = 1, where m = n/2 +1. The n+1 
equations in (7.9) can be written as 

-rmCom = (2ra-0to /SA, + r0coo) + ric0i + r2c02 + + rnc0„ 

-rmcim = r0Cio + (27rr1t1 /8k + riCiO + ^ c ^ + + rncln 

-rmc2m =r0c20+ ric2i+ (27Cr2t2/8X + r2c22)+ +rnc2n 

-rmcnm = r0c„0 + r^ni + r!Cn2 + + (27trntn /8A. + rncnn) (7.10) 

The LHS of Eqn (7.10) can be set as constants as described 
above. That leaves n unknowns, r;'s , i * m, in n+1 equations. For this 
over-determined case of having more equations than unknowns, a least 
square solutions of the unknowns can be found [Hanselman and 
Littlefield 1997]. 
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After r; = HR are found, Hi can be determined from Eqn (7.1). 
The filter H is then completely determined. 

7.2.1 Example — The Two Point Moving Average 

We will use the two point moving average as an example. We know that 
the phase of its H(oo), §((o), is given by [Mak 2003]: 

<b(co) = -co/2 (7.11) 

Knowing only this phase, we will reconstruct H(co) using the 
above method. The real part of H(co) is shown in Fig 7.1. The calculated 
values are compared with the theoretical values which are given by the 
real part of the RHS of Eqn (7.2). The slight discrepancy is caused by 
the approximation as described above. 

Two point moving average , realH x, realHreverse . 
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Fig 7.1 The real part of the Fourier Transform of the two point moving average 
are calculated using the method described in this chapter. The calculated values 
(plotted as .) are compared with the theoretical values (plotted as x and joined by 
a line) which are given by the real part of the RHS of Eqn (7.2). 
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Two point moving average . imagH x, imagHreverse . 
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Fig 7.2 The imaginary part of the Fourier Transform of the two point moving 
average are calculated using the method described in this chapter. The calculated 
values (plotted as .) are compared with the theoretical values (plotted as x and 
joined by a line) which are given by the imaginary part of the RHS of Eqn (7.2). 

Two point moving average , realH x, realHreverseavg . 
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Fig 7.3 The real part of the Fourier Transform of the two point moving average 
are calculated using the improved method. The calculated values (plotted as .) 
are compared with the theoretical values (plotted as x and joined by a line) 
which are given by the real part of the RHS of Eqn (7.2). The agreement is 
much better than that in Fig 7.1. 
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The imaginary part of H(u)) is shown in Fig 7.2 . The calculated 
values are compared with the theoretical values which are given by the 
imaginary part of the RHS of Eqn (7.2). Again, the slight discrepancy is 
caused by the approximation as described above. 

The discrepancy can be decreased by calculating the integral in 
Eqn (7.8) by setting CD; to be equal to A, - 5A. 12, where 8A, = A,, - A-n . The 
HR(coi) calculated will be averaged with the HR(COJ) calculated earlier 
when C0i was set equal to A,j + 8A, 12 . 

The average HR(C0J) are plotted in Fig 7.3 and compared with 
the theoretical values which are given by the real part of Eqn (7.2). The 
agreement is much better than that in Fig 7.1. The average Hi(o)i) are 
plotted in Fig 7.4 and compared with the theoretical values which are 
given by the imaginary part of Eqn (7.2). The agreement is much better 
than that in Fig 7.2. The average HR(CQJ) and the average Hi((Oj) can be 
used to calculate the average magnitude of H(C0j) and compared with the 
theoretical values calculated in Eqn (7.2). These are plotted in Fig 7.5. 
The phase calculated from the average HR(C0i) and the average H ĉOj) 
is plotted in Fig 7.6, and compared with the theoretical phase in 
Eqn (7.11). The agreement is good except for the two end points. The 
discrepancy is caused by the very small disagreement between the 
calculated average of the real and imaginary parts with the corresponding 
theoretical values. 

The unit impulse response of a system, h(k) is related to H(co) by 
the Discrete Time Fourier Transform [Oppenheim et al 1999]. 

h(k) = — j!;
7lH(co)exp(icok)dco (7.12) 

From Eqn (7.12) and using the average HR(ffli) and the average Hi(cOj), 
h(k) can be calculated. They are plotted in Fig 7.7, with h(0) = 0.5000, 
h(l) = 0.4993, and h(k) ~ 0 for k > 1. This result agrees very well with 
the theoretical values, h(0) = h(l) = Vi in Eqn (7.2). 



86 Mathematical Techniques in Financial Market Trading 

Two point moving average , imagH x, imagHreverseavg . 

- 2 - 1 0 1 2 
Circular Frequency (radians) 

Fig 7.4 The imaginary part of the Fourier Transform of the two point moving 
average are calculated using the improved method. The calculated values 
(plotted as .) are compared with the theoretical values (plotted as x and joined by 
a line) which are given by the imaginary part of the RHS of Eqn (7.2). The 
agreement is much better than that in Fig 7.2. 
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Fig 7.5 The magnitude of the Fourier Transform of the two point moving 
average are calculated using the improved method. The calculated values 
(plotted as .) are compared with the theoretical magnitude (plotted as x and 
joined by a line) which can be calculated from the RHS of Eqn (7.2). 
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Two point moving average, phase x , phasereverseavg 
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Fig 7.6 The phase of the Fourier Transform of the two point moving average are 
calculated using the improved method. The calculated values (plotted as .) are 
compared with the theoretical phase (plotted as x and joined by a line) given by 
Eqn (7.11). The agreement is good except for the two end points. The discrepancy 
is caused by the very small disagreement between the calculated averages of the 
real and imaginary parts with the corresponding theoretical values. 

Two point moving average, hcalc x 

Fig 7.7 The unit impulse response of the two point moving average are 
calculated using the improved method. The calculated values (plotted as x and 
joined by a line) agree very well with the theoretical values, which are given as 
h(0) = h(l) = Yi in Eqn (7.2). 
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7.3 Computer Program for Calculating H(co) and h(n) of a 
Causal System 

The computer program for calculating H(co) and h(n), given only the 
phase, (|)(co), has been written in MATLAB programming language, and 
is listed below: 

% phasegivenproglbook, 
% Given only the phase of the Fourier Transform (FT) 
of the two point moving average, H, calculate the 
real and imaginary part of H 
% use both angleO and anglel to calculate the 
integral; take average to calculate h 
clear 
mend=40; % mend = n in book 
m=(0:1:mend); 
nend=mend - 1; % used for h later 
n= (0 :1 mend) ; 
dang = 2*pi/mend;% interval for integration 
ang=-pi + dang*m % ang ranges from -pi to pi 
angleO=ang + dang/2;% shifted from ang to avoid 
infinity in cotangent 
anglel=ang - dang/2;% shifted from ang to avoid 
infinity in cotangent 
% Set up the theoretical values for the Fourier 
Transform of the two point moving average 
% These theoretical values are used for comparing 
with the calculated values later. They are not used 
for calculations. 
for L=l:mend+1 

H(L)= 0.5 + 0.5*exp(-i*ang(L));% FT of two point 
moving average 

amp(L)=abs(H(L) ) ; 
phase(L)= -ang(L)/2;% This is also equal to 

angle(H(L)) 
realH(L)=real(H(L) ) ; 

imagH(L)=imag(H(L)); 
end 
% End of set up 
figure(1)% Plot theoretical value of phase of two 
point moving average for illustration purpose 
plot(ang,phase,'k.-') 
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title( ' Two point moving average ') 
xlabel('Circular Frequency (radians)'); 
ylabel('Phase (radians)' ) 
% Calculation starts here 
rm =1; % set an arbitrary value to the element of 
real H when omega = 0, usually 1 
for 1= l:mend +1 

for J=l:mend +1 
r(I,J) = 1; 

end 
end 
for I=l:mend + 1 

r(I,mend/2+1)= rm; %set realH(omega=0) to be 
rm, usually 1 
end 
for I=l:mend+1 

factor =2;% factor can be changed to other number, 
e.g., 3,to calculate another moving average H 

phasegiven(I)= -angle0(I)/factor; 
phasegivenl(I)= -anglel(I)/factor; 
for J=l:mend+1 

if(I==J) 
C(I,J) = 

r(I,J)*((2*pi/dang)*tan(phasegiven(I))+ cot( 
(angleO(I) - ang(J))/2));% r(I,J) does not have to be 
included, this is just a convenient way to set a 
value to real H(omega = 0) 

C1(I,J)= 
r(I,J)*((2*pi/dang)*tan(phasegivenl(I))+ cot( 
(anglel(I) - ang(J))/2)) ; 

else 
C(I,J)= r(I,J)*cot( (angleO(I) -

ang(J))/2);% r(I,J) does not have to be included, 
this is just a convenient way to set a value to real 
H(omega = 0) 

CI(I,J)= r(I,J)*cot( (anglel(I) -
ang(J))/2); 

end 
end 

end 
% Set up matrix equation 
for I=l:mend+1 

bb(I)= -C(I,mend/2+1); 
bbl(I)= -CI(I,mend/2+1); 
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e n d 
BB = bb';% BB is the transpose of matrix bb 
BBl = bbl1; % BBl is the transpose of matrix bbl 

for I=l:mend+1 
for J=l:mend/2 

AA(I,J)=C(I, J); 
AA1(I,J)=C1(I, J); 

end 
end 
for I=l:mend+1 

for J=mend/2+l:mend 
AA(I,J)=C(I, J+l); 
AA1(I,J)=C1(I, J+l); 

end 
end 
realHminusl = AA\BB;% MATLAB P77 
realHminusll = AA1\BB1;%Solution of matrix equation 
found 
realHreverse(mend/2+1)= rm; 
realHreversel(mend/2+1)= rm; 
for I=l:mend/2 

realHreverse(I)=realHminusl(I); 
realHreversel(I)=realHminusll(I) ; 

end 
for I=mend/2+2:mend+l 

realHreverse(I)=realHminusl(1-1); 
realHreversel(I)=realHminusll(1-1); 

end 
for I=l:mend+1 

realHreverseavg(I) = (realHreverse(I) + 
realHreversel(I))12; 
end 
for M=l:mend+1 
for L=l:mend+1 

yH(L) = realHreverseavg(L)*cot ((angleO(M) -
ang(L))/2);% Proakis and Manolakis 1996, P618 

yHl(L) = realHreverseavg(L)*cot ((anglel(M) -
ang(L))/2); 
end 
imagHreverse(M)= -(1/(2*pi))*trapz(ang, yH); 
imagHreversel(M)= -(1/(2*pi))*trapz(ang, yHl); 
end 
for I=l:mend+1 
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imagHreverseavg(I)= (imagHreverse(I) + 
imagHreversel(I))12; 

ampreverseavg(I)= sqrt(realHreverseavg(I)A2+ 
imagHreverseavg(I)A2); 

phasereverseavg(I) = 
atan(imagHreverseavg(I)/realHreverseavg(I)); 
end 
figure(2) 
plot(ang, realH,'bx-',ang,realHreverseavg, 'r.') 
title('Two point moving average , realH x, 
realHreverseavg . ') 
xlabel('Circular Frequency (radians)'); ylabel('real 
H' ) 
figure(3) 
plot(ang,imagH,'bx-',ang,imagHreverseavg, 'r.') 
title('Two point moving average , imagH x, 
imagHreverseavg . ') 
xlabel('Circular Frequency (radians)'); 
ylabel('imaginary H' ) 
figure(4) 
plot(ang,amp, 'kx-', ang, ampreverseavg,'r.') 
title( ' Two point moving average, amp x, 
ampreverseavg . ') 
xlabel('Circular Frequency (radians)'); 
ylabel('Amplitude' ) 
figure(5) 
plot(ang,phase, 'kx-', ang, phasereverseavg, 'r.') 
title( ' Two point moving average, phase x , 
phasereverseavg .') 
xlabel('Circular Frequency (radians)'); 
ylabel('phase') 
% Calculate h 
for k=l:nend+l 

for L=l:mend+1 
integrand(L)= 

(realHreverseavg(L)+i*imagHreverseavg(L))* 
exp(i*ang(L)*(k-l)); 

end 
hcalc(k)=(1/(2*pi))*trapz(ang, integrand);% Mak 

2003, P146 
end 
figure(6) 
plot(n, hcalc, 'kx-') 
title (' Two point moving average, hcalc x ') 
xlabel(' n ' ) ; ylabel('h') 
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7.3.1 Example, ftco) = -a/3 

In the above program, if we change the phase given, we will get a 
different H(co) and h(n). For example, if the phase is given as : 

(j)(co) = -cu/3 (7.13) 

the magnitude of H(a>) calculated would be different from that of 
the two point moving average. Fig 7.8 plots the magnitude of H(oo) 
and compared that with the magnitude of the two point moving average. 
Fig 7.9 plots the h(n) calculated. 

o 
-4 

amp of two point moving average x, ampreverseavg of new H . 

- 2 - 1 0 1 
Circular Frequency (radians) 

Fig 7.8 Given the phase, <)>(a>) = -co/3 , the magnitude of the Fourier Transform, 
|H(0))| , is calculated using the improved method, and plotted as ' . ' . The 
magnitude of the Fourier Transform of the two point moving average is plotted 
for comparison (plotted as x and joined by a line). 
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hcalc x 

Fig 7.9 Given the phase, (j)(a>) = -coG , the unit impulse response, h(n) are 
calculated using the improved method. The calculated values are plotted as x 
and joined by a line. 

7.3.2 Example, $co) = Asin(co) 

In the computer program, the phase can be changed to another form. For 
example, it can be changed to: 

<b(co) = Asin(a>) (7.14) 

where A is the amplitude of the sine wave. For A = -0.8, the magnitude 
of H(co) calculated is shown in Fig 7.10. The phase calculated is shown 
in Fig 7.11, and compared with the phase given in Eqn (7.14). The unit 
impulse response, h(n), calculated is shown in Fig 7.12. The form of the 
phase shown in Eqn (7.14) is somewhat similar to that of the exponential 
moving average (see Fig 3.1(b) ). The magnitude of H(co), and the unit 
impulse response, h(n), calculated are thus comparable to those of the 
exponential moving average. 
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Causal filter, ampreverseavg x 
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Fig 7.10 Given the phase, (|)(co) = Asin(co) , the magnitude of the Fourier 
Transform, |H(co)| , is calculated using the improved method. It is plotted as x 
and joined by a line. 

Causal filter, phase x , phasereverseavg 

- 2 - 1 0 1 2 
Circular Frequency (radians) 

Fig 7.11 Given the phase, <j>(o)) = Asin(co) , the phase of the Fourier Transform 
is calculated using the improved method. The calculated values (plotted as .) are 
compared with the theoretical phase (plotted as x and joined by a line) given by 
Eqn(7.14). 
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Fig 7.12 Given the phase, ())(co) = Asin(co) , the unit impulse response, h(n) are 
calculated using the improved method. The calculated values are plotted as x 
and joined by a line. 

The mathematical technique described above can handle only 
some simple forms of phase spectrum as input. For other arbitrary phase 
spectrum inputs, other more robust mathematical techniques need to be 
developed. 

7.4 Derivation of HR(CD) in Terms of Hi(co) for a Causal System 

For completeness purpose, the relationship between HR(co) in terms of 
Hi(co) is derived below: 

The impulse response h(n) can be decomposed into an even and an odd 
sequence [Proakis and Manolaskis 1996]: 

h(n) = h,(n) + h0(n) 

where he(n) = 1/2 [h(n) + h(-n)] 

h0(n) = 1/2 [h(n) - h(-n)] 

(7.15) 

(7.16) 

(7.17) 
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If h(n) is causal, it is possible to recover h(n) from its odd component 
h0(n) for 1 < n < o<= . Since h0(n) = 0 for n = 0, h(0) cannot be recovered 
from h0(n). We need to know h(0). It can be shown that 

h(n) = 2 ho(n) u(n) + h(0) 6(n) n > 0 (7.18) 

The Fourier transform for (7.18) is 

H(co) = HR(co)+jH,(co) 

= ±]Hl(k)U(<o-'k)dk + h(0) (7.19) 

where U(co) is the Fourier transform of the unit step sequence u(n). 
Although u(n) is not absolutely summable, it has a Fourier transform 
[Proakis and Manolaskis 1996] 

U(co) = 7c5(a>) + ]/2 - Yi j cot(ca/2) - % < co < % (7.20) 

By substituting (7.20) into (7.19) and carrying out the integration, we 
obtain the relation between Hi(co) and HR(co) as 

1 K co-A. 
HR(e>) = — { H ^ ^ c o t - ^ - ^ d ^ + h(0) (7.21) 



Chapter 8 

Causal High Pass Filters 

Traders quite often are interested in how fast the market is moving. 
Knowing the instantaneous frequency is one method to monitor the pace 
of the market. However, as discussed in Chapter 6, frequency can be 
difficult to be estimated accurately sometimes. An alternative method is 
to measure the slope or the first derivative (in Calculus) of the price data. 

When the slope is positive, the market is heading up. When it 
increases, the market is heading up faster. When the slope is negative, 
the market is declining. When it decreases, the market is declining 
faster. When the slope is zero, it implies that the market is turning. 
Thus, the slope is an interesting parameter to be observed. 

The market sometimes can turn down and then take a second 
wind to charge forward and go back up. It has been pointed out in Mak 
[2003] that the slope of the slope or the second derivative (in Calculus) 
of the price data may indicate whether the market is running out of gas. 
When the second derivative of a curve is positive, the curve is concaving 
up. When the second derivative of a curve is negative, the curve is 
concaving down [Protter and Morrey 1966]. Thus, if both the first and 
second derivatives are positive, the market is heading up. If the first 
derivative is positive but the second derivative is negative, it can imply 
the the market is running out of steam. Similarly, if both the first and 
second derivatives are negative, the market is heading down. If the first 
derivative is negative but the second derivative is positive, it can imply 
that the market would soon head back up. The first and second 
derivatives of the market price data can be named as the velocity and 
acceleration of the price. They are actually causal high pass filters. 

97 
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Causal high pass filters affiliated with polynomials of degree 2 
and 3 have been created in Mak [2003]. They are useful for monitoring 
the slope (or velocity) and slope of the slope (or acceleration) of the price 
data in trading. Here, we will first describe ideal filters for the slope and 
the slope of the slope. Then we will describe how causal velocity and 
acceleration filters can be created to simulate them. It will be pointed out 
that an old indicator popular with traders, momentum, is a linear 
(polynomial of degree one) velocity indicator. Velocity and acceleration 
indicators with polynomials of degree equal to and higher than 3 will be 
constructed. The phase response of the combination of these high pass 
filters with low pass filters will be detailed. 

8.1 Ideal Filters 

8.1.1 The Slope 

A general signal can be written as 

x(t) = exp(icot) (8.1) 

Taking the derivative of Eq (8.1), and changing the continuous 
time t to the integer n, we get an output y(n) given by 

y(n) = icoexp(icon) = icox(n) (8.2) 

The frequency response of an ideal digital differentiator, H(co), 
can be thus written as [Strang 1997, Mak 2003]: 

H(co) = y(n)/x(n) = ico = ooexp(i7i/2) (8.3) 

The amplitude of the response is linearly proportional to the 
circular frequency co, with a gradient equals to 1. H(co) is thus a high 
pass filter. From Eq (8.3), it can be seen that the output signal has a 
phase lead of nil with respect to the input signal. Here, H(oo) is a non-
causal filter and cannot be applied to real trading, where future data is 
not available. Causal velocity filters simulating this filter will be 
considered below. It should be noted that for a causal filter, the phase 
and amplitude are inter-related to each other, as discussed in Chapter 7. 
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8.1.2 The Slope of the Slope 

Taking the second derivative of Eq (8.1), and changing the continuous 
time t to the integer n, we get an output y(n) given by 

y(n) = -co2exp(icon) = -co2x(n) (8.4) 

The frequency response of an ideal digital second differentiator, 
H(co), can be thus written as : 

H(a>) = -co2 = co2exp(irc) = co2exp(-irc) (8.5) 

The amplitude of the response is proportional to the square of the 
circular frequency co. H(co) is thus a high pass filter. From Eq (8.5), it 
can be seen that the output signal has a phase lead (or phase lag) of % 
with respect to the input signal. Again, H(co) here is a non-causal filter 
and cannot be applied to trading, where future data is not available. 
Causal acceleration filters simulating this filter will be considered below. 

8.2 Momentum 

8.2.1 The Filter 

Momentum is an old and commonly used indicator employed in trading. 
It measures how fast the price changes [Elder 1993]. It has a different 
meaning from the term in Physics, where it is defined as mass times 
velocity. Momentum, in trading terminology, should be compared to the 
velocity term in Physics. It can be considered as a causal high pass filter 
affiliated with a polynomial of degree 1. The unit impulse response of a 
momentum indicator is defined as (1, 0, ...., 0, 1). The output response, 
y, after the input price data, x, is filtered by the momentum indicator is 

y(n) = x ( n ) - x ( n - ( N - l ) ) N > 2 (8.6) 

where x(n) is the closing price or the smoothed closing price of the 
nth bar 
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x( n - (N - 1)) is the closing price or the smoothed closing price 
of (N-l) bar back from the nth bar 

Thus, the momentum indicator can be considered as an N-
point moving difference. The frequency response function of the 
momentum indicator H(co), can be written as 

H(eo) = l-exp[-i(N-l)©] 

= 2sin[(N-l)oV2]exp{i[7t/2-(N-l)co/2]} (8.7) 

Eq (8.7) means that the momentum indicator has a phase lag of 
(N-l)co/2 or an (N-l)/2 bars lag from an ideal phase lag of 7t/2 shown in 
Eq (8.3). 

For N = 2, the output response of the 2-bar momentum indicator 
is given by 

y(n) = x(n)-x(n-l) (8.8) 

From Eq (8.7), the 2-bar momentum indicator (or the 2-point 
moving difference) has a phase lag of ffl/2 or a half bar lag from an ideal 
phase lag of n/2. Its amplitude and phase response have been plotted in 
Mak [2003]. The phase will lag even more if the raw price data is first 
smoothed with a moving average before the momentum indicator is 
applied, as we will see in the next section. 

8.2.2 Filtering Smoothed Data 

To avoid the jumpiness of the momentum of price data, price data are 
quite often smoothed by a moving average (e.g., an exponential moving 
average) before a momentum indicator is applied [Elder 1993, Pring 
1991]. Some traders apply the momentum first and then the moving 
average after. It is believed that the order of applying these two 
indicators would make a difference [Elder 1993]. It does not. This is 
because convolution is commutative [Hayes 1999], i.e., 

h,(n)*h2(n) = h2(n)*h1(n) (8.9) 
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where hi(n) and h2(n) are the unit impulse response of the two 
indicators. Eq (8.9) would apply providing that the indicator is not 
adaptive, as the unit sample response of an adaptive indicator (e.g., 
adaptive moving average) changes from data point to data point. 

It would be useful to take a look at the Fourier Transform of the 
convolution of the unit impulse responses of two indicators [Brigham 
1974]: 

F{h,*h2}=F{h1}F{h2} 

= ri exp(ie,)r2 exp(i02) = n r2exp[i(e! + 92) ] (8.10) 

where F is the Fourier Transform 

ri and r2 are the magnitudes of the complex numbers, F{hi}and 
F{h2} respectively, 

8j and 92 are the phases of the complex numbers, Ffhjjand F{h2} 
respectively, 

Thus, the magnitude and phase of F{h!*h2} is ri r2 and 0! + 92 

respectively. 

We will take a look at an example. An exponential moving 
average of length 3 or 6 can be applied first to smooth the price data. 
The momentum indicator is then applied to the smoothed data. Fig 
8.1(a) plots the amplitude responses of the momentum indicator, the 
combination of the momentum indicator with the exponential moving 
average of length 3, and the combination of the momentum indicator 
with the exponential moving average of length 6. The amplitude of the 
momentum is much decreased by the exponential moving average. 
However, this is not so critical as amplitude does not play a significant 
role in timing a trade. 

Fig 8.1(b) plots the phase responses of the momentum indicator, 
the combination of the momentum indicator with the exponential moving 
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average of length 3, and the combination of the momentum indicator 
with the exponential moving average of length 6. The lag in phase of the 
momentum indicator from the ideal phase of the slope is further 
increased by the exponential moving averages, rendering the 
combination not a good simulation of the slope. This is the reason why 
traders do not use the momentum as a slope. They use it as overbought 
and oversold indicators [Pring 1991, Mak 2003], which are somewhat 
arbitrary. 

In order to improve on the phase lag, velocity indicator affiliated 
with cubic polynomial has been developed [Mak 2003]. This is further 
discussed in the next section. 

Momentum + , momentum and ema3 . , momentum and ema6 o 

0 0.5 1 1.5 2 2.5 3 3.5 
Circular Frequency (radians) 

Fig 8.1(a) The amplitude responses of the momentum indicator (plotted as +), 
the combination of the momentum indicator with the exponential moving 
average of length 3 (plotted as .), and the combination of the momentum 
indicator with the exponential moving average of length 6 (plotted as o) are 
plotted versus GO, the circular frequency. 
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Momentum + , momentum and ema3 . , momentum and ema6 o 

Circular Frequency (radians) 

Fig 8.1(b) The phase responses of the momentum indicator (plotted as +), the 
combination of the momentum indicator with the exponential moving average of 
length 3 (plotted as .), and the combination of the momentum indicator with the 
exponential moving average of length 6 (plotted as o) are plotted versus CO, the 
circular frequency. At CO = 0, the phase lead is 7i/2. At CO > 0, the phase lags 
behind 7t/2. 

8.3 Cubic Indicators 

8.3.1 The Filters 

The cubic velocity and acceleration indicators have been described 
in Mak [2003]. Basically, four adjacent market price data points are 
fitted to a cubic function. The slope and the slope of the slope of the 
cubic function at the most recent data point are then calculated using 
Calculus. They would represent the velocity and acceleration of the 
market price. 
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8.3.1.1 Cubic Velocity Indicator 

The cubic velocity indicator is defined as (11/6, -3, 3/2, -1/3). The 
output response, y, after the input price data, x, is filtered by the cubic 
velocity indicator is 

y(n) = — x ( n ) - 3 x ( n - l ) + - x ( n - 2 ) - - x ( n - 3 ) (8.11) 

6 2 3 

Therefore, the current velocity is given by 

y ( 0 ) = ^ x ( 0 ) - 3 x ( - l ) + | x ( - 2 ) - i x ( - 3 ) (8.12) 

6 2 3 
where x(0) is the closing price or the smoothed closing price of the 
current bar 

x(-l) is the closing price or the smoothed closing price of one bar 
ago 

x(-2) is the closing price or the smoothed closing price of two 
bars ago 

x(-3) is the closing price or the smoothed closing price of three 
bars ago 

8.3.1.2 Cubic Acceleration Indicator 

The cubic accelerator indicator is defined as (2, -5, 4, -1). The output 
response, y, after the input price data, x, is filtered by the cubic 
accelerator indicator is 

y(n) = 2x(n) - 5x(n -1) + 4x(n - 2) - x(n - 3) (8.13) 

Therefore, the current acceleration is given by 

y(0) = 2x(0) - 5x(-l) + 4x(-2) - x(-3) (8.14) 
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8.3.2 Filtering Smoothed Data 

As discussed above, price data are quite often smoothed first to eliminate 
the high frequencies before other indicators are applied on them. We 
will employ the exponential moving averages of length 3 and 6 to 
smooth the price data below. 

8.3.2.1 Cubic Velocity Indicator 

The amplitude and phase of the Discrete Time Fourier Transform 
(DTFT) of the cubic velocity indicator are plotted in Fig 8.2(a) and (b) 
respectively. Up to a circular frequency, CO, which is approximately 1.5 
radians, it can be seen that the amplitude is directly proportional to CO, 
with a gradient equals to 1 (Fig 8.2(a)), and the phase is approximately 

Cubic velocity + , cubic velocity and ema3 . , cubic velocity and emaB o 

Circular Frequency (radians) 

Fig 8.2(a) The amplitude responses of the cubic velocity indicator (plotted as 
+), the combination of the cubic velocity indicator with the exponential moving 
average of length 3 (plotted as .), and the combination of the cubic velocity 
indicator with the exponential moving average of length 6 (plotted as o) are 
plotted versus CO, the circular frequency. 
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Cubic velocity + , cubic velocity and ema3 . , cubic velocity and ema6 o 

0 0.5 1 1.5 2 2.5 3 3.5 
Circular Frequency (radians) 

Fig 8.2(b) The phase responses of the cubic velocity indicator (plotted as +), the 
combination of the cubic velocity indicator with the exponential moving average 
of length 3 (plotted as .), and the combination of the cubic velocity indicator 
with the exponential moving average of length 6 (plotted as o) are plotted versus 
CO, the circular frequency. 

7t/2 (Fig 8.2(b)). This makes it a very good candidate to simulate the 
slope (cf Eqn (8.3)). The amplitude responses of the combination of the 
velocity indicator with the exponential moving average of length 3, and 
the combination of the velocity indicator with the exponential moving 
average of length 6 are also plotted in Fig 8.2(a). Furthermore, the phase 
responses of the combination of the velocity indicator with the 
exponential moving average of length 3, and the combination of the 
velocity indicator with the exponential moving average of length 6 are 
also plotted in Fig 8.2(b). Fig 8.2(b) shows that when the indicator is 
applied to the smoothed data, the combined phase lag makes it much less 
than the ideal phase lead of 7i/2. However, it should be noted that when 
the cubic velocity indicator is applied to data smoothed by some adaptive 
moving average, the combined phase lag is close to the ideal phase lead 
of Tt/2 (at least for part of the frequency range), thus making the cubic 
velocity indicator a good indicator to be employed. 
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8.3.2.2 Cubic Acceleration Indicator 

The amplitude and phase of the Discrete Time Fourier Transform 
(DTFT) of the cubic acceleration indicator are plotted in Fig 8.3(a) and 
(b) respectively. Up to a circular frequency, co, of approximately 0.5 
radians, it can be seen that the phase is approximately K (Fig 8.3(b)). 
Thus, the use of the indicator as the slope of a slope is rather limited 
(cf Eqn (8.4)). The amplitude responses of the combination of the 
acceleration indicator with the exponential moving average of length 3, 
and the combination of the acceleration indicator with the exponential 
moving average of length 6 are also plotted in Fig 8.3(a). Furthermore, 
the phase responses of the combination of the acceleration indicator with 
the exponential moving average of length 3, and the combination of the 
acceleration indicator with the exponential moving average of length 6 
are also plotted in Fig 8.3(b). Fig 8.3(b) shows that when the indicator is 
applied to the smoothed data, the less than ideal phase lag is made even 
worse. 

Cubic accel + , cubic accel and ema3 . , cubic accel and ema6 o 

0 0.5 1 1.5 2 2.5 3 3.5 
Circular Frequency (radians) 

Fig 8.3(a) The amplitude responses of the cubic acceleration indicator (plotted 
as +), the combination of the cubic acceleration indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the cubic 
acceleration indicator with the exponential moving average of length 6 (plotted 
as o) are plotted versus CO, the circular frequency. 
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Cubic accel + , cubic accel and ema3 . , cubic accel and ema6 o 

Circular Frequency (radians) 

Fig 8.3(b) The phase responses of the cubic acceleration indicator (plotted as 
+), the combination of the cubic acceleration indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the cubic 
acceleration indicator with the exponential moving average of length 6 (plotted 
as o) are plotted versus GO, the circular frequency. 

In the following sections, we will take a look at higher order 
polynomials, and see whether the phase lag can be improved. 

8.4 Quartic Indicators 

8.4.1 The Filters 

8.4.1.1 Quartic Velocity Indicator 

The quartic velocity and acceleration indicators will be introduced here. 
Their derivations are given in Appendix 4. Basically, five adjacent 
market price data points are fitted to a quartic function. The slope and 
the slope of the slope of the quartic function at the most recent data point 
are then calculated using Calculus. They would represent the velocity 
and acceleration of the market price. 
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The quartic velocity indicator is defined as (25/12, -4, 3, -4/3, 
1/4). The output response, y, after the input price data, x, is filtered by 
the quartic velocity indicator is 

y(n) = — x ( n ) - 4 x ( n - l ) + 3 x ( n - 2 ) - - x ( n - 3 ) + - x ( n - 4 ) (8.15) 

Therefore, the current velocity is given by 

y(0) = ̂  x(0) - 4x(-l) + 3x(-2) - 1 x(-3) + ̂  x(-4) (8.16) 

where x(0) is the closing price or the smoothed closing price of the 
current bar, 

x(-l) is the closing price or the smoothed closing price of one bar 
ago, 

x(-2) is the closing price or the smoothed closing price of two 
bars ago, 

x(-3) is the closing price or the smoothed closing price of three 
bars ago, 

and x(-4) is the closing price or the smoothed closing price of 
four bars ago. 

Fig 8.4(a) shows a market price data simulated as a sine wave. 
The slope of the sine wave, as calculated using the first derivative in 
Calculus, is plotted in Fig 8.4(b). The sine wave filtered by the quartic 
velocity indicator is also plotted, and it agrees quite well with the slope. 

In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the quartic velocity 
indicator can be written as follows: -

Input:S(3); 
Plot 1 (25 * AMAFUNC2(c,S)/l 2-
4*AMAFUNC2(c[l],S)+3*AMAFUNC2(c[2],S)-
4*AMAFUNC2(c[3],S)/3+AMAFUNC2(c[4],S)/4,"Plotl"); 
Plot2(0,"Plot2"); 
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c represents the closing price of the current bar. c[l] represents 
the closing price of one bar ago, c[2] represents the closing price of two 
bars ago, c[3] represents the closing price of three bars ago and c[4] 
represents the closing price of four bars ago. AMAFUNC2 is the 
adaptive moving average function written by Jurik Research. The first 
input parameter of AMAFUNC2 signifies the closing price series to be 
smoothed, while the second input parameter, S, indicates the smoothness 
factor. The larger the smoothness factor, the more smoothed the 
smoothed data will be. The first line of the program shows that the user 
can input the smoothness factor, S. Otherwise, it is 3 by default. Two 
plots are drawn. The first one calculates the quartic velocity of closing 
prices smoothed by a factor of S. The second one plots a horizontal 
straight line where the velocity is zero. This straight line helps to 
identify when the calculated velocity is positive or negative. 

Quartic indicators 

0 2 4 6 8 (b) 10 12 14 16 18 

. • j I 1 1 1 1 1 ,—i 1 1 1 

0 2 4 6 8 10 12 14 16 18 
(c) 

Fig 8.4(a) Market price data simulated as a sine wave of circular frequency of 
7t/4 radian (b) the sine wave filtered by the quartic velocity indicator (marked 
as .), is compared with the slope of the sine wave (marked as +) (c) the sine 
wave filtered by the quartic acceleration indicator (marked as .), is compared 
with the slope of the slope of the sine wave (marked as +). The first 4 points of 
the indicator response are not plotted in (b) and (c) as it takes five points to 
perform the calculations. 
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AMAFUNC2 can be substituted by other smoothing function. 
For example, it can be substituted by XAVERAGE, which is a build-in 
exponential moving average function written by TradeStation2000i. The 
program plotting the quartic velocity indicators calculated on closing 
price data smoothed by exponential moving average is listed as follows: -

Input:L(6); 
Plot 1 (25 *XAVERAGE(c,L)/l 2-
4*XAVERAGE(c[l],L)+3*XAVERAGE(c[2],L)-
4*XAVERAGE(c[3],L)/3+XAVERAGE(c[4],L)/4,"Plotr'); 
Plot2(0,"Plot2"); 

The first input parameter of XAVERAGE signifies the closing 
price series to be smoothed, while the second input parameter, L, 
indicates the length of the window [Mak 2003]. The larger the length, 
the more smoothed the smoothed data will be. The first line of the 
program shows that the user can input the length, L. Otherwise, it is 6 by 
default. Two plots are drawn. The first one calculates the velocity of 
closing prices smoothed by a length of L. The second one plots a 
horizontal straight line where the velocity is zero. 

8.4.1.2 Quartic Acceleration Indicator 

The quartic accelerator indicator is defined as (35/12, -26/3, 19/2, 
-14/3, 11/12). The output response, y, after the input price data, x, is 
filtered by the quartic accelerator indicator is 

, N 35 , x 26 , 1X 19 , „x 14 . ns 11 , 
y(n) = — x ( n ) - — x ( n - l ) + y x ( n - 2 ) - y x ( n - 3 ) + — x ( n - 4 ) 

(8.17) 

Therefore, the current acceleration is given by 

y(0) = ̂ x ( 0 ) - y x ( - l ) + y x ( - 2 ) - y x ( - 3 ) + ̂ x ( - 4 ) (8.18) 
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Fig 8.4(c) plots the slope of the slope of the sine wave as 
calculated from the second derivative in Calculus. The sine wave filtered 
by the quartic acceleration indicator is also plotted and it agrees 
reasonably well with the slope of the slope. Even though the filtered 
wave has a slightly larger amplitude, there is practically no phase lag 
compared to the slope of the slope. 

In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the quartic acceleration 
indicator can be written as follows: -

Input:S(3); 
Plot 1 (35 * AMAFUNC2(c,S)/l 2-
26*AMAFUNC2(c[l],S)/3+19*AMAFUNC2(c[2],S)/2-
14*AMAFUNC2(c[3],S)/3+ll*AMAFUNC2(c[4],S)/12,"Plotl"); 
Plot2(0,"Plot2"); 

The first line of the program shows that the user can input the 
smoothness factor, S. Otherwise, it is 3 by default. Two plots are drawn. 
The first one calculates the quartic acceleration of closing prices 
smoothed by a factor S. The second one plots a horizontal straight line 
where the acceleration is zero. AMAFUNC2 can be substituted by other 
smoothing function. For example, it can be substituted by XAVERAGE. 
The program plotting the quartic acceleration indicators calculated on 
closing price data smoothed by exponential moving average is listed as 
follows: -

Input:L(6); 
Plot 1 (35 *XAVERAGE(c,L)/l 2-
26*XAVERAGE(c[ 1 ] ,L)/3+19*XAVERAGE(c[2] ,L)/2-
14*XAVERAGE(c[3],L)/3+ll*XAVERAGE(c[4],L)/12,"Plotl"); 
Plot2(0,"Plot2"); 

The first line of the program shows that the user can input the 
length, L. Otherwise, it is 6 by default. Two plots are drawn. The first 
one calculates the acceleration of closing prices smoothed by a length of 
L. The second one plots a horizontal straight line where the acceleration 
is zero. 
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An example using the quartic velocity and acceleration 
indicators are shown in Fig 8.5. The figure shows a weekly chart of the 
S&P 500 Index. The price data was smoothed using the adaptive moving 
average of Jurik research with smoothness 3 (shown as a line in the top 
figure). Quartic velocity indicator was applied to the moving average 
and plotted in the middle of the figure. Quartic acceleration indicator 
was also applied to the moving average and plotted in the bottom of the 
figure. The figure shows the S&P 500 Index between May 2002 and 
January 2004. The S&P 500 Index achieved an all time high of 1530 in 
Sept 2000 and fell to a triple bottom of approximately 775 in 2002 and 
2003, as shown in Fig 8.5. The magnitude of the velocities of the triple 
bottom, as plotted in the middle plot of Fig 8.5, are getting smaller and 
smaller, showing a divergence with the price. This implies that the 
market will rise after [Mak 2003]. As it happened, the market did rise. 
A good buying opportunity would occur when the velocity is zero right 
after the the third bottom. Divergence will be discussed in more detail in 
Chapter 10. 
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Fig 8.5 A weekly chart of the S&P 500 Index. The price data was smoothed 
using the adaptive moving average with smoothness 3 (shown as a line in the top 
figure). Quartic velocity and quartic acceleration indicators are plotted in the 
middle and bottom figures respectively. Chart produced with Omega Research 
TradeStation2000i. 
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8.4.2 Filtering Smoothed Data 

8.4.2.1 Quartic Velocity Indicator 

The frequency response or the Discrete Time Fourier Transform (DTFT) 
of the quartic velocity indicator is given by 

H(a) = 

25/12 - 4exp(-ico) + 3exp(-2iw) - (4/3)exp(-3ico) + (l/4)exp(-4ico) (8.19) 

The amplitude and phase of H((0) is plotted respectively in 
Fig 8.6(a) and (b). The ideal phase lead for a velocity indicator should 
be 7C/2 for all frequencies. As can be seen from Fig 8.6(b), the quartic 
velocity indicator maintains a ft/2 phase lead for frequency up to 
approximately 1 radian, rises slowly and then drops off below ft/2 at 
about 2 radians. Thus, the indicator provides a reasonable velocity 
indicator for trading purpose. 

Quartic velocity + , quartic velocity and ema3 . , quartic velocity and ema6 o 

Circular Frequency (radians) 

Fig 8.6(a) The amplitude responses of the quartic velocity indicator (plotted 
as +), the combination of the quartic velocity indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the quartic 
velocity indicator with the exponential moving average of length 6 (plotted as o) 
are plotted versus CO, the circular frequency. 
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Quartic velocity + , quartic velocity and ema3 . , quartic velocity and ema6 o 

Circular Frequency (radians) 

Fig 8.6(b) The phase responses of the quartic velocity indicator (plotted as +), 
the combination of the quartic velocity indicator with the exponential moving 
average of length 3 (plotted as .), and the combination of the quartic velocity 
indicator with the exponential moving average of length 6 (plotted as o) are 
plotted versus GO, the circular frequency. 

The amplitude responses of the combination of the velocity 
indicator with the exponential moving average of length 3, and the 
combination of the velocity indicator with the exponential moving 
average of length 6 are also plotted in Fig 8.6(a). Furthermore, the 
phase responses of the combination of the velocity indicator with 
the exponential moving average of length 3, and the combination of 
the velocity indicator with the exponential moving average of length 6 
are also plotted in Fig 8.6(b). Fig 8.6(b) shows that the combined phase 
lag is somewhat less than 7t/2, but it is not so far off as to make it 
unsuitable for measuring slope. The phase lag would improve if an 
adaptive moving average were used instead of the exponential moving 
average. 
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8.4.2.2 Quartic Acceleration Indicator 

The frequency response or the Discrete Time Fourier Transform (DTFT) 
of the quartic acceleration indicator is given by 

H(«o) = 

35/12 - (26/3)exp(-ico) + (19/2)exp(-2ico) - (14/3)exp(-3ico) + (ll/12)exp 
(-4ico) 

(8.20) 

The amplitude and phase of H(oo) is plotted respectively in 
Fig 8.7(a) and (b). The ideal phase lead for an acceleration indicator 
should be it for all frequencies. As can be seen from Fig 8.7(b), the 
quartic acceleration indicator maintains a K phase lead for frequency up 
to approximately 1.2 radian before dropping off. Thus, the indicator 
provides a reasonable acceleration indicator for trading purpose. 

Quartic accel + , quartic accel and ema3 . , quartic accel and ema6 o 

Circular Frequency (radians) 

Fig 8.7(a) The amplitude responses of the quartic acceleration indicator (plotted 
as +), the combination of the quartic acceleration indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the quartic 
acceleration indicator with the exponential moving average of length 6 (plotted 
as o) are plotted versus co, the circular frequency. 
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Quartic accel + , quartic accel and ema3 . , quartic accel and ema6 o 

Circular Frequency (radians) 

Fig 8.7(b) The phase responses of the quartic acceleration indicator (plotted as 
+), the combination of the quartic acceleration indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the quartic 
acceleration indicator with the exponential moving average of length 6 (plotted 
as o) are plotted versus co, the circular frequency. 

The amplitude responses of the combination of the acceleration 
indicator with the exponential moving average of length 3, and the 
combination of the acceleration indicator with the exponential moving 
average of length 6 are also plotted in Fig 8.7(a). Furthermore, the phase 
responses of the combination of the acceleration indicator with the 
exponential moving average of length 3, and the combination of the 
acceleration indicator with the exponential moving average of length 6 
are also plotted in Fig 8.7(b). Fig 8.7(b) shows that the combined phase 
lag is somewhat less than %, but it is not so far off as to make it 
unsuitable for measuring slope of the slope. The phase lag would 
improve if an adaptive moving average were used instead of the 
exponential moving average. 
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8.5 Quintic Indicators 

8.5.1 The Filters 

8.5.1.1 Quintic Velocity Indicator 

The quintic velocity and acceleration indicators will be introduced here. 
Their derivations are given in Appendix 4. Basically, six adjacent 
market price data points are fitted to a quintic function. The slope and 
the slope of the slope of the quintic function at the most recent data point 
are then calculated using Calculus. They would represent the velocity 
and acceleration of the market price. 

The quintic velocity indicator is defined as (137/60 -5 5 -10/3 
5/4 -1/5). The output response, y, after the input price data, x, is filtered 
by the quinic velocity indicator is 

y(n) = ̂ - x ( n ) - 5 x ( n - l ) + 5 x ( n - 2 ) - ^ x ( n - 3 ) + ^ x ( n - 4 ) 
6U 3 4 

- - x ( n - 5 ) (8.21) 

Therefore, the current velocity is given by 

y(0) = ̂ x ( 0 ) - 5 x ( - l ) + 5 x ( - 2 ) - y x ( - 3 ) + | x ( - 4 ) 

| x ( - 5 ) (8.22) 

where x(0) is the closing price or the smoothed closing price of the 
current bar, 

x(-l) is the closing price or the smoothed closing price of one bar 
ago, 

x(-2) is the closing price or the smoothed closing price of two 
bars ago, 
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x(-3) is the closing price or the smoothed closing price of three 
bars ago, 

x(-4) is the closing price or the smoothed closing price of four 
bars ago, 

and x(-5) is the closing price or the smoothed closing price of 
five bars ago. 

Fig 8.8(a) shows a market price data simulated as a sine wave. 
The slope of the sine wave, as calculated from Calculus, is plotted in 
Fig 8.8(b). The sine wave filtered by the quintic velocity indicator is 
also plotted, and it agrees quite well with the slope. 

8.5.1.2 Quintic Acceleration Indicator 

The quintic accelerator indicator is defined as (15/4 -77/6 107/6 -13 
61/12 -5/6). The output response, y, after the input price data, x, is 
filtered by the quintic accelerator indicator is 

. . 15 , . 77 , ,. 107 . , „ , 61 , 
y(n) = — x ( n ) - — x (n - l ) + — x ( n - 2 ) - 1 3 x ( n - 3 ) + — x (n -4 ) 

4 6 6 12 

- x ( n - 5 ) (8.23) 
6 

Therefore, the current acceleration is given by 

y(0)= — x(0) - — x(-l) + — x(-2)-13x(-3)+ — x(-4) 
4 6 6 12 

- | x ( - 5 ) (8.24) 
6 

Fig 8.8(c) plots the slope of the slope of the sine wave as 
calculated from Calculus. The sine wave filtered by the quintic 
acceleration indicator is also plotted and it agrees reasonably well with 
the slope of the slope. Even though the filtered wave has a slightly larger 
amplitude, there is practically no phase lag compared to the slope of the 
slope. 
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Quintic indicators 
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Fig 8.8(a) Market price data simulated as a sine wave of circular frequency of 
7t/4 radian (b) the sine wave filtered by the quintic velocity indicator (marked 
as .), is compared with the slope of the sine wave (marked as +) (c) the sine 
wave filtered by the quintic acceleration indicator (marked as .), is compared 
with the slope of the slope of the sine wave (marked as +). The first 5 points of 
the indicator response are not plotted in (b) and (c) as it takes six points to 
perform the calculations. 

8.5.2 Filtering Smoothed Data 

8.5.2.1 Quintic Velocity Indicator 

The frequency response or the Discrete Time Fourier Transform (DTFT) 
of the quintic velocity indicator is given by 

H(co) = 137/60 - 5exp(-ifl>) + 5exp(-2ico) - (10/3)exp(-3ico) 

+(5/4)exp(-4iw) - (l/5)exp(-5ico) (8.25) 

The amplitude and phase of H((0) is plotted respectively in 
Fig 8.9(a) and (b). The ideal phase lead for a velocity indicator should 
be 7t/2 for all frequencies. As can be seen from Fig 8.9(b), the quintic 
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velocity indicator maintains a Jt/2 phase lead for frequency up to 
approximately 1 radian, rises to about 2.2 and then drops off below n/2 at 
about 2 radians. Thus, the indicator provides a reasonable velocity 
indicator for trading purpose. 

The amplitude responses of the combination of the velocity 
indicator with the exponential moving average of length 3, and the 
combination of the velocity indicator with the exponential moving 
average of length 6 are also plotted in Fig 8.9(a). Furthermore, the phase 
responses of the combination of the velocity indicator with the 
exponential moving average of length 3, and the combination of the 
velocity indicator with the exponential moving average of length 6 are 
also plotted in Fig 8.9(b). Fig 8.9(b) shows that the combined phase lag 
is somewhat close to 7C/2, so it is a reasonable indicator for measuring 
slope. The phase lag would improve if an adaptive moving average were 
used instead of the exponential moving average. 

Quintic velocity + , quintic velocity and ema3 . , quintic velocity and ema6 o 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 8.9(a) The amplitude responses of the quintic velocity indicator (plotted as 
+), the combination of the quintic velocity indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the quintic 
velocity indicator with the exponential moving average of length 6 (plotted as o) 
are plotted versus ca, the circular frequency. 
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Quintic velocity + , quintic velocity and ema3 . , quintic velocity and ema6 o 

Circular Frequency (radians) 

Fig 8.9(b) The phase responses of the quintic velocity indicator (plotted as +), 
the combination of the quintic velocity indicator with the exponential moving 
average of length 3 (plotted as .), and the combination of the quintic velocity 
indicator with the exponential moving average of length 6 (plotted as o) are 
plotted versus <o, the circular frequency. 

8.5.2.2 Quintic Acceleration Indicator 

The frequency response or the Discrete Time Fourier Transform (DTFT) 
of the quintic acceleration indicator is given by 

H(co) = 15/4 - (77/6)exp(-ico) - (107/6)exp(-2ia>) - 13exp(-3ico) 

+ (61/12)exp(-4ico) - (5/6)exp(-5ia>) (8.26) 

The amplitude and phase of H((o) is plotted respectively in 
Fig 8.10(a) and (b). The ideal phase lead for an acceleration indicator 
should be % for all frequencies. As can be seen from Fig 8.10(b), the 
quintic acceleration indicator maintains a 7t phase lead for frequency up 
to approximately 0.5 radian, rises to approximately 3.6, and then drops 
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off below 7t at about 1.5 radians. Thus, the indicator provides a 
reasonable acceleration indicator for trading purpose. 

The amplitude responses of the combination of the acceleration 
indicator with the exponential moving average of length 3, and the 
combination of the acceleration indicator with the exponential moving 
average of length 6 are also plotted in Fig 8.10(a). Furthermore, the 
phase responses of the combination of the acceleration indicator with the 
exponential moving average of length 3, and the combination of the 
acceleration indicator with the exponential moving average of length 6 
are also plotted in Fig 8.10(b). Fig 8.10(b) shows that the combined 
phase lag is slightly less than 7t, but it is reasonably suitable for 
measuring the slope of the slope. The phase lag would improve if an 
adaptive moving average were used instead of the exponential moving 
average. 

Quintic accel + , quintic accel and ema3 . . quintic accel and ema6 o 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 8.10(a) The amplitude responses of the quintic acceleration indicator 
(plotted as +), the combination of the quintic acceleration indicator with the 
exponential moving average of length 3 (plotted as .), and the combination of 
the quintic acceleration indicator with the exponential moving average of length 
6 (plotted as o) are plotted versus 0), the circular frequency. 
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Quintic accel + , quintic accel and ema3 . , quintic accel and ema6 o 

Circular Frequency (radians) 

Fig 8.10(b) The phase responses of the quintic acceleration indicator (plotted 
as +), the combination of the quintic acceleration indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the quintic 
acceleration indicator with the exponential moving average of length 6 (plotted 
as o) are plotted versus co, the circular frequency. 

8.6 Sextic Indicators 

8.6.1 The Filters 

8.6.1.1 Sextic Velocity Indicator 

The sextic velocity and acceleration indicators will be introduced here. 
Their derivations are given in Appendix 4. Basically, seven adjacent 
market price data points are fitted to a sextic function. The slope and the 
slope of the slope of the sextic function at the most recent data point are 
then calculated using Calculus. They would represent the velocity and 
acceleration of the market price. 
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The sextic velocity indicator is defined as (49/20 -6 15/2 -20/3 
15/4 -6/5 1/6). The output response, y, after the input price data, x, is 
filtered by the sextic velocity indicator is 

y(n) = — x ( n ) - 6 x ( n - l ) + — x ( n - 2 ) - — x(n-3) + — x ( n - 4 ) yK 20 2 3 4 

- - x ( n - 5 ) + - x ( n - 6 ) (8.27) 
5 6 

Therefore, the current velocity is given by 

y(0) = H x(0) - 6x(-l) + y x(-2) - y x(-3) + j x(-4) 

- - x ( - 5 ) + - x ( - 6 ) (8.28) 
5 6 

where x(0) is the closing price or the smoothed closing price of the 
current bar, 

x(-l) is the closing price or the smoothed closing price of one bar 
ago, 

x(-2) is the closing price or the smoothed closing price of two 
bars ago, 

x(-3) is the closing price or the smoothed closing price of three 
bars ago, 

x(-4) is the closing price or the smoothed closing price of four 
bars ago, 

x(-5) is the closing price or the smoothed closing price of five 
bars ago, 

and x(-6) is the closing price or the smoothed closing price of six 
bars ago. 
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Fig 8.11(a) shows a market price data simulated as a sine wave. 
The slope of the sine wave, as calculated from Calculus, is plotted in 
Fig 8.11(b). The sine wave filtered by the sextic velocity indicator is 
also plotted, and it agrees quite well with the slope. 

8.6.1.2 Sextic Acceleration Indicator 

The sextic acceleration indicator is defined as (4.5112 -17.4 29.25 
-28.2222 16.5 -5.4 0.7612). The output response, y, after the input 
price data, x, is filtered by the sextic accelerator indicator is 

y(n) = 4.5112x(n) - 17.4x(n -1) + 29.25x(n - 2) - 28.2222x(n - 3) 

+ 16.5x(n - 4) - 5.4x(n - 5) + 0.7612x(n - 6) (8.29) 

Sextic indicators 

8 (b) 10 12 14 16 18 

Fig 8.11(a) Market price data simulated as a sine wave of circular frequency of 
jr/4 radian (b) the sine wave filtered by the sextic velocity indicator (marked 
as .), is compared with the slope of the sine wave (marked as +) (c) the sine 
wave filtered by the sextic acceleration indicator (marked as .), is compared with 
the slope of the slope of the sine wave (marked as +). The first 6 points of the 
indicator response are not plotted in (b) and (c) as it takes seven points to 
perform the calculations. 
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Therefore, the current acceleration is given by 

y(0) = 4.5112x(0) - 17.4x(-l) + 29.25x(-2) - 28.2222x(-3) 

+ 16.5x(-4) - 5.4x(-5) + 0.7612x(-6) (8.30) 

Fig 8.11(c) plots the slope of the slope of the sine wave as 
calculated from Calculus. The sine wave filtered by the sextic 
acceleration indicator is also plotted and it agrees reasonably well with 
the slope of the slope. Even though the filtered wave has a slightly 
smaller amplitude, there is practically no phase lag compared to the slope 
of the slope. 

8.6.2 Filtering Smoothed Data 

8.6.2.1 Sextic Velocity Indicator 

The frequency response or the Discrete Time Fourier Transform (DTFT) 
of the sextic velocity indicator is given by 

H(co) = 49/20 - 6exp(-ico) + (15/2)exp(-2ico) - (20/3)exp(-3i(o) 

+(15/4)exp(-4iw) - (6/5)exp(-5ico) + (l/6)exp(-6ico) (8.31) 

The amplitude and phase of H(co) is plotted respectively in 
Fig 8.12(a) and (b). The ideal phase lead for a velocity indicator should 
be 7t/2 for all frequencies. As can be seen from Fig 8.12(b), the sextic 
velocity indicator maintains a Jt/2 phase lead for frequency up to 
approximately 1.2 radian, rises to about 2.8 and then drops off below Jt/2 
at about 2.3 radians. Thus, while the indicator is a good velocity 
indicator for low frequencies, it is not a good velocity indicator for high 
frequencies. 

The amplitude responses of the combination of the velocity 
indicator with the exponential moving average of length 3, and the 
combination of the velocity indicator with the exponential moving 
average of length 6 are also plotted in Fig 8.12(a). Furthermore, the 
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Sextic velocity + , sextic velocity and ema3 . , sextic velocity and emaB o 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 8.12(a) The amplitude responses of the sextic velocity indicator (plotted 
as +), the combination of the sextic velocity indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the sextic 
velocity indicator with the exponential moving average of length 6 (plotted as o) 
are plotted versus CO, the circular frequency. 

Sextic velocity + , sextic velocity and emaB . , sextic velocity and ema6 o 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 8.12(b) The phase responses of the sextic velocity indicator (plotted as +), 
the combination of the sextic velocity indicator with the exponential moving 
average of length 3 (plotted as .), and the combination of the sextic velocity 
indicator with the exponential moving average of length 6 (plotted as o) are 
plotted versus GO, the circular frequency. 
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phase responses of the combination of the velocity indicator with the 
exponential moving average of length 3, and the combination of the 
velocity indicator with the exponential moving average of length 6 are 
also plotted in Fig 8.12(b). Fig 8.12(b) shows that the combined phase 
lag fluctuates about 7t/2, so it is not a particular good indicator for 
measuring slope 

8.6.2.2 Sextic Acceleration Indicator 

The frequency response or the Discrete Time Fourier Transform (DTFT) 
of the sextic acceleration indicator is given by 

H(w) = 4.5112 - 17.4exp(-i©) - 29.25exp(-2ico) - 28.2222exp(-3ico) 

+ 16.5exp(-4i<a) - 5.4exp(-5i©) + 0.7612exp(-6i(o) (8.32) 

The amplitude and phase of H(co) is plotted respectively in 
Fig 8.13(a) and (b). The ideal phase lead for an acceleration indicator 
should be 7C for all frequencies. As can be seen from Fig 8.13(b), the 
sextic acceleration indicator maintains a 7C phase lead for frequency up to 
approximately 1 radian, rises to approximately 4.2, and then drops off 
below 7t at about 2 radians. Thus, the indicator provides a reasonable 
acceleration indicator for trading purpose. 

The amplitude responses of the combination of the acceleration 
indicator with the exponential moving average of length 3, and the 
combination of the acceleration indicator with the exponential moving 
average of length 6 are also plotted in Fig 8.13(a). Furthermore, the 
phase responses of the combination of the acceleration indicator with the 
exponential moving average of length 3, and the combination of the 
acceleration indicator with the exponential moving average of length 6 
are also plotted in Fig 8.13(b). Fig 8.13(b) shows that the combined 
phase lag averages about 7t, so it is reasonably suitable for measuring the 
slope of the slope. 
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Sextic accel + , sextic accel and ema3 . , sextic accel and ema6 o 

1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 8.13(a) The amplitude responses of the sextic acceleration indicator (plotted 
as +), the combination of the sextic acceleration indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the sextic 
acceleration indicator with the exponential moving average of length 6 (plotted 
as o) are plotted versus CO, the circular frequency. 

Sextic accel + , sextic accel and ema3 . , sextic accel and ema6 o 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 8.13(b) The phase responses of the quintic acceleration indicator (plotted 
as +), the combination of the quintic acceleration indicator with the exponential 
moving average of length 3 (plotted as .), and the combination of the quintic 
acceleration indicator with the exponential moving average of length 6 (plotted 
as o) are plotted versus CO, the circular frequency. 
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8.7 Velocity and Acceleration Indicator Responses on 
Smoothed Data 

Judging from the phase responses of the velocity and acceleration 
indicators on smoothed data, it appears that the quartic and quintic 
indicators provide a flatter response with respect to frequency, and thus 
would be better indicators for trading purposes than the momentum 
indicator currently used. 



Chapter 9 

Skipped Convolution 

Skipped convolution has been introduced by Mak [2003]. It has the 
advantage that it can alert traders of a trading opportunity earlier. In this 
chapter, we will take a look at its frequency response and some of its 
limitations. 

9.1 Frequency Response 

9.1.1 Frequency Response of a Convolution 

We will first take a look at the conventional convolution. The output, 
y(n), of the convolution of an unit impulse response, h(k), of a Finite 
Impulse Response (FIR) filter with an input signal x(n) can be written as 
[Mak 2003] 

K 

y(n) = £ h ( k ) x ( n - k ) (9.1) 
k=0 

The performance of a filter may be improved by making use of 
the output values that have already been processed. That is, previous 
values of y can be used. In that case, the output, y(n) can be written as: 

K L 

y(n) = £ h(k)x(n - k) + £ g(*)y(n - £) (9.2) 
k=0 1=1 

132 
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If the g coefficients in Eq (9.2) were set to zero, Eq (9.2) would 
be reduced to Eq (9.1). The first term on the RHS of Eq (9.2) 
corresponds to the FIR filter, which is sometimes called a non-recursive 
filter, as it does not make use of previously processed signal. The second 
term on the RHS of Eqn 9.2 corresponds to the Infinite Impulse 
Response (IIR) filter, which is sometimes called a recursive filter as it 
makes use of previously processed values [Broesch 1997]. 

Fourier Transform of Eq (9.2) would yield a frequency response 
function H((0): 

£h(k)e-itok 

H ( c o ) = ^ = ̂ T (9.3) 
X(W) 1-I»e-

9.1.2 Frequency Response of a Skipped Convolution 

The output response of a skipped convolution can be written as: 

yD (n)= I h(k)x(n-Dk)+ Zg(*)yD(n-D*) (9.4) 
k=0 1=1 

where D is the skip parameter. 

Fourier Transform of Eq (9.4) would yield a frequency response 
function HD(co): 

K 
-iDo* £h(k)e 

H D ( M ) = ^ T - ^ (95) 
X(W) l-2>)e- iDt0 ' 

t=i 
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Comparing Eq (9.5) with Eq (9.4), it can be seen that HD(co) is 
equal to H(Doo), i.e., HD(co) is equal to H(oo) compressed by a factor of D. 

HD(oo) = H(Dco) (9.6) 

We will take a look at an example in the following section. 

9.2 Skipped Exponential Moving Average 

The equation for the output response of a skipped EMA is given by 

yD(n) = ax(n) + (l-a)yD(n-D) (9.7) 

where a = 2/(M+l) (9.8) 

M is a positive integer chosen by the trader and is often called the 
length of the EMA, 

and D is the skip parameter. 

Eq (9.7) makes use of an output response that has already been 
processed D bars ago. When D = 1, Eq (9.7) reduces to the ordinary 
exponential moving average. 

To calculate the frequency response of the skipped EMA, 
Eq (9.5) can be used. Alternatively, we can take the z-transform of 
Eq (9.7) [Broesch 1997, Proakis and Manolakis 1996]. 

YD(z) = ocX(z) + (l-a)zDYD(z) (9.9) 

where z = r exp(ico) is a complex number in the complex plane, r being 
the magnitude of z. YD(z) is the transform of the output and X(z) is the 
transform of the input. 

Defining the transfer function as the output of the filter over the 
input of the filter 

HD(z) = YD(z)/X(z) (9.10) 
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we get, for EMA 

HD(z)= " _D (9.11) 
l - ( l - a ) z 

The skipped EMA has a single pole in its transfer function. A 
pole is a zero of the denominator polynomial of the transfer function 
HD(z). Restricting z in the complex plane to exp(ico) on the unit circle 
(i.e. r = 1), the frequency response function HD(co) is given by 

HD(co)= (9.12) 
1 - (1 - a) exp(-iDco) 

The magnitude of HD(co) is given by 

|HD(a>)|= ^-TTT (9.13) 
1 D ' [ l - 2 ( l - a ) cosDco+( l - a ) 2 ] 1 / 2 

The phase is given by 

- (1 - a) sin Deo 
(|)D(co) = tan 

1 - (1 - a) cos Deo 
(9.14) 

The amplitude and phase of H(co) of the EMA for M = 3 and 
M = 6 are plotted in Fig 9.1 from 0 to 57C. The amplitude and phase 
of HD(©) of the skipped EMA with D = 5 are plotted in Fig 9.2 for 
M = 3 and M = 6 from 0 to 7C. In consistent with Eq (9.6), Fig 9.2 
is exactly the same as Fig 9.1 but compressed by a factor of 5. 
Comparing Fig 9.2 with Fig 9.1, it can be seen that while, in general, the 
phase lag of the skipped convolution is less than that of the convolution, 
the skipped convolution can pick up frequencies larger than % from the 
original input signal, thus making the output signal of the skipped 
convolution noisier. 
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Exponential moving average, with M=3 (+) and M=6 (x) 

A 6 8 10 12 
Circular Frequency (radians) 

14 16 

Fig 9.1 The amplitude and phase of the discrete time Fourier Transform, H((0), 
of the exponential moving average for M = 3 (marked as +) and M = 6 (marked 
as x) are plotted from 0 to 5%. 

Skipped 5 exponential moving average, with M=3 (+) and M=6 (x) 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 9.2 The amplitude and phase of HD(oo) of the skipped exponential moving 
average with D = 5 are plotted for M = 3 (marked as +) and M = 6 (marked as x) 
from 0 to 7i. 
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In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the skipped convolution 
function of an exponential moving average can be written as follows: -

Description: Exponential Moving Average skipped convolution function 

Inputs: Price(NumericSeries), Length(NumericSimple), D(Numeric); 
Variables: alpha(O); 

alpha = 2 / (Length + 1); 
XAverageD = alpha * Price + (1 - alpha) * XAverageD[D]; 

In the above program, alpha is the parameter corresponding to 
Eq (9.8), and XaverageD is the function corresponding to Eq (9.7). 

The program for calculating the indicator for plotting the skipped 
convolution function of an exponential moving average can be written as 
follows: -

Description : This Indicator plots skipped Exponential Moving 
Average 

Inputs: Length(6), D(5); 

Plotl(XAverageD(c, Length, D), "XAverageD"); 

In the above program, the default value of length is taken to be 6, 
and the default value of the skip parameter, D, is taken to be 5. These 
values, of course, can be easily changed before execution. The first 
variable in the function XaverageD, c, corresponds to the Price data in 
the function program. 
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An S&P 500 Index data is plotted in Fig 9.3 together with an 
exponential moving average with M = 6 (thin line), and two skipped 
exponential moving average with M = 6 and D = 2 (middle thick line) 
and D = 3 (thickest line). It can be noted that the line with D = 2 is less 
smooth than the ordinary exponential moving average and the line with 
D = 3 is less smooth than the line with D = 2. This is consistent with 
what is described earlier, and also shown in Fig 9.2. The skipped 
convolution can pick up frequencies larger than % from the input signal. 
This is a limitation of the skipped convolution. This limitation is related 
to that of downsampled signal. The relation between skipped convolution 
and downsampled signal will be considered in the next section. 

Fig 9.3 An S&P 500 Index data is plotted together with an exponential moving 
average with M = 6 (thin line), and two skipped exponential moving average 
with M = 6 and D = 2 (middle thick line) and D - 3 (thickest line). Chart 
produced with Omega Research TradeStatiotHOOOi. 

9.3 Skipped Convolution and Downsampled Signal 

Traders quite often look at financial data in multiple timeframes [Elder 
1993]. For example, they will analyze the data in a daily chart, as well as 
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a weekly chart. They would consider the market movements in the 
weekly chart as the long-term trend, and the price data in the daily chart 
as short-term actions. The price data in a weekly chart can be considered 
as taking every fifth data point from a daily chart, but at the end of the 
week. Thus, the weekly chart can be considered as a downsampled 
signal from the daily chart. However, there is no reason why a weekly 
chart cannot be constructed from the daily chart by taking the daily 
closing price every Thursday or Tuesday. This is why the concept of 
skipped convolution can be useful. As said earlier, the skipped 
convolution can alert a trader earlier of a market action. 

A signal of frequency 7T/10 radian in a daily chart would become 
a signal of frequency Jt/2 in the weekly chart. However, a signal of 
frequency 7t/2 in the weekly chart can also contain other frequencies 
from the daily chart, namely, 

71/10 + 27t/5,71/10 + 47t/5,71/10 + 671/5, jt/10 + 871/5, 

which are called aliases [Mak 2003]. 

A downsampled signal v(n), can be written as 

v(n) = x(Dn) (9.15) 

where x(n) is the original signal, and D is the downsampled parameter. 
That is, every Dth sample of x is taken to construct v. 

There exists a relationship between YD(co), the output response 
of a skipped convolution of an indicator on the original signal and 
H(co)V(co), the output response of an indicator of a downsampled signal. 
From Eq (9.5) and (9.6), 

YD(co) = HD(co) X(co) = H(Da) X(G» (9.16) 

Eq (9.16) can be re-written as 

YD(oyD) = H(co) X(oVD) (9.17) 
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The Fourier Transform of the convolution between a unit 
impulse response, h(n) and a downsampled signal v(n) can be written as 
H(oo)V(co), where V(co) is the Fourier Transform of v(n). V(co) contains 
a mixture of frequencies from the original signal. From Mak [2003], 

H(co)V((o) 

H(co) 

D 
X + X 

co+270 , / (0+(D- l )27 t^ 
+ ... + X D D 

(9.18) 

Using Eq (9.17), Eq (9.18) can be re-written as 

H(ffl)V(co) 

D 
+ Yr 

CO+27C 

D 
+ ... + Yr 

co+(D-1)271 
D 

(9.19) 

In deriving Eq (9.19), the following relation is being used: 

H(co + 2DTI) = H(co) (9.20) 

Eq (9.19) thus establishes the relationship between H(oo)V(w), 
the output response of an indicator on a downsampled signal and YD(a>), 
the output response of a skipped convolution of an indicator on the 
original signal. This implies that an indicator applied on a downsampled 
signal contains more frequencies than a trader would like to have. This 
definitely would affect the decision made by traders. Further discussions 
will be given in Chapter 11. 



Chapter 10 

Trading Tactics 

Traders employ different tactics to trade the market. One example is the 
divergence between price and velocity. They say that that when 
divergence occurs, the market is going to change direction. However, no 
explanation is given why this would happen. We will explain this in the 
next section. Furthermore, they never analyze the tools that they use, 
and clarify their advantages and limitations. We will examine their 
popular indicators in the following sections. 

10.1 Velocity Divergence 

When a piece of stone is thrown upwards, it rises higher and higher, but 
its speed is getting lesser and lesser. At the highest point, its speed is 
zero. It then reverses direction. A similar phenomenon appears also in 
the financial market. While the price is getting higher, the slope of the 
price is getting smaller. This kind of divergence is exploited by traders, 
who look at this as good trading opportunities [Pring 1991, Elder 1993, 
Mak2003]. 

Conventionally, slope is represented by momentum (which is 
actually a two-point moving difference) by traders. However, as is 
pointed out by Mak [2003], the newly coined velocity indicators have 
much less phase lag than momentum. Velocity will thus be used instead 
of momentum here to analyze the data. 

Thus, if there is a divergence between the price and the velocity, 
it is forecasted that the price will change direction. An example is given 
in Fig 10.1, where the S&P500 weekly data in the year 2002 and 2003 is 
plotted. The S&P 500 reached an all time high of approximately 1550 in 
March 2000. It then dropped 50% to approximately 775, forming a triple 
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bottom in July, October 2002 and March 2003. In the price chart in 
Fig 10.1, an adaptive moving average (created by Jurik Research) of 
smoothness 3 is plotted as a line. A quartic velocity and a quartic 
acceleration of the adaptive moving average are plotted in the middle and 
bottom figures respectively. Slightly before the three points where the 
S&P 500 index are hitting triple bottoms, the successive magnitudes of 
the (negative) quartic velocity are getting smaller and smaller, thus 
showing a divergence (Note that the velocity of price leads the price). 
The implication is that the index would soon rise. As it happened, it did 
rise like a phoenix. The velocity maintains more or less positive after 
April, 2003, in consistence with the rising price. The advantage about 
price and velocity divergence is that this occurrence precedes the turning 
point, where the velocity is zero, thus giving plenty of time to alert the 
trader. 
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Fig 10.1 A weekly chart of the S&P 500 Index. The price data was smoothed 
using the adaptive moving average with smoothness 3 (shown as a line in the top 
figure). Quartic velocity and quartic acceleration indicators are plotted in the 
middle and bottom figures respectively. Chart produced with Omega Research 
TradeStationlOOOi. 
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10.2 Moving Average Convergence-Divergence (MACD) 

10.2.1 MACD Indicator 

The MACD indicator is a popular indicator used by traders [Elder 1993, 
2002; Pring 1991; Appel 1991]. The indicator was developed by Gerald 
Appel, an analyst and money manager in New York [Elder 1993, 2002]. 

The indicator consists of two lines: the MACD line and the 
Signal line. The MACD line is composed of two exponential moving 
averages, a fast EMA and a slow EMA. The line is called MACD 
(moving average convergence-divergence) because the fast EMA is 
continually converging toward and diverging from the slow EMA. Fast 
EMA has a smaller length, M, than that of slow EMA. The slow EMA 
(e.g. M2 = 26) is subtracted from the fast EMA (e.g. Mi - 12). Their 
difference is plotted. This is called the (fast) MACD line. An EMA (e.g. 
M3 = 9) of the (fast) MACD line is calculated and plotted on the same 
chart. This is called the slow Signal line. 

The trading rule is based on the crossover between the MACD 
and Signal lines. When the fast MACD line crosses above the slow 
Signal line, a buy signal is generated. When the fast line crosses below 
the slow line, a sell signal is implemented. 

This trading rule is somewhat similar to the crossover between a 
fast EMA line and a slow EMA line [Pring 1991; Mak 2003]. The trader 
will buy when the fast EMA crosses over and is above the slow EMA. 
He will sell when the fast EMA crosses over and is below the slow EMA. 

Now, the question is: is the MACD trading rule better than the 
EMA trading rule? And what exactly is the MACD line? We will find 
that out in the next section. 

10.2.2 MACD Une 

The MACD line is the difference between two exponential moving 
averages. We would like to find out the amplitude and phase of the 
Fourier Transform of the MACD line. 
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The Fourier Transform of an exponential moving average is a 
low pass filter. The Fourier Transform of the difference of two 
exponential moving averages is simply the difference in their respective 
Fourier Transform [Brigham 1974, P31]. Let H^co) and H2(co) be the 
Fourier Transform of the fast EM A and the slow EM A respectively. The 
Fourier Transform of the MACD line, H4(co) is simply given by: 

H4(co) = H,(co) - H2(co) (10.1) 

10.2.2.1 Fast EMA( M, = 12) and Slow EMA( M2 = 26) 

Taking the lengths of the fast EM A and the slow EMA to be 12 and 26 
respectively (12 and 26 are common parameters used by traders [Elder 
1993, 2002]), their amplitudes as well as the amplitude of H4(co) are 
plotted in Fig 10.2(a). This simply shows that H4(co) is a band-pass filter. 
When the amplitudes of two low pass filters are the same at co = 0, their 
difference should yield a band-pass filter. The MACD line filters off the 
very slow moving market movement near co = 0, thus removing some of 
the slowly changing trend. This can make the timing of a crossover 
between an MACD line and the Signal line a better timing than the 
crossover of a fast EMA line and a slow EMA line. Fig 10.2(a) also 
shows that the MACD line in this particular case is as smooth as the slow 
EMA, making it a very good filter. 

To show that the MACD line function even better than the EMA, 
we can take a look at Fig 10.2(b), which plots the phases of the fast EMA 
and slow EMA, as well as the phase of the MACD line. It can be seen 
that the MACD line has a lesser phase lag than even the fast EMA. At co 
= 0, the real and imaginary part of H4(co) is 0. Thus, the phase of the 
MACD line at co = 0 is of the indeterminate form. However, using the 
De l'Hopital's Rule [e.g. Kaplan 1952, P27], it can be shown that the 
phase is equal to Till. The phase 7i/2 is thus plotted at co = 0 for FLXco). 
Therefore, because the MACD line has a smaller phase lag, the MACD 
trading technique would provide a quicker crossover and therefore buy or 
sell signal than a comparative EMA trading technique. Thus, it is no 
wonder that some experienced traders embrace the MACD trading tactic. 
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Exponential moving average, with M=12 (+), M=26 (x) and M 12 - 26 (.) 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 10.2(a) The amplitudes of the Fourier Transform of the fast EMA (Mi = 12) 
(plotted as +) and the slow EMA (M2 = 26) (plotted as x), and the amplitude of 
the MACD line (plotted as .) are plotted versus the circular frequency CO. 

Exponential moving average, with M=12 (+), M=2B (x) and M 12 - 26 (.) 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 10.2(b) The phases of the Fourier Transform of the fast EMA (Mi = 12) 
(plotted as +) and the slow EMA (M2 = 26) (plotted as x), and the phase of the 
MACD line (plotted as .) are plotted versus the circular frequency co. 
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An example would be given. In Fig 10.3, the top figure plots a 
signal, p, composed of waves of two frequencies to simulate market price 
data: 

p = 0.25sin(7cn/10) + sin(7in/40) (10.2) 

where n is an integer. 

Two exponential moving averages (EMA) of length 12 and 26 
are plotted on the same figure. Their crossovers would provide entry and 
exit points for traders to trade the market. The bottom figure in Fig 10.3 
plots the MACD line (Mi = 12 and M2 = 26) and the Signal line (M3 = 
9). Again, their crossover would provide entry and exit points for trading 
the market. It can be seen that the crossovers of the MACD line and 
Signal line provides much better timing and therefore profitability than 
the crossovers of the two EMA lines. 

p - , ema12 . , ema26 + 
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Fig 10.3 The top figure plots a simulated price data as a line. The fast EMA 
(Mi = 12) (plotted as .) and the slow EMA (M2 = 26) (plotted as +) of the price 
data are also plotted. The bottom figure plots the MACD line (plotted as a line) 
and the Signal line (plotted as .). Note that the crossovers of the MACD line and 
the Signal Line appear earlier than the crossovers of the two EMA lines, thus 
providing better timing for trading purposes. 

1 
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10.2.2.2 Fast EMA( M, = 5) and Slow EMA( M2 = 34) 

The lengths of the fast and slow EMA for the MACD line are quite often 
taken to be 5 and 34 [Elder 1993]. The amplitudes and phases of the 
two EMA's and their MACD line are plotted in Fig 10.4(a) and (b) 
respectively. Comparing Fig 10.4(a) with 10.2(a), it can be seen the 
amplitudes of both MACD lines peak at about 0.2 radian. Fig 10.4(b) 
shows that, again, the MACD line has a lesser phase lag than even the 
fast EMA. However, Fig 10.4(a) shows that it is only about as smooth as 
the fast EMA. Thus, it is not as good a band-pass filter as the one we 
discussed in section 10.2.2.1. This simply means that the length of the 
EMA's have to be chosen carefully to optimize one's trading tactics. In 
order that the MACD line is approximately as smooth as the slow EMA, 
the length of the slow EMA should be approximately twice as long as 
that of the fast EMA. Another set of lengths commonly used for the fast 
and slow EMA's are 8 and 17 [Pring 1991]. 

Exponential moving average, with M=5 (+), M=34 (x) and M 5 - 34 (.) 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig 10.4(a) The amplitudes of the Fourier Transform of the fast EMA (Mi = 5) 
(plotted as +) and the slow EMA (M2 = 34) (plotted as x), and the amplitude of 
the MACD line (plotted as .) are plotted versus the circular frequency u). 
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Exponential moving average, with M=5 (+), M=34 (x) and M 5 - 34 (.) 
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Fig 10.4(b) The phases of the Fourier Transform of the fast EMA (M! = 5) 
(plotted as +) and the slow EMA (M2 = 34) (plotted as x), and the phase of the 
MACD line (plotted as .) are plotted versus the circular frequency CO. 

10.3 MACD-Histogram 

It has been said that the MACD-Histogram offers a better insight into the 
balance of power between the bulls and bears than the MACD [Elder 
1993, 2002]. Not only does it show whether the bulls or bears are in 
control, it also shows whether they are growing stronger or weaker. 
Now, are these claims correct? First, let us see how the MACD-
Histogram is defined. It is defined as the difference between the MACD 
line and the Signal line: 

MACD-Histogram = MACD line - Signal line (10.3) 

The MACD-Histogram is usually plotted as a histogram to 
distinguish it from the MACD line, but it can just as well be plotted 
as a line. As discussed earlier, the signal line is the exponential 
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moving average of the MACD line. Let the Fourier Transform of this 
exponential moving average be denoted by H3(co). Then the Fourier 
Transform of the Signal line will be given by H3(co) H4(cu). The Fourier 
Transform of the MACD-Histogram, H5(co), according to Eq (10.3) will 
be given by 

H5(co) = H4(co) - H3(co) H4(co) (10.4a) 

= (l-H3(co))H4(co) (10.4b) 

As H3(co) is a low pass filter, and H4(co) is a band-pass filter, 
H3(co) H4(co) is a band-pass filter. Eq (10.4a) would mean that H5(co) is a 
band-pass filter, which is formed from the difference between two band­
pass filters. Eq (10.4a) can be rewritten in the form of Eq (10.4b). As 
(1 - H3(co)) is a high pass filter, H5(co) can also be considered as a 
combination between a high pass filter and a band-pass filter. 

Taking the lengths of the fast EMA, slow EMA and the EMA of 
the MACD line to be 12, 26 and 9, the amplitudes and phases of the 
MACD line, Signal line and MACD-Histogram are plotted in Fig 10.5(a) 
and (b). Fig 10.5(a) shows that the MACD-Histogram is a band-pass 
filter, having a peak at a frequency slightly larger than that of the MACD 
line (which is also a band-pass filter). It filters off more of the low 
frequency component of a signal than the MACD line. Fig 10.5(b) 
shows that it has less phase lag than the MACD line, thus the MACD-
Histogram can detect market movement faster. The phase of the Signal 
line is the sum of the phase of H3(co) and the phase of H4(co). At CO = 0, 
since the phase of H3(co) = 0 and the phase of H4(co) = n/2, the phase of 
H3(co) = 7t/2. At co = 0, the amplitude of H5(co) is 0, which implies that 
the real and imaginary part of H5(co) is 0, and the phase is in an 
indeterminate form. To calculate that phase, it would be easier to use 
Eq (10.4b) than (10.4a), as the phase of H5(co) is simply given by the sum 
of the phase of (1 - H3(co))and the phase of H4(co). Using again the De 
l'Hopital's Rule, the phase of the high pass filter, (1 - H3(co)) at CO = 0 is 
found to be Jt/2. As the phase of H4(co) at CO = 0 is 7T./2, the phase of 
H5(co) is 7t. 
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The lengths of the EMA associated with the MACD, 12, 26 and 
9 have become standard values used as defaults in most trading software 
packages. It has been said that changing these numbers has little impact 
on the MACD signals, unless their ratios are changed drastically [Elder 
2002]. This is probably due to the fact that the peak of the MACD-
Histogram does not change much even though those numbers are 
changed. The peak of the MACD Histogram for the values 12, 26, and 9 
is located at 0.21 radians (Fig 10.5(a)). If the values were changed to 3, 
6, and 9, the peak would only shift to 0.58 radian (Fig 10.6(a)). 
However, this slight shift can make a difference, which is more 
accentuated in the phase plot. Fig 10.6(b) plots the phase of the MACD 
line, Signal line and MACD-Histogram for the values 3, 6, and 9. It 
should be noted that the phase of the MACD-Histogram is almost zero 
for circular frequencies greater than 0.5 radian. As its phase lag is less 
than that of the MACD-Histogram with values of 12, 26 and 9, this 
property seems to make it a good candidate as a band-pass filter. 
However, its usefulness is much limited as it retains a certain portion of 
high frequency noises. 

For years, traders have been attempting to develop zero lag low 
pass filters without too much success [Ehlers 1992, 2001]. But the trick 
is to develop not low pass filter, but band pass filter with almost zero 
phase lag. MACD line and MACD Histogram are band pass filters with 
almost zero lag. Their characteristics have not been pointed out so far. 
Thus, it does need mathematical analysis to discover the importance of 
these filters. 

Qualitatively, the MACD-Histogram does not provide any 
significant difference from the MACD line, as contrasted to what some 
traders would like to think. However, the MACD-Histogram does filter 
out more low frequency component than the MACD line. This can make 
it a very useful indicator. While an exponential moving average (e.g. an 
EMA of length = 26) can monitor the long term trend of the market, the 
MACD-Histogram can denote the middle term movement with very little 
time lag. High frequency components are usually eliminated in trading, 
as they are considered as noise. Thus, as long as the trader keeps an eye 
on the long and middle trends, he would have a good understanding of 
the market. 
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MACD line(+), Signal line (x) and MACD-Histogram (.) 
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Circular Frequency (radians) 

Fig 10.5(a) The amplitudes of the MACD line (plotted as +), Signal line 
(plotted as x) and MACD-Histogram (plotted as .) are plotted versus the circular 
frequency to. The lengths of the fast EMA, slow EMA and the EMA of the 
MACD line are taken to be 12,26 and 9 respectively. 

MACD tine (+), Signal line (x) and MACD-Histogram {.) 
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Fig 10.5(b) The phases of the MACD line (plotted as +), Signal line (plotted 
as x) and MACD-Histogram (plotted as .) are plotted versus the circular 
frequency co. The lengths of the fast EMA, slow EMA and the EMA of the 
MACD line are taken to be 12,26 and 9 respectively. 
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Fig 10.6(a) The amplitudes of the MACD line (plotted as +), Signal line 
(plotted as x) and MACD-Histogram (plotted as .) are plotted versus the circular 
frequency u). The lengths of the fast EMA, slow EMA and the EMA of the 
MACD line are taken to be 3, 6 and 9 respectively. 
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Fig 10.6(b) The phases of the MACD line (plotted as +), Signal line (plotted as 
x) and MACD-Histogram (plotted as .) are plotted versus the circular frequency 
0). The lengths of the fast EMA, slow EMA and the EMA of the MACD line are 
taken to be 3, 6 and 9 respectively. 
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10.3.1 MACD-Histogram Divergence 

Some traders claim that the divergences between MACD-Histogram and 
price give some of the strongest signals in technical analysis. These 
divergences identify major turning points and yield strong buy or sell 
signals [Elder 1993, 2002]. When prices fall to a new low but the 
indicator falls to a more shallow low than the preceding one, the MACD-
Histogram traces a bullish divergence. This implies that the bears have 
grown weaker and traders should go long. When prices rise to a new 
high but the indicator rises to a lower peak than the preceding one, the 
MACD-Histogram traces a bearish divergence. The bulls are receding 
and traders should go short. These deductions are actually not quite true. 

It should be noted that there is a fundamental difference between 
MACD-Histogram divergence and velocity (or momentum) divergence. 
Velocity (or momentum) is a high-pass filter that simulates the slope of 
the price data [Mak 2003]. Thus, divergence between price and velocity 
implies that price and its slope are going into different directions. The 
market is going to turn. The MACD-Histogram, as discussed above, is a 
band-pass filter. It filters off the low frequency (long cycles) and high 
frequency (short cycles), leaving behind the middle frequency. Its 
divergence from the price means that its middle frequency signal 
generates a different opinion from that of the total price. 

If the lengths of the exponential moving averages are chosen 
to be M, = 12, M2 = 26 and M3 = 9, the MACD-Histogram will peak 
at about a circular frequency of approximately 0.21 radians (see 
Fig 10.5(a)). We will see how an MACD-Histogram divergence can 
arise. 

As an example, we will simulate the market price movement as 
follows: 

p = 0.25sin(Jtn/10) + sin(7in/40) (10.5) 

where p is the price, 

and n is a positive integer. 
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The frequency of Jt/10 radian corresponds to a 2TC/(7C/10) = 20 bar 
cycle. (If a daily chart is being used, a 20 bar cycle means that the cycle 
is approximately one month.) In Fig 10.7, p is plotted in the top figure, 
while the MACD-Histogram of p is plotted in the bottom figure. The 
MACD-Histogram, acting as a band-pass filter, filters out part of the 
Jt/40 signal and retains most of the Jt/10 signal. As it can be observed in 
the figure at n = 85 and n = 105, while the price, p, rises to a new high, 
the Histogram rises to a lower peak. Trading rule would dictate the 
trader to go short. As it happens, the price, p, does turn down. At n = 
115 and n = 135, the total price, p, falls to a new low, the Histogram falls 
to a higher low. Trading rule would dictate the trader to go long. The 
price, p, does turn up after. Thus, in this particular example, the trading 
rule of MACD-Histogram divergence works very well. 
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Fig 10.7 The top figure plots a simulated price p = 0.25sin(7tn/10) + sin(icn/40). 
The bottom figure plots the macdhistogram of the price. The trading rule of 
MACD-Histogram divergence works in this case. 

We will take a look at another example: 

p = 0.25sin(7tn/5) + sin(7in/20) (10.6) 
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Fig 10.8 The top figure plots a simulated price p = 0.25sin(7tn/5) + sin(7tn/20). 
The bottom figure plots the macdhistogram of the price. The trading rule of 
MACD-Histogram divergence does not necessarily work. 

In Fig 10.8, p is plotted in the top figure, while the MACD-
Histogram of p is plotted in the bottom figure. As it can be observed in 
the figure at n = 84 and n = 92, while the price, p, rises to a new high, the 
Histogram rises to a lower peak. This shows a bearish divergence. As it 
happens, the price, p, does turn down. At n = 98 and n = 108, the total 
price, p, falls to a new low, the Histogram also falls to a new low. No 
divergence is thus observed. However, the price, p, turns up after. 

Thus, the occurrence of any MACD-Histogram divergence 
would depend very much on the frequencies of the market price 
signal. The divergence may not happen sometimes. Hence, it is believed 
that the velocity divergence would be a more reliable indicator. The 
velocity divergence has also an advantage over the MACD-Histogram 
divergence. It can be observed in Fig 10.7 and 10.8 that the peaks 
(or valleys) of the MACD-Histogram do not have any phase lead as 
compared to the peaks (or valleys) of the price. This, of course, is 
consistent with the phase plot in Fig 10.5(b). However, the peaks 
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(or valleys) of the velocity of the price has a phase lead of approximately 
7t/2 compared to the peaks (or valleys) of the price [Mak 2003], This 
provides an early warning of the market turn, which would happen when 
the velocity becomes zero later. 

10.4 Exponential Moving Average of an Exponential 
Moving Average 

Exponential moving average (EMA) is quite often used to smooth the 
price data. The direction of its slope is considered to be an important 
message. When the EMA rises, the crowd is bullish. It is a good time to 
go long. When the EMA falls, the crowd is bearish. It is a good time to 
go short [Elder 2002]. 

An EMA with a short length is quite sensitive to price changes. 
It allows the trader to catch new trends sooner. However, it also changes 
its direction more often. An EMA with a longer length does not change 
direction so often, but it has a larger time lag in recognizing turning 
points. As a rule, the longer the trend the trader attempts to catch, the 
larger the length of the EMA should be chosen. 

The longer the length of the EMA, the smoother the data. 
Alternatively, some traders suggest smoothing the EMA with another 
EMA [Pring 1991]. However, this would create a much larger time lag 
with respect to the data. 

Smoothing one EMA with another EMA is equivalent to 
convoluting the unit impulse response of the EMA with the unit impulse 
response of another EMA. The Fourier Transform of the operation is 
equal to the product of their individual Fourier Transform [Brigham 
1974]. The phase is therefore equal to the sum of their individual phases. 

As an example, an EMA of length 6 is applied onto an EMA of 
length 3. The amplitude and phase of its Fourier Transform is shown in 
Fig 10.9(a) and (b) respectively. The amplitude is equal to the product of 
the amplitude of an EMA of length 6 and the amplitude of an EMA 
of length 3. The phase is equal to the sum of the phase of an EMA of 
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Exponential moving average with M=10 (+) and emaG of ema3 (x) 
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Fig 10.9(a) The amplitude of the Fourier Transform of an EMA of length 
6 applied onto an EMA of length 3 is plotted (as x) versus the circular frequency 
CO. The amplitude of the Fourier Transform of an EMA of length 10 is also 
plotted (as +) for comparison purpose. 

Exponential moving average with M=10 (+) and emaB of ema3 (x) 
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Fig 10.9(b) The phase of the Fourier Transform of an EMA of length 6 applied 
onto an EMA of length 3 is plotted (as x) versus the circular frequency oo. The 
phase of the Fourier Transform of an EMA of length 10 is also plotted (as +) for 
comparison purpose. 
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length 6 and the phase of an EMA of length 3. The amplitude and phase 
of the Fourier Transform of an EMA of length 10 are also plotted in the 
same figures for comparison purpose. It can be seen from Fig 10.9(a) 
that it has a similar filtering capability as the EMA of an EMA. The 
EMA of the EMA does produce a smoother line, as it retains more low 
frequency component and rejects more high frequency component 
(Fig 10.9(a)). However, this is done at the expense of a much larger 
phase lag (Fig 10.9(b)). Thus, it would seem that it would be more 
practical to choose an EMA of longer length to smooth the data than to 
use an EMA of an EMA. 



Chapter 11 

Trading System 

Many trading systems have been proposed by traders. However, their 
usefulness is seldom analyzed. In this chapter, we will discuss how we 
can analyze a trading system mathematically. Some trading systems use 
multiple timeframes. We will discuss the advantages and disadvantages. 
One trading system, the triple screen trading system, will be taken as an 
example 

11.1 Multiple Timeframes 

Some traders recommend using several timeframes to analyze the 
market. A method of using triple screens has been suggested by Elder 
[1993, 2002]. In the first screen, a strategic decision to trade long or 
short is made using a trend-following indicator on a long-term chart. In 
the second screen, a tactical decision about entries and exits is formed 
using oscillators on an intermediate-term chart. (Oscillators measure the 
speed or slope of the trend. Examples of oscillators are momentum, 
velocity, etc.) In the third screen, methods for placing buy and sell 
orders are implemented on a short-term chart, or on the same 
intermediate-term chart. The method can consist of, e.g., using a 
breakout or pullback to enter trades. 

An intermediate timeframe is any timeframe chosen by the 
trader. It can be a weekly chart, a daily chart, or a five-minute chart. 
The long-term chart is decided by multiplying the unit time interval of 
the intermediate chart by a certain factor, e.g., five. If the intermediate 
chart is daily, then the long-term chart is weekly. If the intermediate 
chart is five minutes, then the long-term chart can be half-hourly. 
Similarly, the short-term chart is decided by dividing the unit time 
interval of the intermediate chart by the same factor. For a daily 
intermediate chart, the short-term chart can be hourly. For a five-minute 

159 
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chart, the short-term chart is a one-minute chart. The factor chosen is not 
that critical. It can be a factor of four instead of five. Thus, if a trader's 
intermediate timeframe is a weekly chart, his long-term frame will be a 
monthly chart. 

What does it mean by going from an intermediate timeframe to a 
long-term timeframe? Let's take the factor of five. It simply means 
taking every fifth point of the data points in the intermediate time frame 
to form the data points in the long-term frame. Mathematically, it is 
called downsampling five [Mak 2003]. An original signal of frequency 
TC/10 radian will become a signal of TC/2 radian in the long-term frame. A 
signal of TC/50 radian will become a signal of 71/10 radian. You can 
imagine the frequencies in the frequency response plot of the market 
price signal in the intermediate timeframe to stretch by a factor of five to 
form the frequencies in the frequency response plot in the long-term 
frame. Does a long-term frame help in analyzing the market? We will 
find out in the following section. 

11.1.1 Long-Term Timeframe 

11.1.1.1 Advantages 

It is common for traders to apply a trending indicator, e.g., an 
exponential moving average (EMA) on the data. As said earlier, a 
trending indicator is a low pass filter. Compared to an exponential 
moving average of a certain length applied to the data in an intermediate 
time-chart, downsampling the data to a long-term time chart and 
applying the same exponential moving average would mean pushing 
more signals of high frequencies out of the original signal in the 
intermediate time frame. Signals of low frequencies will be more 
emphasized. This effectively means increasing the length of the 
exponential moving average in the intermediate time chart, thus 
narrowing the bandwidth of the low pass filter. However, there is an 
advantage of downsampling to a long-term chart as compared to 
increasing the length of an EMA in an intermediate chart. There is less 
phase lag. 

Mathematically, we would not be able to calculate the frequency 
response of an indicator on downsampled signal. However, we can 
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calculate the frequency response of a skipped convolution of an 
indicator, which should provide some insight to an indicator on 
downsampled signal. 

Fig 11.1(a) plots the amplitude response of an exponential 
moving average of length 130, and the amplitude response of a skipped 5 
convolution of an exponential moving average of length 26. It can be 
seen that their amplitudes are approximately the same for co< 0.5. That 
means, for co < 0.5, the two EMA's have similar smoothing capability. It 
can actually be shown that, for CO close to 0, a skipped D convolution of 
an exponential moving average of length M has similar smoothing 
capability to an exponential moving average of length approximately 
equal to DM, where D is the skip parameter. 

Fig 11.1(b) plots the phase response of an exponential moving 
average of length 130, and the phase response of a skipped 5 convolution 
of an exponential moving average of length 26. It can be seen that, 
except in the high frequency range, the skipped convolution has much 
less phase lag. This implies that the EMA of a downsampled signal has 
less phase lag than the phase of an EMA of similar smoothing capability 
in the original signal. 

Thus, analyzing market data in a long-term timeframe does have 
an advantage. The trending indicator would have less phase lag 
compared to the same trending indicator with similar smoothing capacity 
in an intermediate timeframe. 

The long-term frame has also an obvious advantage that the 
trader has less data to handle and visualize. He can see the forest instead 
of the trees. However, it does have its disadvantages. 

11.1.1.2 Disadvantages 

(1) While trending indicators, e.g., the EMA, provides less phase lag in 
downsampled signal than the original signal, oscillator indicators, e.g., 
the momentum indicator and velocity indicators provide more phase lag. 
We will illustrate this with an example in the frequency domain. Fig 
11.2(a) shows the amplitude of the frequency response of the cubic 
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Exponential moving average : M=130 (+); skipped 5 M = 26 (x) 
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Circular Frequency (radians) 

Fig 11.1(a) The amplitudes of the Fourier Transform of an exponential moving 
average of length 130 (plotted as +) and a skipped 5 convolution of an 
exponential moving average of length 26 (plotted as x) are plotted versus the 
circular frequency co. 
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Fig 11.1(b) The phase of the Fourier Transform of an exponential moving 
average of length 130 (plotted as +) and a skipped 5 convolution of an 
exponential moving average of length 26 (plotted as x) are plotted versus the 
circular frequency co. 
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Cubic velocity indicator (+), skipped 5 (x) 
71 1 1 1 , 1 

Circular Frequency (radians) 

Fig 11.2(a) The amplitudes of the Fourier Transform of the cubic velocity 
indicator (plotted as +) and the skipped 5 convolution of the cubic velocity 
indicator (plotted as x) are plotted versus the circular frequency CO. 
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21 , 1 1 1 , 

Circular Frequency (radians) 

Fig 11.2(b) The phases of the Fourier Transform of the cubic velocity indicator 
(plotted as +) and the skipped 5 convolution of the cubic velocity indicator 
(plotted as x) are plotted versus the circular frequency CO. 
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velocity indicator as well as the skipped 5 convolution of the cubic 
velocity indicator. Fig 11.2(b) shows the phase of the frequency 
response of the cubic velocity indicator as well as the skipped 5 
convolution of the cubic velocity indicator. From Fig 11.2(b), it can be 
implied that except for frequency near n, cubic velocity on downsampled 
signal has a larger phase lag than the cubic velocity on the original 
signal. 

We will also take a look at an example in the time domain. Fig 
11.3(a) shows an original price signal having a frequency of 7t/16 radian 
(denoted by .) and the down 4 price signal which has a frequency of 7t/4 
(denoted by o). The 2-bar momentum indicator (which is the same as the 
2-point moving difference) applied to the original signal has a phase lag 
of 71/32 (= Tt/16 x lA) radian from the ideal phase lead of 7t/2 [Mak 2003]. 
The output is shown in Fig 11.3(b). The unit impulse response of the 
momentum indicator is defined here as (1 , -1). As it takes two points to 
calculate the momentum, the very first point (which is arbitrarily set to 
zero) in Fig 11.3(b) should be ignored. Fig 11.3(c) shows the down 4 
momentum signal. It can be seen that the phase difference between the 
downsampled momentum and the downsampled price (in Fig 11.3(a)) is 
preserved. However, if the price signal is downsampled first (thus 
becoming a signal of frequency of 7t/4), and then the momentum 
indicator is applied to the downsampled price, the output would have a 
phase lag of 7t/8 (= 7C/4 x Vi) radian from the ideal phase lead of 7t/2, 
when compared to the downsampled price signal. Fig 11.4(a) shows the 
original price data. Fig 11.4(b) shows the down 4 price data. The 
momentum indicator is applied to the down 4 price data, and plotted in 
Fig 11.4(c). Again, as it takes two points to calculate the momentum, the 
very first point (which is arbitrarily set to zero) in Fig 11.4(c) should be 
ignored. It can be seen that the phase lag of the momentum from the 
downed price data is much larger in Fig 11.4(c) than that shown in Fig 
11.3(c). This is simply caused by the fact that the phase lag of 
momentum of signal of frequency 7i/4 is much larger than that of signal 
of frequency 7t/16. Thus, it can make quite some difference whether the 
indicator is applied in the long-term time-frame or the indicator is 
applied in the original time-frame and the output is then downsampled to 
the long-term time-frame. In other words, the indicator operation and 
downsampling is not commutative. 
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Fig 11.3(a) shows an original price signal having a frequency of TI/16 radian 
(plotted as .) and the down 4 price signal which has a frequency of Jt/4 (plotted 
as o). (b) shows the 2-bar momentum indicator (which is the same as the 2-
point moving difference) applied to the original signal. It has a phase lag of 
71/32 (= 71/16 x Vi ) radian from the ideal phase lead of 7t/2 [Mak 2003]. As it 
takes two points to calculate the momentum, the very first point (which is 
arbitrarily set to zero) should be ignored, (c) shows the down 4 momentum 
signal. It can be seen that the phase difference between the downsampled 
momentum and the downsampled price (in Fig 11.3(a)) is preserved. Again, the 
very first point (at CO = 0) should be ignored. 

(2) The data in the long-term frame contain aliases, which is a mixture of 
frequencies from the original signal in the intermediate frame. For 
example, after downsampling 5, the signal of the 7C/2 frequency in the 
altered signal can contain a mixture of signals of frequencies 

71/10, 71/10 + 271/5, 71/10 + 47C/5, 71/10 + 671/5, 71/10 + 871/5 

from the original signal [Mak 2003]. 

EMA of the signal of the 7t/2 frequency in the long-term frame 
can thus contain EMA's of the mixture of signals of the above 
frequencies from the intermediate timeframe. 
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Fig 11.4(a) shows the original price data having a frequency of 7C/16 radian, (b) 
shows the down 4 price data, (c) shows the momentum indicator applied to the 
down 4 price data. As it takes two points to calculate the momentum, the very 
first point (which is arbitrarily set to zero) should be ignored. 

(3) The EMA's of the mixtures of signals contain different amplitudes 
and phase lags or leads. Fig 11.5 plots the amplitude and phase of 
EMA3 (EMA of length 3) and EMA6 (EMA of length 6) from 0 to 5%. 
It can be noted that while the amplitude falls between 0 to n, it rises 
between n to 2TC. Also, while there is a phase lag between 0 to 7t, there is 
a phase lead between % to 2JI. Fig 11.6 plots a market price simulated by 
a pure sine wave of frequency 7t/4. Downsampling 5 would yield a 
signal of frequency 5TU4. The EMA of length 3 of this signal is plotted 
in the figure (denoted as +) in the format of skipped convolution. This 
would represent how the EMA of the signal would look like in the long-
term chart, but in a more detailed fashion [Mak 2003]. An EMA of 
length 13 (EMA13), which should yield similar smoothness of the 
original signal is also plotted (denoted as x) for comparison. In 
consistent with Fig 11.5, the EMA3 of signal of frequency 5it/4 has an 
amplitude larger than the EMA13 of the original signal, and a phase lead 
compared to the original signal. 
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Exponential moving average, with M=3 (+) and M=6 (x) 

4 6 8 10 12 
Circular Frequency (radians) 

Fig 11.5 The top figure plots the amplitudes of the Fourier Transform of the 
exponential moving average of length 3 (plotted as +) and length 6 (plotted as x) 
versus the circular frequency CO from 0 to 57t. It can be noted that while the 
amplitude falls between 0 to %, it rises between it to 2n. The bottom figure plots 
the phases of the Fourier Transform of the exponential moving average of length 
3 (plotted as +) and length 6 (plotted as x) versus the circular frequency CO from 
0 to 57t. While there is a phase lag between 0 to %, there is a phase lead between 
71 to 2JI. 

Thus, reducing the data from a timeframe to a timeframe with a 
longer term would have several disadvantages. Fortunately, with respect 
to the second and third disadvantages, the situation is not so bad, as 
higher frequencies (smaller cycle period) in market data has 
proportionately smaller amplitudes than the amplitudes in lower 
frequencies (longer cycle period). This amplitude variation has been 
pointed out by Ehlers [1992]. The amplitude of a market cycle has been 
observed empirically to be in proportion to the selected time scale. Thus, 
if the time and price scales were removed from the daily and weekly bar 
charts for the same commodity, one would not be able to tell which one 
is weekly, and which one is daily. This observation is consistent with the 
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Fig 11.6 plots a market price simulated by a pure sine wave of frequency 7t/4 
(plotted as . and joined by a line). Downsampling 5 would yield a signal of 
frequency 5rc/4. The EMA of length 3 (EMA3) of this signal is plotted in the 
figure (plotted as +) in the format of skipped convolution. This would represent 
how the EMA of the signal would look like in the long-term chart, but in a more 
detailed fashion [Mak 2003]. An EMA of length 13 (EMA13), which should 
yield similar smoothness of the original signal is also plotted (plotted as x) for 
comparison. In consistent with Fig 11.5, the EMA3 of signal of frequency 5JC/4 
has an amplitude larger than the EMA13 of the original signal, and a phase lead 
compared to the original signal. 

findings by Mantegna and Stanley [1995], who discovered that the 
successive variations of the S&P 500 index, Z, scaled with respect 
to the time interval, At. Scaling behavior was observed for time 
intervals spanning three orders of magnitude, from 1 minute to 1000 
minutes. The probability distribution for the scaled variable, Z/(Af)0'712 is 
approximately the same for all these time intervals. 

11.2 Multiple Screen Trading System 

As mentioned earlier, a triple screen trading system has been suggested 
by Elder [1993, 2002]. We can look at the system in the following 
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perspective. The first screen would preferably represent a low frequency 
that portraits the market trend. The second screen would represent a 
middle frequency that offers buying or selling opportunities. The third 
screen would represent a high frequency that triggers a buy or sell order. 
As the first two screens are used for decision making, and the third 
screen is used for placing orders, we will only consider the first two 
screens below. 

The first screen is a long-term chart, which is taken to be weekly 
by Elder. A trend-following indicator should be applied to the data in the 
long-term chart, and a strategic decision should be made whether to trade 
long or short, or to stand aside. The original version of the Triple Screen 
Trading System employed the slope of the weekly MACD-Histogram as 
its weekly trend-following indicator [Elder 1993]. This, of course, is not 
correct. MACD-Histogram, as discussed earlier, is not a low-pass 
trending indicator, but a band-pass indicator. This indicator was 
eventually found to be very sensitive, yielding many buy and sell signals. 
It was then replaced by the slope of a weekly exponential moving 
average, which is used as the main trend-following indicator on long-
term charts [Elder 2002]. When the weekly EMA rises, it identifies a 
bull move, and the trader should go long. When it falls, it indicates a 
bear move, and the trader should go short. As EMA is a trending 
indicator, it suits well for the first screen. 

The second screen is an intermediate-term chart, which is taken 
to be daily by Elder. It was suggested that oscillators should be used to 
look for trading opportunities in the direction of the long-term trend. 
When the weekly trend is up, the trader should wait for the daily 
oscillators to fall, suggesting buy signals. When the weekly trend is 
down, the trader should look for daily oscillators to rise, giving sell 
signals. One of the choices of oscillators is the MACD-Histogram [Elder 
2003]. This is not exactly correct. MACD-Histogram is not an 
oscillator, which is a high-pass filter. As we will show later, the slope of 
the MACD-Histogram should be used. The MACD-Histogram, acting as 
a band-pass filter, retains the middle frequency. The slope of the middle 
frequency would signify buying or selling opportunities. As a matter of 
fact, even though Elder [2002] plotted MACD-Histogram in his second 
screen, he was using the turning points of the MACD-Histogram to 
indicate trading opportunities. This is thus consistent with what we are 
suggesting here. 
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When the trend in the first screen is up, the trader should wait for 
the indicator in the second screen to go from negative to positive before 
executing a buy order. He can take profit when the indicator in the 
second screen goes from positive to negative. However, he should not 
sell short at this point. 

When the trend in the first screen is down, the trader should wait 
for the indicator in the second screen to go from positive to negative 
before executing a sell order. He can take profit when the indicator in 
the second screen goes from negative to positive. However, he should 
not go long at this point. 

We will devise here a trading plan, which is a slight modification 
of what is suggested by Elder [2002]: 

(1) In the first screen, instead of the EMA of length 26 (used by Elder) 
applied to the market price in the long-term timeframe, we will use 
an EMA of length 130 in an intermediate timeframe. As discussed 
earlier, an EMA of length 130 has similar smoothness capability as 
an EMA of length 26 in a down 5 long-term timeframe. However, 
operating in the intermediate timeframe would eliminate some of the 
disadvantages of the long-term timeframe. A convolution of a 
velocity indicator is constructed on the EMA of length 130 and is 
plotted. If the velocity is positive, the trader will consider going 
long. If the velocity is negative, then the trader will consider going 
short. The cubic velocity indicator introduced by Mak [2003] is used 
here as it can easily tell whether the slope that it represents is 
positive or negative. It saves the effort of eyeballing the slope of the 
EMA, which is what Elder [2002] does. 

(2) In the second screen, an intermediate-term timeframe would be used 
as suggested by Elder [2002]. However, instead of the MACD-
Histogram used by Elder [2002], we will be using the cubic velocity 
of the MACD-Histogram. This would serve as an oscillator. The 
default values of the MACD-Histogram used by traders (12, 
26 and 9) will be used. When the velocity in the first screen is 
positive, the trader would buy when the oscillator in the second 
screen goes from negative to positive. He will take profit when the 
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velocity in the second screen becomes negative. When the velocity 
in the first screen is negative, the trader would sell when the 
oscillator in the second screen goes from positive to negative. He 
will take profit when the velocity in the second screen becomes 
positive. 

Fig 11.7(a) plots the amplitude responses of the EMA of 
length 130 and the MACD-Histogram. Fig 11.7(b) plots the phase 
responses of the EMA of length 130 and the MACD-Histogram. It can 
be seen from Fig 11.7(a) that the EMA of length 130 retains the low 
frequency of the signal and eliminates other frequencies, especially 
the high frequency, while the MACD-Histogram retains the middle 
frequency and attempts to eliminate the low frequency and the high 
frequency. 

11.2.1 Examples of a Trading System 

Theoretical waveforms with a low, middle and high frequencies will be 
used as examples here. Ideally, the EMA applied in the first screen will 
eliminate the middle and high frequencies and retain only the low 
frequency, and the MACD-Histogram applied in the second screen will 
eliminate the low and high frequencies and retain only the middle 
frequency. 

(1) A price signal, p, of three frequencies is constructed as follows: 

p = 4sin (rcn/lOO) + sin (rcn/20) + O.lsin (nn/4) (11.1) 

where n is a positive integer. 

This price signal is plotted in Fig 11.8(a). An exponential 
moving average (EMA) of length 130 (denoted by +) is applied to the 
price signal. A cubic velocity indicator is applied to the EMA and 
plotted in Fig 11.8(b), which forms the first screen. An MACD-
Histogram of values 12, 26 and 9 is applied to the original price signal. 
The cubic velocity of the MACD-Histogram is then calculated and is 
plotted in Fig 11.8(c), which forms the second screen. 
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EMA: M=130(+), MACDHistogram (12,26, 9) (x) 
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Circular Frequency (radians) 

3.5 

Fig 11.7(a) The amplitudes of the Fourier Transform of the EMA of length 130 
(plotted as +) and the MACD-Histogram (plotted as x) are plotted versus 
circular frequency CO. 

EMA: M=130 (+), MACDHistogram (12,26,9) (x) 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig 11.7(b) The phases of the Fourier Transform of the EMA of length 130 
(plotted as +) and the MACD-Histogram (plotted as x) are plotted versus 
circular frequency CO. 
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Fig 11.8(a) The price signal is plotted as a line. An exponential moving 
average (EMA) of length 130 (denoted by +) is applied to the price signal, (b) A 
cubic velocity indicator is applied to the EMA in (a). This forms the first screen 
in the trading system, (c) An MACD-Histogram of values 12, 26 and 9 is 
applied to the original price signal in (a). The cubic velocity of the MACD-
Histogram is then calculated and is plotted. This forms the second screen in the 
trading system. 

Ideally, the first screen should present a signal of the low 
frequency jt/100, and the second screen should display a signal of the 
middle frequency 7t/20. This would provide traders with clear-cut buy 
and sell signals. In reality, as trending and oscillator indicators are never 
perfect, we would see a mixture of the two signals in both screens. 
Hopefully, the first screen would contain mostly the low frequency, and 
the second screen would contain mostly the middle frequency. 

At n = 394, the velocity in the first screen (Fig 11.8(b)) changes 
from negative to positive. The trader should wait for the velocity in the 
second screen (Fig 11.8(c)) to go from negative to positive, which 
happens at n = 425. The trader should then buy and hold until n = 444, 
when the velocity in the second screen becomes negative. 
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At n = 494, the velocity in the first screen (Fig 11.8(b)) 
changes from positive to negative. The trader should wait for the 
velocity in the second screen (Fig 11.8(c)) to go from positive to 
negative, which happens at n = 525. The trader should then sell 
and hold until n = 544, when the velocity in the second screen becomes 
positive. 

(2) A price signal, p, of three frequencies is constructed as follows: 

p = 4sin (nn/50) + sin (7tn/10) + O.lsin (rcn/2) (11.2) 

where n is a positive integer. 

This price signal is plotted in Fig 11.9(a). An exponential 
moving average (EMA) of length 130 (denoted by +) is applied to the 
price signal. A cubic velocity indicator is applied to the EM A and 
plotted in Fig 11.9(b), which forms the first screen. An MACD-
Histogram of values 12, 26 and 9 is applied to the original price signal. 
The cubic velocity of the MACD-Histogram is then calculated and is 
plotted in Fig 11.9(c), which forms the second screen. 

At n = 349, the velocity in the first screen (Fig 11.9(b)) 
changes from positive to negative. The trader should wait for the 
velocity in the second screen (Fig 11.9(c)) to go from positive to 
negative, which happens at n = 366. The trader should then sell 
and hold until n = 375, when the velocity in the second screen becomes 
positive. 

At n = 399, the velocity in the first screen (Fig 11.9(b)) 
changes from negative to positive. The trader should wait for the 
velocity in the second screen (Fig 11.9(c)) to go from negative to 
positive, which happens at n = 416. The trader should then buy 
and hold until n = 425, when the velocity in the second screen becomes 
negative. 

(3) The trading system, however, will not work for the above two 
examples if the amplitude of the high frequency signal is increased from 
0.1 to 0.25. 
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Fig 11.9(a) The price signal is plotted as a line. An exponential moving 
average (EMA) of length 130 (denoted by +) is applied to the price signal, (b) A 
cubic velocity indicator is applied to the EMA in (a). This forms the first screen 
in the trading system, (c) An MACD-Histogram of values 12, 26 and 9 is 
applied to the original price signal in (a). The cubic velocity of the MACD-
Histogram is then calculated and is plotted. This forms the second screen in the 
trading system. 

Take, for example, a price signal, p, of three frequencies constructed as 
follows: 

p = 4sin (7tn/50) + sin (Ttn/10) + 0.25sin (nn/2) 

where n is a positive integer. 

(11.3) 

This price signal is plotted in Fig 11.10(a). An exponential 
moving average (EMA) of length 130 (denoted by +) is applied to the 
price signal. A cubic velocity indicator is applied to the EMA and 
plotted in Fig 11.10(b), which forms the first screen. An MACD-
Histogram of values 12, 26 and 9 is applied to the original price signal. 
The cubic velocity of the MACD-Histogram is then calculated and is 
plotted in Fig 11.10(c), which forms the second screen. 
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Fig 11.10(a) The price signal is plotted as a line. An exponential moving 
average (EMA) of length 130 (denoted by +) is applied to the price signal, (b) A 
cubic velocity indicator is applied to the EMA in (a). This forms the first screen 
in the trading system, (c) An MACD-Histogram of values 12, 26 and 9 is 
applied to the original price signal in (a). The cubic velocity of the MACD-
Histogram is then calculated and is plotted. This forms the second screen in the 
trading system. 

The first screen (Fig 11.10(b)) looks similar to but noisier than 
Fig 11.9(b). We can still easily tell when the market is trending up, and 
when it is trending down. However, in Fig 11.10(c), as MACD-
Histogram does not eliminate high frequency signal well, the velocity of 
the MACD-Histogram, shown in this second screen (Fig 11.10(c)), is 
therefore, quite noisy. Thus, it is difficult to find buying and selling 
opportunities. 

11.2.2 Triple Screen Trading System 

In section 11.2.1, market price is modeled as a combination of a low 
frequency, a middle frequency, and a high frequency. The objective of 
the trading plan devised is to isolate the low frequency in the first screen 
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and the middle frequency in the second screen. These two screens 
correspond to the first two screens of the Triple Screen suggested by 
Elder [1993, 2002]. The examples described in section 11.2.1 shows that 
the popular Triple Screen Trading System does make sense. However, 
its success would very much depend on the frequencies and amplitudes 
of the frequencies of the signal. 

It is possible that the Triple Screen Trading System can be 
improved by using scaling function and wavelets. While the scaling 
function serves as a low pass filter, the wavelets can serve as band-pass 
filters [Mak 2003]. 

11.3 Test of a Trading System 

As the frequencies (or periods) of a market price signal change quite 
often, there is only certain probabilities that a trading plan is profitable. 
A trader would not, of course, expect a trading plan to be profitable in all 
market conditions. 

To test whether a trading plan is reasonable and profitable, the 
following steps should be performed: 

(1) The frequency characteristics, i.e., the amplitude and phase, of the 
indicators applied to market data in the multiple screens should be 
studied. 

(2) The trading plan should be applied to various theoretical waveforms 
of different frequencies and amplitudes to see what are its advantages 
and limitations. 

(3) The trading plan should be applied to a large number of real market 
data to see whether it is profitable. 

As any trading system would have only a limited probability of 
success in an ever-changing financial market, a trader should learn how 
to manage his money. We will deal with the money management issue in 
the next two chapters. 



Chapter 12 

Money Management — 
Time Independent Case 

Management is the act of handling direction or control of a task. Ideally, 
one should use the minimum resources - time, effort, and money - to 
achieve the maximum success. The act of managing money - money 
management, is how one should utilize his money to attain the maximum 
reward. 

In the financial market, a trader should realize that the task that 
he is performing has only a certain probability of success, and, as such, 
he should not put all his eggs in one basket. Furthermore, he needs to 
realize that he may run into a string of losses in a row. He thus needs to 
arrange his finance such that he can survive those draw-downs. A 
professional trader would arrange to cut his loss in every single trade. 
He would put a stop-loss order at the same time he puts in a buy or sell 
order. He usually would limit his loss to two percent of his equity in a 
single trade. 

If a trader knows the probability distribution of the variations of 
share prices, it would definitely help him with his money management 
planning. The variation of share price is quite often taken as a random 
process. While this may not necessarily be true, it can be taken as a good 
approximation for calculation purpose. As described in Mantegna and 
Stanley [2000], idealization and approximation are quite common in 
scientific investigations. For example, in Physics, frictionless motion has 
been employed to develop laws in dynamics, while, in the real world, 
frictionless motion rarely happens. Thus, while the financial market may 
not be a random process, we may be able to devise some useful results 
assuming that it is. 

178 
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12.1 Probability Distribution of Price Variation 

We will take a look at the probability distribution of the price variation 
of the market and how money management technique can be designed 
with that information. The S & P 500 index would be taken as an 
example. The statistical distribution of the S & P 500 index has been 
studied for a time-scale that ranges from 1 minute to 1000 minutes 
during a six-year period from January 1984 to December 1989 
[Mantegna and Stanley 1995], It has been found that, except for the 
most rare events, it is a stochastic process that is quite well described by 
a Levy stable symmetrical process. The Levy distribution is given by: 

L ( Z , A t ) s - fexp(-YAtqa)cos(qZ)dq (12.1) 
71 o 

where 

Z = y( t + At) - y( t ) is the successive index variation 

y(t) is the value of the S & P 500 index 

At is taken to be 1 time unit 

a is an index determined empirically to be 1.40 +/- 0.05 

Y is a scale factor determined empirically as 0.00375 

The notation, Z, has a different meaning from the same notation 
denoted in Section 2.1.3. It is used here to conform to the notation of 
Mantegna and Stanley [1995, 2000]. The probability distribution f(Z), 
which is given by Eq (12.1), is plotted in Fig 12.1. For At equals to 1, 
the standard deviation, c, is determined from the experimental data and 
is equal to 0.0508 [Mantegna and Stanley 1995]. The experimental data 
agrees well with the theoretical Levy profile up to IZI/0 < 6 (i.e., IZI < 0.3 
approximately). For IZI/c > 6, the data falls off exponentially from the 
stable distribution. The fall-off can be more easily visualized in 
Mantegna and Stanley [1995] where log10f(Z) is plotted versus Z/a. 
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Levy distribution, S&P500 

Fig 12.1 Levy stable symmetrical distribution of the S & P 500 for time interval 
At = 1 minute, a = 1.40 and y= 0.00375. 

The S & P 500 data has been re-scaled for At = 3 , 10, 32, 100, 
316 and 1000 minutes under the transformations [Mantegna and Stanley 
1995] 

Zm(At = l ) S -
(At) l /a 

(12.2) 

and 

L m ( Z m , A t = l ) s 
L(Z,At) 

(At) -l/a 
(12.3) 

All the data collapse on the At = 1 minute distribution. Thus, it 
was concluded that a Levy distribution describes well the probability 
distribution of the S & P 500 index over time intervals spanning three 
orders of magnitude. 
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We have calculated the area under the curve L(Z, At) for At = 1 
(depicted in Fig 12.1) and obtained a result of 0.9996. We will consider 
the area equals to 1 for all calculations later. Thus, we will consider L(Z, 
At) = f(Z) as a probability density function (pdf), as it satisfy the 
conditions [Freund 1992, Meyer 1966]: 

(1) f(Z)>0 for - ° ° < Z < ~ ; (12.4a) 

(2) jf(Z)dZ = l (12.4b) 

12.2 Probability of Being Stopped Out in a Trade 

Given the probability density function f(Z), we will be able to calculate 
the probability, p, that a trade will be stopped out if a trader sets his stop-
loss value to be Zstop. The probability, p, can be given by: 

p = f f ( Z ) d Z (12.5) 

where s = Zstop < 0 

We assume that the trader is buying and therefore going long. 
As the theory for selling short is very similar, the mathematical 
formulation would not be repeated here. Table 12.1 lists the Zstop 's and 
their p values for At = 1. In the table, A is the area below the Levy 
distribution enclosed by Zstop and -Zstop (which is positive). It 
represents the probability that the variation in Z will lie within Zstop and 
-Zstop . p can then be calculated as (1 - A)/2. When Zstop is set at -0.05, 
which is approximately minus one standard deviation, A is 
approximately equal to 0.86. This can be compared with a standard 
normal distribution where A equals to 0.68 for one standard distribution. 
Thus, the Levy distribution is more advantageous to the trader than if the 
market had a normal distribution, as the probability of being stopped out 
is less, p' ( = 1 - p ) is the probability that the trade will not be stopped 
out if the stop-loss value is set to Zstop. p is plotted versus Zstop in Fig 
12.2. It can be noted that p increases somewhat exponentially as Zstop 
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approaches 0. The figure is significant as it shows the trader what kind 
of risk he would encounter. He needs to set his stop-loss such that his 
trade would not have a high probability of being stopped out. 

^stop 

0 

-0.0125 

-0.025 

-0.0375 

-0.05 

-0.0625 

-0.075 

-0.0875 

-0.10 

A 

0 

.3690 

.6319 

.7805 

.8584 

.9008 

.9259 

.9419 

.9528 

p = (l-A)/2 

.5 

.3155 

.1841 

.1097 

.0708 

.0496 

.0371 

.0291 

.0236 

P' = l-P 

.5 

.6845 

.8159 

.8903 

.9292 

.9504 

.9629 

.9709 

.9764 

E(Z') 

.0165 

.0114 

.0083 

.0066 

.0055 

.0047 

.0042 

.0038 

.0035 

Table 12.1 The probability of being stopped out of a trade, p, and the 
expected value of a trade, E(Z') depends on the stop-loss value Zst0p. The 
calculation is performed for the S & P 500 index for time interval At = 1 
minute. The index is assumed to be completely random. 
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Z stop, Delta t = 1 

Fig 12.2 The probability of being stopped, p, at different Zstop 's. The 
calculation is performed for the S & P 500 index for time interval At = 1 minute. 
The index is assumed to be completely random. 

As f(Z) = L(Z), it can be shown from Eq (12.5), (12.2) and 
(12.3) that 

p(Z, At) = Pm(Zm, At = 1) (12.6) 

Thus, a trader trading in a timeframe with time unit At and 
setting his stoploss to Z, can find out the probability of his trade being 
stopped by using Eq (12.2) and then look it up in Table 12.1, where Zstop 

= Zm , and p = pm(Zm, At = 1). 

It should be noted that the data of Mantegna and Stanley [1995] 
employed here used closing prices of the market value, and did not 
consider high and low value during the time interval At. Thus, the actual 
probability of being stopped out should be higher. Furthermore, their 
data was taken from the market from January 1984 to December 1989. 
Traders who want to trade today's market need to check the current data 
and see whether any parameters have been changed from those listed in 
Eq(12.1) 
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12.3 Expected Value of a Trade 

In probability theory, if Z' is a continuous random variable with 
probability density function (pdf) f, the expected value of Z' is defined as 
[Freund 1992, Meyer 1966] 

CO 

E(Z')= jZf(Z)dZ (12.7) 
- 0 0 

where Z is a possible value of Z'. E(Z') is also referred to as the mean 
value of Z' . If f(Z) is symmetrical with respect to Z, the mean value is 
equal to 0. Therefore, if a trader enters a trade, and does not put a stop-
loss order, his expected return is 0. However, if he puts in a stop-loss 
order, his expected return is given as follows: 

E(Z') = sJS
oof(Z)dZ+ j"°°Zf(Z)dZ (12.8) 

where s = Zstop is the stop-loss value and is negative. 

Eq (12.8) simply means that the trader limits his loss to the stop-
loss value, s. If f(Z) is symmetrical with respect to Z, Eq (12.8) can be 
written as 

00 

E(Z')= J(Z + s)f(Z)dZ (12.9) 
- s 

As Z in the right-hand-side of Eq (12.9) is greater than or equal 
to -s (which is positive), the integrand inside the integral is greater than 
or equal to zero. Therefore, the expected value is always positive. It 
simply means that for a completely random market, the trader can make 
a profit in the long run if he puts stop-losses to his trades. Fig 12.3 plots 
the expected value of being stopped, E(Z'), at different Zstop 's. The 
calculation is performed for the S & P 500 index for time interval At = 1 
minute. 
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Fig 12.3 The expected value of being stopped, E(Z'), at different Zstop 's. The 
calculation is performed for the S & P 500 index for time interval At = 1 minute. 
The index is assumed to be completely random. 

If f(Z) is not symmetrical with respect to Z, Eq (12.8) can still be 
positive, depending upon how f(Z) is distributed. As long as Eq (12.8) is 
positive, the trader would have a positive gain in the long run. 

Some professional traders claim that even if the market were 
random, with good money management, the market is still profitable. 
The result derived here supports their claim. 

The expected values, E(Z'), of the S & P 500 is listed in Table 
12.1 as a function of stop-loss values. As the S & P 500 index is 
discrete, but we take an approximation in our equations that it is 
continuous, the actual expected values should be slightly less than those 
listed in the Table. The expected value is largest when the stop-loss 
value is set equal to zero. However, no trader in his right mind would set 
the stop-loss value to be zero, as it corresponds to the largest probability 
where the trade will be stopped out. Thus, he has to find a compromise 
somewhere - a stop-loss value where he can afford the risk even in a 
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string of losses (draw-down) but still will give him a reasonable profit in 
the long run. 

The expected value can be re-scaled under the transformation: 

E(Z',At) 
Em(Zm ' ,At = l ) S - ^ 7 ^ (12.10) 

Thus, to find the expected value at certain time unit, At, the Zstop 

and E(Z') of each row in Table 12.1 should be multiplied by (At)1/a . 

In this Chapter, we consider the trade being terminated in one 
time unit (e.g., 1 minute, 3 minutes, etc.). However, traders usually 
would hold the trade for much longer. What kind of gain or loss would 
he expect? We will consider this in the next Chapter. We will also show 
that, for the case of a trailing stop-loss, the scenario is consistent with the 
scenario described in this Chapter. 



Chapter 13 

Money Management — 
Time Dependent Case 

In the last chapter, we discuss the scenario of a trader entering a trade 
and holding it for one time unit. If he puts in a stop-loss order every time 
he puts in a trade, he would expect a positive return in the long run. 

However, a trader usually holds his trade for more than one time 
unit to increase his gain, if any. If so, at what time units (e.g., number of 
days) should he get out, in order to maximize his profit? Would that 
depend on the value of the stop-loss order he puts in? We will attempt to 
answer these questions in this Chapter. But first, we will describe some 
of the probability theory that needs to be used later. 

13.1 Basic Probability Theory 

13.1.1 Experiment and the Sample Space 

In discussing probability, an experiment is defined as a process that 
generates well-defined outcomes or sample points. One and only one of 
the outcomes will occur. The set of all possible outcomes of the 
experiment forms the sample space, S. For example, in tossing a coin, 
the sample space is {head, tail}. In rolling a dice, the sample space is {1, 
2, 3, 4, 5, 6}. When a trader puts a stop-loss order in his trade, the 
possible outcomes in day one will form a sample space {trade stopped, 
trade not stopped}. 

187 
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13.1.2 Events 

With respect to a particular sample space, an event is a set of possible 
outcomes, or a collection of sample points. In the terminology of set 
theory, an event is a subset of a sample space. For example, in the 
rolling of a dice, if we describe an event as when an odd number occurs, 
the event would be {1,3,5}. 

Events can be combined to form new events. If A and B are 
events, the union of A and B, A u B is the event which occurs if and 
only if A or B or both occur. Thus, the union of A and B contains all 
sample points belonging to A or B or both. 

The intersection of A and B, A n B is the event which occurs if 
and only if both A and B occur. Thus, the intersection of A and B 
contains the sample points belonging to both A and B. 

Two events, A and B, are defined to be mutually exclusive if 
they cannot occur together. The two events have no sample points in 
common. This can be expressed as A n B = <)); i.e., the intersection of A 
and B is an empty set. 

Furthermore, the following properties are defined for the 
probability of A, P(A) [Meyer 1965]: 

(1)0<P(A)<1 (13.1) 

(2) P(S) = 1 (13.2) 

(3) If A and B are mutually exclusive events, 

P(A u B) = P(A) + P(B) (13.3) 

If Ai, A2, An, ....are pair-wise mutually exclusive events, it 
follows from property (3) that 

U=l 
= X P ( A i > (13-4> 

i=l 
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Eq (13.4) is sometimes called the Addition Law for mutually 
exclusive events [Anderson et al 2005]. 

13.1.3 Independent Events 

The probability of an event is quite often influenced by whether a 
related event has already occurred. The conditional probability of 
event A, given that event B has occurred is denoted by P(AIB), which 
is read as "the probability of A given B". P(AIB) is defined as [Meyer 
1965]: 

P(AIB) = ? ( A n B ) provided that P(B)>0 (13.5) 

There are many situations that the occurrence of event A has 
no bearing to whether event B has occurred. That is, events A and 
B are totally unrelated. The independence of two events A and B is 
defined as: 

P(A n B) = P(A)P(B) (13.6) 

This definition is essentially equivalent to: 

A and B are independent events if 

P(AIB) = P(A) (13.7a) 

or 

P(BIA) = P(B) (13.7b) 

Eq (13.6) is sometimes called the Multiplication Law for 
independent events [Anderson et al 2005]. Both the Addition Law 
for mutually exclusive events, Eq (13.4) and the Multiplication Law 
for independent events, Eq (13.6) will be used to calculate the 
probabilities of certain events in the financial market in the following 
sections. 
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13.2 Trailing Stop-Loss 

A trailing stop-loss is a stop-loss where the trader moves the stop with 
respect to the increasing share price to protect his profit. The difference 
between the share price and the stop can be a constant or a function of 
the market price [Elder 1993, 2002] throughout the trade. We will only 
consider the difference being a constant here. 

We will give an example. A trader buys at t = 0. The share price 
is arbitrarily set to x = 0. Any gain from then on is considered positive, 
and any loss negative. At t = 1, the trade can remain where it is, at x = 0, 
with a probability p(x0) = Vi, or increase to +1 with a probability p(x.\) = 
VA, or decrease to -1 with a probability p(x_0 = lA (Fig. 13.1(a)). If he 
puts a stop-loss order at x = -1, then he will be out of the market if the 
trade drops to -1 at t = 1. He will remain in the market only if the trade 
is at 0 or 1. If the trade is at x = 1, and he decides to put in a trailing 
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Fig 13.1(a) Probability distribution of the share price at t = 1. The original 
share price purchased at t = 0 was x = 0. 
(b) and (c) Probability distribution of the share price at t = 2. For (b), the share 
price centers at 0 from t = 1. For (c), the share price centers at 1 from t = 1. 
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stop-loss order, he would advance his stop-loss from x = -1 to x = 0. The 
trade will then go onto the next time unit, i.e., t = 2. At t = 2, the trade 
can again, remain at x = 0, with a probability of Vz, or increase to 1 with a 
probability of lA, or decrease to -1 with a probability of lA (Fig 13.1(b)). 
If the trade decreases to - 1 , he will be out of the market. If the trade was 
at x = 1 at t = 1, it can remain at x = 1 with a probability of Vi, or increase 
to x = 2 with a probability of lA, or decrease to 0 with a probability of lA 
(Fig 13.1(c)). If the trade decreases to 0, it will be stopped out. If it 
increases to 2, the trader can again move the stop-loss from x = 0 to 
x = 1. As long as he is not being stopped, he can go onto the next 
time unit (e.g., the next day). Every time the trade advances, he will 
move the stop-loss order up. This would, hopefully increases his profit. 
Eventually, at t = k, he decides to cash out. We will now work out what 
is the probability that this will happen, and what is his expected gain, 
or loss. 

13.2.1 Probability and Expected Value 

Let Si be the event that the trade will be stopped out of the market at t = i 
and Si' will be the event that the trade will not be stopped. Let Ck be the 
event that the trader decides to cash out the trade. Then the probability 
that the trade will not be stopped until the trader decides to cash out at t = 
k, will be given by: 

P c( t = k) 

= P ( S 1 ' n S 2
, n S 3 ' n S n ' n C k ) 

=p(s1
,)P(s2

,)P(s3') P t s ^ m c o 

= P(S,') P(S2') P(S3') P( Sk.,') (13.8) 

asP(Ck) = l 

Thus the probability is the same as the probability that the trade 
has not been stopped at t = k - 1. In deriving Eq (13.8), the 
Multiplication Law for independent events, Eq (13.6), has been used, as 
the events are independent of each other. 
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Eq (13.8) can be written as 

m m m 

pc(t=k)= Xp(x i .) Z P ( X ^ R T 2 , S £p(xik-,)RTk_,, (13-9) 
i[=—n+1 i2=-n+l ik_l=—n+1 

where 

p(xi) is the probability that the trade will take on a value x ;, 
i = -m, . . . . -1,0, 1, ....m 

Xj = iAd, Ad is the interval between two adjacent x's. 

Xj < 0 f o r i < 0 

x0 = 0 

Xi > 0 for i > 0 

x _n ( = s < 0) is the stop-loss value 

The subscript j in ij represents the j * time unit, where j = 1,2, ... k-1. 

The lower bound of the summation sign is -n+1. This means that the 
sum starts from an Xi value that has not been stopped. It sums all the 
values that are larger than the stop-loss value. 

Tj is one of the possible values that the trade has attained on the j * time 
unit (e.g. the j * day), and is given by 

Tj =x i i +x i 2 +.... + x i H +x;. =(i, + i 2 + + i H +ij)Ad (13.10) 

= 1 T ; > s 
R T s J 

J' =0 otherwise 
;,s - . J (13-11) 

R is a step function and is usually denoted by S [e.g., Butkov 1968]. It is 
denoted by R here so as not to be confused with the stop-loss value s. 
When Tj is larger than the original stop-loss value, s, R equals to 1. 
Otherwise, R equals to 0. 
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The expected value at t = k is given by: 

Ec(t = k)= Z p(Xi i) I P(xi2)RT2,s I P(Xik_,)RTk-i.! 
il=-n+l i2=-n+l ' * 

m 

x I p(x i k)[(l-D r)s(l-D t) + D r(Tk_1 +s)(l-D t) 
ik=-m 

+ (1 - Ds )sDt + D sTkD t ] (13.12) 

where 

D r = R T k l + s > s (13.13a) 

D t = R T k , T k _ 1 + s ( 1 3 1 3 b ) 

D s = R T k , s (13-13c) 

and 

1 a >b ,«„...., 

Ra,b = ,. . ( 1 3 1 4 ) 
0 otherwise 
While s represents the original stop-loss, Tk.i + s represents the 

trailing stop-loss. (1-Dr) is equal to 1 when the trailing stop-loss is less 
than or equal to the original stop-loss, or, simply, Tk_i is less than or 
equal to 0; otherwise, (1-Dr) is equal to 0. (1-Dt) is equal to 1 when Tk is 
less than or equal to the trailing stop-loss; otherwise, it is equal to 0. (1-
Ds) is equal to 1 when Tk is less than or equal to the original stop-loss; 
otherwise, it is equal to 0. 

Thus, the first two terms inside the square bracket of Eq (13.12) 
means that Tk is less than or equal to the trailing stop-loss. However, the 
first term implies that the trade is stopped by the original stop-loss, and 
therefore takes on the value, s, while the second term implies that the 
trade is stopped by the trailing stop-loss, and therefore takes on the value 
of the trailing stop-loss. The third and fourth term inside the square 
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bracket means that Tk is larger than the trailing stop-loss. However, the 
third term implies that the trade is stopped by the original stop-loss, as Tk 

is less than or equal to the stop-loss, and therefore takes on the stop-loss 
value, s. The fourth term implies that the trade is not stopped at all, but 
is cashed out by the trader, at whatever value, Tk , that the trade has 
attained. 

Note that the last summation starts from -m, this means that for 
a trade that is being stopped, the sum adds up all the probability p(x) for 
x which is less than or equal to the stop-loss value, or the trailing stop-
loss value. 

As an example, we will choose the possible values of X; to be 
(-0.075, -0.05, -0.025, 0, 0.025, 0.05, 0.075) and calculate the normalized 
probabilities at those values for the S & P 500 at At = 1 minute using 
Eq (12.1). This probability distribution is shown in Fig. 13.2. The 
probabilities have been normalized such that their sum is equal to 1. 

Normalized probability distribution for S & P 500 
0.45 I , 1 1 , 1 , 1 1 
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rjl 1 1 1 1 1 1 1 
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.0B 

Z, Delta t = 1 

Fig 13.2 Example values of the normalized probabilities of the S & P 500 index 
at At = 1 minute, used for the calculation of the expected value of a trade. Here, 
Ad = 0.025. 
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Fig 13.3 Expected value of a trade at t minutes, provided that the trade has not 
been stopped out of the market before t. The trailing stop-loss value is set equal 
to -0.025 S & P 500 index point. 

Choosing the stop-loss value to be equal to -0.025, the expected value Ec 

is calculated and plotted versus time t, in Fig 13.3. It can be seen that Ec 

goes through a local maximum. The implication is that once the trader 
decides on what the stop-loss value is, he should cash out at t where Ec is 
maximum in order to gain maximum benefit. This, of course, assumes 
that the trade has not been stopped out before then. 

13.2.2 Total Probability and Total Expected Value 

In the last section, we discuss the probability and expected value of a 
trade at time t = k, assuming that the trade has not been stopped out 
before t = k. What is the probability and expected value if the trade has 
been stopped, either by the original stop-loss or the trailing stop-loss 
before then? And what are the total probability and the total expected 
value of all these events that can happen? We will attempt to answer 
these questions. 
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The total probability, PT , that a trade may be stopped by the 
original stop-loss or the trailing stop-loss before t = k or the trader 
decides to cash the trade out at t = k, is given by: 

PT = P[Si u (Si 'n S 2 ) u ( S i ' n S2 ' n S3) u ... 

... u (Si' n S2' n S3' n S t , ) 

u ( S i ' n S 2 ' n S 3 ' n S b l ' n C k ) ] 

= P(S,) + P(S, 'n S2) +P(S , 'n S2 ' n S3) + ... 

. . .P (S i 'nS 2 ' nS 3 ' n S t l ) 

+P(Si' n S2" n S3' n S f c i ' n C k ) 

= P.(t = 1) + P,(t = 2) + P,(t = 3) +.... + P,(t = k-1) + Pc(t = k) 

(13.15) 

Si means that the trade is being stopped at t = 1. (S t ' n S2) 
means that the trade is not stopped at t = 1, but is stopped at t = 2. (Si' n 
S2' n S3' n S k.i' n C k ) means that the trade is not stopped 
before t = k, but is cashed out by the trader at t = k. In deriving Eq 
(13.15), the Summation Law for mutually exclusive events, Eq (13.4), 
has been used. 

The probability that the trade is being stopped at t = j , Ps(t = j) is 
given by 

m m m 
Ps(t = j)= I p(xij) I p(x i2)RT2)S I P(xii_1)RTj_1,8 

il=-n+l i2=-n+l ij_l=-n+l 

m 
x Z pUi ) [ ( l -D r ) ( l -D t ) + D r ( l - D t ) + ( l -D s )D t ] 

ij=-m 

(13.16) 
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wherej = 1,2,... k-1 

It can be shown that, given 

Ip(Xi) = l (13-17) 
i=-m 

PT is equal to 1. 

This is simply because PT in Eq (13.15) is equivalent to: 

m m m m 
P T = I P K ) E P(* i2) S P(xik_,) I P(x ik) (13.18) 

il=-m i2=-m ik - l= - m i k = - m 

As each summation is equal to 1, PT is equal to 1. 

The total expected value, ET , that a trade may be stopped by the 
original stop-loss or the trailing stop-loss before t = k or the trader 
decides to cash the trade out at t = k, is given by: 

ET = E [ S , u ( S 1
, n S 2 ) u ( S i ' n S2 ' n S3) u ... 

... u (Si' n S2' n S3' n S H ) 

u ( S 1 ' n S 2
, n S 3 ' n S H ' n C k ) ] 

=E(Si) + E(Si' n S2) +E(Si 'n S 2 ' n S3) + ... 

. . .E(S 1 ' nS 2 ' nS 3 ' n S H ) 

+E(Si 'nS 2 ' n S3' n S k . , ' n C k ) 

= E,(t = 1) + E,(t = 2) + Es(t=3) +....+ E.(t = k-1) + Ec(t = k) 

(13.19) 
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The expected value when the trade is being stopped at t = j , 
E s ( t=j ) is given by: 

Es(t = j)= I p(x ; ) Z p(xi2)RT2iS I p(xs )RT 
ij=—n+1 i2=-n+l ij-1- n+1 

x I p(Xi. )[(1 - D r )s(l - D t ) + D r ( T H + s)(l - D t ) 

+ ( l - D s ) s D t ] (13.20) 

The total expected value, Er, is plotted in Fig 13.4 
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Fig 13.4 Total expected value of a trade at t minutes, when the trailing stop-loss 
value is set equal to -0.025 S & P 500 index point. 
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13.2.3 Average Time 

As a trade can be stopped at t = 1, or t = 2, ..., or cashed out by the trader 
at t = k, the average time of a trade, Et, can be described as the expected 
value of time that a trade is being stopped or cashed out, and is given by 

E, = P,(t = 1) x 1 + Ps(t = 2) x 2 + P,(t = 3) x 3 +.... + Ps(t = k-1) x 

(k-1) + Pc(t = k) x k (13.21) 

13.2.4 Total Expected Value/Average Time 

The average profit per average time unit, EA , is given by: 

EA= Er/E, (13.22) 

Taking s = x _u EA is found to be a constant with respect to t, 
whatever m is chosen to be ( 2m+l is the number of possible discrete 
values of Xj , i.e, x_m , x.ra+1 , , xm_i , xm ). Using the probability 
distribution depicted in Fig 13.2, EA is calculated and plotted versus t, 
showing that it is a constant. This finding is surprising and interesting, 
especially considering that the numerator and denominator in Eq (13.22) 
has different mathematical formulations. The constant value, 0.00252, in 
Fig. 13.5 is much less than the value of 0.0083 listed in Table 13.1, as 
only a few Xi's are used in the calculation for illustration purpose (m is 
only taken to be 3 and Ad is taken to be 0.025). 0.0083 is considered a 
more accurate representation for a stop-loss value of -0.025. Taking s to 
be less than x _t ,(e.g., x _2), EA will approach a near constant after the 
first few time units. Using a probability distribution depicted in Fig 13.6, 
and s = x _2, EA is calculated and plotted versus t in Fig 13.7. The initial 
lower value is caused by the trade being stopped by the original stop-
loss. As t increases, most trades are stopped by the trailing stop-losses. 

The implication of all these is that if the trader decides to stay in 
the market all the time (i.e., he will get back in the market as soon as he 
gets out), it does not matter which time unit (e.g., which day) he 
predetermines to cash out his trade. His profit would be the same. It can 
further be implied that he can leave his trade in the market, with a 
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trailing stop-loss, and let the market stop him out. This, actually, is what 
a number of professional traders choose to do. This method has an 
advantage that if the market is not completely random, and is directional 
some of the time, the trader can rip the most benefit. 

The above result can be compared with the result in the time-
independent case. When a trader puts a trailing stop-loss to his trade, the 
difference between the market value and the stop-loss is always a 
constant. The result obtained, thus, should be, and is, consistent with 
that derived from the time-independent case. 

The probability model employed here ignores commissions. 
Thus, the trade would be less profitable if the trader chooses to cash out 
his trade within the first few time units, providing he is not being stopped 
out before then. 

A MATLAB program for calculating probabilities and expected 
value of a trade for the S & P 500 index using trailing stop-loss order is 
listed in Appendix 5. It can be modified to calculate other markets if the 
probability distribution of the other markets is used in the program. 
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Fig 13.5 Total expected value/Average time of a trade at t minutes. The trailing 
stop-loss value is set equal to -0.025 (= x _!) S & P 500 index point. 
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0.25 
Normalized probability distribution for S & P 500 
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Fig 13.6 Example values of the normalized probabilities of the S & P 500 index 
at At = 1 minute, used for the calculation of the expected value of a trade. Here, 
Ad = 0.0125. 
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As a comparison to the trailing stop-loss technique, we will 
calculate the probabilities and expected values of a trade using a fixed 
stop-loss order in the next section. It will be shown that the fixed stop-
loss technique is less profitable than the trailing one. 

13.3 Fixed Stop-Loss 

The trader can choose to fix his stop-loss instead of letting it trailing, 
i.e., he leaves the stop-loss value not changed during the whole trade. 
This technique has the advantage that he does not have to watch the 
market at all. He can decide to cash out his trade at t = k, provided that 
the trade has not been stopped out before then. We will now work out 
what is the probability that this can happen, and what is his expected 
gain, or loss. 

13.3.1 Probability and Expected Value 

Let Si be the event that the trade will be stopped out of the market at t = i 
and Si' will be the event that the trade will not be stopped. Let Ck be the 
event that the trader decides to cash out the trade. Then the probability 
that the trade will not be stopped until the trader decides to cash out at t = 
k, will be given by: 

P c( t = k) 

= P (S 1 ' nS 2 ' nS 3 ' n S k . , ' n C k ) 

= P(S1 ')P(S2
,)P(S3 ') P(S k 4 ' )P(C k) 

= P(S,')P(S2 ')P(S3 ') P(Sk.,') (13.23) 

asP(Ck) = l 

Thus the probability is the same as the probability that the trade 
has not been stopped at t = k - 1. 
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Eq (13.23) can be written as 

m m m 

Pc(t = k) = S P O ^ T , , , £p(xi2)RT2,s 2>(xik-,)
RTk_„s (13-24) 

i ,=-m i 2 = _ m ' t - i = _ m 

where 

p(Xi) is the probability that the trade will take on a value x ;, 

i = -m, . . . . - 1 , 0 , 1, ....m 

Xi = iAd, Ad is the interval between two adjacent x's. 

Xi < 0 f o r i < 0 

x0 = 0 

X; > 0 f o r i > 0 

x .„ ( = s < 0) is the stop-loss value 

The subscript j in ij represents the j * time unit, where j = 1, ... k-1 

Tj is one of the possible values that the trade has attained on the j * time 
unit (e.g. the j * day), and is given by 

^ =X i [ +x i 2 +.... + xlj_i +X i . =(i! + i 2 + + i H +ij)Ad (13.25) 

= 1 T : > s 
R T s

 J (13.26) 
•>' =0 otherwise 

When Tj is larger than the fixed stop-loss value, s, R equals to 1. 
Otherwise, R equals to 0. 

The lower bound of the summation sign is -m, and the upper 
bound is m. However, the step function R, means that the sum starts 
from an X; value that has not been stopped. It sums all the values that are 
larger than the stop-loss value. 
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The expected value at t = k is given by: 

m m m 
Ec(t = k)= I p C x ^ R ^ Z P(xi2)RT2,s Z P(xik-1)

RTk_1,s 
il=-m i2=~m ' k - l = - m 

m 
x Z p(x i k)[s( l-R ) + TkRTk)S] (13.27) 

ik=-m 

The first term inside the square bracket means that the trade is 
being stopped by the fixed stop-loss value. The summation starts from -
m, this means that for a trade that is being stopped, the sum adds up all 
the probability p(x) for x which is less than or equal to the fixed stop-loss 
value. The second term inside the square bracket means that the trader 
cashes out at whatever value the market has attained. 

13.3.2 Total Probability and Total Expected Value 

In the last section, we discuss the probability and expected value of a 
trade at time t = k, assuming that the trade has not been stopped out 
before t = k. What is the probability and expected value if the trade has 
been stopped by the fixed stop-loss before then? And what is the total 
probability and the total expected value of all these events that can 
happen? 

The total probability, PT , that a trade may be stopped by the 
fixed stop-loss before t = k or the trader decides to cash the trade out at t 
= k, is given by: 

PT = P [ S , u ( S i ' n S 2 ) u ( S i ' n S 2 ' n S 3 ) u ... 

... u ( S 1
, n S 2 ' n S 3 ' n S t , ) 

u (S!1 n S2' n S3' n S k , ' n C k ) ] 

=P(S!) + P(Si 'n S2) +P(Si 'n S 2 ' n S3) + ... 
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. . .P(S, 'nS 2 ' nS3 ' nS k_, ) 

+ P ( S r n S 2 ' n S 3 ' n S n ' n C k ) 

= P,(t = 1) + P,(t = 2) + Ps(t=3) +.... + P,(t = k-1) + Pc(t = k) 

(13.28) 

Si means that the trade is being stopped at t = 1. (Si1 n S2) 
means that the trade is not stopped at t = 1, but is stopped at t = 2. (Si' n 
S2' n S3' n S k.i' n C k ) means that the trade is not stopped 
before t = k, but is cashed out by the trader at t = k. In deriving Eq 
(13.28), the Summation Law for mutually exclusive events, Eq (13.4), 
has been used. 

The probability that the trade is being stopped at t = j , Ps(t = j) is 
given by 

m m m 
Ps(t = j )= I P ^ R ^ s I P(*i2)RT2,s 2 P(Xij_i)RTH,s 

i l=-m i2=-m ij_l=-m 

x I p tXj .Hl -R-^) (13.29) 

It can be shown that, given 

m 

Ip(Xj) = l (13.30) 
i = - m 

PT is equal to 1. 

This is simply because PT is equivalent to: 

m m m m 
P T = . I P K ) . I P(x i2) I P ( x i k l ) I p(x i k) (13.31) 

il=—m i 2 =-m ' k - l = _ m ' k = — m 

As each summation is equal to 1, PT is equal to 1. 
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The total expected value, Ej , that a trade may be stopped by the 
fixed stop-loss before t = k or the trader decides to cash the trade out at t 
= k, is given by: 

ET = E [S 1 u(S 1 ' n S 2 ) u ( S i ' n S2 ' n S3) u ... 

... u (S{ n S2' n S3' n S k . , ) 

uiSi'nSi'nSi' n S k.,' n C k)] 

=E(S1) + E(S1
,n S2) +E(S, 'n S2 ' n S3) + ... 

. . .ECS^nSj 'nSs' n S H ) 

+E(Si'n S2 'n S3' n S k . , ' n C k ) 

= Es(t = 1) + Es(t = 2) + Es(t = 3) +.... + Es(t = k-1) + Ec(t = k) 

(13.32) 

The expected value when the trade is being stopped at t = j , 
Es(t = j) is given by: 

m m m 
E s(t = j)= I p(Xi,)RT l i g .I p(xi2)RT2lS Z P(x iH)RJk_1,s 

i j=-m ' 2 = - m ' j - l = - m 

m 
x Z p(x; ) s ( l -R T ) (13.33) 

ij=-m 

Using the probability distribution shown in Fig. 13.2 and 
choosing the fixed stop-loss value to be equal to -0.025, the total 
expected value, ET , is plotted in Fig 13.8. Comparing the result with 
that plotted in Fig 13.4, it shows that a trade with a trailing stop-loss is 
more profitable than one with a fixed stop-loss. 
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Fig 13.8 Total expected value of a trade at t minutes, when the fixed stop-loss 
value is set equal to -0.025 S & P 500 index point. This figure should be 
compared with Fig 13.4, where trailing stop-loss is used. 

13.3.3 Average Time 

As a trade can be stopped at t = 1, or t = 2, ..., or cashed out by the trader 
at t = k, the average time of a trade, Et, can be described as the expected 
value of time that a trade is being stopped or cashed out, and is given by 

E, = P,(t = 1) x 1 + P,(t = 2) x 2 + P,(t = 3) x 3 +.... + P,(t = k-1) x 

(k-l) + Pc(t = k )xk (13.34) 

13.3.4 Total Expected Value/Average Time 

The average profit per average time unit, EA , is given by: 

EA = ET /Et (13.35) 
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Using the probability distribution depicted in Fig 13.2, and 
taking s = x_1; EA is calculated and plotted versus t in Fig 13.9. It shows 
that EA decreases from 0.00252 at t = 1 somewhat exponentially with 
respect to t. Thus, comparing Fig 13.9 with Fig 13.5, setting a trailing 
stop-loss is much more profitable than setting a fixed stop-loss for a 
trade. It is, therefore, no wonder, that the fixed stop-loss is not a money 
management technique preferred by traders. 

A MATLAB program for calculating probabilities and expected 
value of a trade for the S & P 500 index using fixed stop-loss order is 
listed in Appendix 5. It can be modified to calculate other markets if the 
probability distribution of the other markets is used in the program. 

x10 S & P 500 

Fig 13.9 Total expected value/Average time of a trade at t minutes. The fixed 
stop-loss value is set equal to -0.025 S & P 500 index point. This figure should 
be compared with Fig 13.5, where a trailing stop-loss is used. 



Chapter 14 

The Reality of Trading 

Trading the financial maket is not an easy task. It requires dedication, 
concentration and a lot of effort for the trader. Elder [2002] described 
the three M's of successful trading. The three M's are mind, method and 
money management. 

14.1 Mind 

Mind relates to the psychology of the trader. It includes discipline, 
record- keeping and training. 

14.1.1 Discipline 

The trader needs to take responsibility of his own action. He needs 
to set up certain rules and follow them. For example, he can move 
his stop only in the direction of his trade. If he starts to give more 
slack to his trade, he may wind up losing more money than he has 
expected. 

14.1.2 Record-Keeping 

A trader should keep good records. He needs good records to rate 
his performance and learn from his mistakes. He should keep a record 
of the chart of the market when he enters, with justification why he 
does so. 
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14.1.3 Training 

Trading the market sucessfully needs years of training. The trader needs 
to spend his time studying and learning different strategies. He should 
prepare in advance what he would do when the market acts in various 
fashions. He should paper trade for a certain period before putting in real 
money. Elder [2002] compared the time and effort of the training of a 
trader to that of an airline pilot. This just shows the amount of 
dedication required to be a successful trader. 

14.2 Method 

Method would include fundamental analysis, technical analysis, and a 
hybrid of both [Mak 2003]. Fundamentalists look at prime rate, loan 
demand, price-to-earning ratio, etc., to detect why the price will change. 
Technical analysts ignore all these. They simply believe that past price 
and volume, and especially the former, tells all. All they need to do is to 
study the indicators that operate on the series of past financial data, and 
forecast which way the market is going. Traders who take a hybrid 
approach use both fundamental and technical analysis. They may use 
fundamentals to decide whether to buy or sell, and then use technical 
analysis to time the trades. 

14.3 Money Management 

Money management is especially important for beginners. Beginners 
should start out trading small sizes until he is profitable. The first 
priority is not to lose all the money. He can then work on making steady 
gains. 

Traders, whether they are novices or professionals, should 
always put a stop-loss right after they put in a trade. They should not 
lose more than 2% of their equity in one trade. 

Money management, together with a trader's mind and method, 
form the three components of successful trading. In this book, we have 
not discussed the psychology of a trader. There are many books on the 
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subject. This book only talks about technical analysis and money 
management. 

14.4 Technical Analysis 

Indicators are tools of technical analysis. They analyse past market data 
and try to predict which way the market is heading. However, as is 
pointed out in Mak [2003], their properties are seldom understood. Their 
spectral contents have never been looked into. In order to fully 
understand an indicator, a spectrum analysis has to be performed. Their 
amplitude and phase response should be studied, with respect to 
frequency. The amplitude response would tell the trader what 
frequencies (or periods) the indicator has filtered out. This would show 
whether the indicator is relevant to the long-term, mid-term or short-term 
market movement. The phase response would tell the trader how fast the 
indicator is responding to the market movement, and how large a time 
lag he would expect. Some of the indicators have been analysed in this 
book. It has been shown that the significance of some indicators has 
been over-claimed by traders. However, some indicators, e.g., the 
MACD-Histogram, are very useful. It is interesting to note that the 
MACD-Histogram is actually a bandpass filter with very little lag. It is, 
therefore, no wonder that it is being used in a popular trading system 
called the Triple Screen trading system [Elder 2002]. 

Every trading system should be investigated by using spectrum 
analysis. A trading system is a strategy that a trader chooses to enter and 
exit his trade. It can consist of several screens to show the long and short 
term movements of the market. Understanding the indicator response in 
each screen would denote whether a trading system makes sense or not. 

14.5 Probability Theory and Money Management 

A trader should understand that he cannot win all the time. The market 
is somewhat random in nature. That is why it is very important that he 
puts a stop-loss to every trade to preserve his capital in case he loses. 
Some professional traders claim that even if the market were random, 
they can still make a profit with good money management. Using 
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probability theory, we have shown that there is some truth in it. We have 
also shown that the trailing stop-loss technique practised by some 
professional traders is more profitable than the technique where the stop-
loss is fixed during the whole trade. 

Some professional traders, by their years of experience, do fine 
tune their tools, and sharpen their methods. They thus increase their 
probability of success. However, the tools and methodology should be 
understood by using mathematical analysis. This would allow new tools 
and new trading systems to be invented in the future. As the market is 
complex, traders need to stay ahead of the game all the time. 



Appendix 1 

Sine Functions 

Al.l Coefficients of the Sine Function with n = 2 

The coefficients of the sine function with n = 2, h2(k), are listed below 
withk = 0, 1,2, 120. 

h2 = 

0.5000 0.3183 0.0000 -0.1061 0.0000 0.0637 0.0000 

-0.0455 0.0000 0.0354 0.0000 -0.0289 0.0000 0.0245 

0.0000 -0.0212 0.0000 0.0187 0.0000 -0.0168 0.0000 

0.0152 0.0000 -0.0138 0.0000 0.0127 0.0000 -0.0118 

0.0000 0.0110 0.0000 -0.0103 0.0000 0.0096 0.0000 

-0.0091 0.0000 0.0086 0.0000 -0.0082 0.0000 0.0078 

0.0000 -0.0074 0.0000 0.0071 0.0000 -0.0068 0.0000 

0.0065 0.0000 -0.0062 0.0000 0.0060 0.0000 -0.0058 

0.0000 0.0056 0.0000 -0.0054 0.0000 0.0052 0.0000 

-0.0051 0.0000 0.0049 0.0000 -0.0048 0.0000 0.0046 

0.0000 -0.0045 0.0000 0.0044 0.0000 -0.0042 0.0000 

0.0041 0.0000 -0.0040 0.0000 0.0039 0.0000 -0.0038 

213 



214 Mathematical Techniques in Financial Market Trading 

0.0000 0.0037 0.0000 -0.0037 0.0000 0.0036 0.0000 

-0.0035 0.0000 0.0034 0.0000 -0.0034 0.0000 0.0033 

0.0000 -0.0032 0.0000 0.0032 0.0000 -0.0031 0.0000 

0.0030 0.0000 -0.0030 0.0000 0.0029 0.0000 -0.0029 

0.0000 0.0028 0.0000 -0.0028 0.0000 0.0027 0.0000 

-0.0027 0.0000 

A1.2 Coefficients of the Sine Function with n = 4 

The coefficients of the sine function with n = 4, h4(k), are listed below 
withk = 0, 1,2, ...., 120. 

h4 = 

0.2500 0.2251 0.1592 0.0750 0.0000 -0.0450 -0.0531 

-0.0322 0.0000 0.0250 0.0318 0.0205 0.0000 -0.0173 

-0.0227 -0.0150 0.0000 0.0132 0.0177 0.0118 0.0000 

-0.0107 -0.0145 -0.0098 0.0000 0.0090 0.0122 0.0083 

0.0000 -0.0078 -0.0106 -0.0073 0.0000 0.0068 0.0094 

0.0064 0.0000 -0.0061 -0.0084 -0.0058 0.0000 0.0055 

0.0076 0.0052 0.0000 -0.0050 -0.0069 -0.0048 0.0000 

0.0046 0.0064 0.0044 0.0000 -0.0042 -0.0059 -0.0041 

0.0000 0.0039 0.0055 0.0038 0.0000 -0.0037 -0.0051 



Sine Functions 215 

-0.0036 0.0000 0.0035 0.0048 0.0034 0.0000 -0.0033 

-0.0045 -0.0032 0.0000 0.0031 0.0043 0.0030 0.0000 

-0.0029 -0.0041 -0.0028 0.0000 0.0028 0.0039 0.0027 

0.0000 -0.0026 -0.0037 -0.0026 0.0000 0.0025 0.0035 

0.0025 0.0000 -0.0024 -0.0034 -0.0024 0.0000 0.0023 

0.0032 0.0023 0.0000 -0.0022 -0.0031 -0.0022 0.0000 

0.0021 0.0030 0.0021 0.0000 -0.0021 -0.0029 -0.0020 

0.0000 0.0020 0.0028 0.0020 0.0000 -0.0019 -0.0027 

-0.0019 0.0000 



Appendix 2 

Modified Low Pass Filters 

Low pass filter removes high frequency components of a signal and 
allows low frequency components to pass. 

A2.1 "Zero-lag" Exponential Moving Average 

The output y(n) of the "zero-lag" exponential moving average [Ehlers 
2001] can be written as 

y(n) = oc{x(n) + K[(x(n) -x(n-3)]} + (1 - oc)y(n-l) (A2.1) 

where 

n is an integer and K = 0.5, 

x(n) is the input price data. 

Eq (A2.1) can be rewritten as 

y(n) - (1 -cc)y(n-1) = a {x(n) + K[(x(n) -x(n-3)]} (A2.2) 

The z-transform [Broesch 1997] of Eq (A2.1) is 

Y(z) - (1-oc) z-'YCz) = a [1 + K(l-z3)] X(z) (A2.3) 
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where 

z = e 

Y(z) is the transform of the output, 

X(z) is the transform of the input. 

The response function H(z) will be given by 

= Y w = q[i+K(i-z-3)] ( A 2 4 ) 

X(z) l - ( l - a ) z _ 1 

By iterating the previously processed y value in Eq (A2.1), we 
can write y(n) as 

y(n) = (1+K) a x(n) +(1+K) a (1-a) x(n-l) + (1+K) a (1-a)2 x(n-2) 

+ Z[(l + K ) a ( l - a ) J - K a ( l - a ) J " 3 ] x (n - j ) (A2.5) 

j=3 

Thus, the first three coefficients are 

h(0) = ( l+K)a 

h(l) = ( l+K)a( l -a ) 

h(2) = ( l+K)a( l -a ) 2 (A2.6) 

The rest of the coefficients are given by 

hG) = ( l+K)a ( l - a ) j -Ka( l - a ) j - 3 j > 3 (A2.7) 
The two terms on the right hand side of Eq (A2.7) somewhat 

cancel each other, making the coefficients much less than the first three 
coefficients listed in Eq (A2.6). 
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A2.2 Modified EMA (MEMA), with a Skip 1 Cubic Velocity 

The output y(n) can be written as 

y(n) = a { x(n) + K [1 lx(n)/6 - 3x(n-l) + 3x(n-2)/2 - x(n-3)/3 ] } 

+ (1- a) y(n-l) (A2.8) 

where 

n is an integer, 

x(n) is the input price data, 

K = l . 

The response function H(z) will be given by 

H(Z) = a [ 1 + K ( l l / 6 - 3 z - 1 +(3/2)z-2 -(1/3)Z-3)] 

l - ( l - cc )z _ 1 

By iterating the previously processed y value in Eq (A2.8), we 
can write y(n) as 

y(n) = (1+11K/6) a x(n) +[(l+HK/6) a (1-a) -3Ka]x(n-l) 

+[(l+HK/6)a(l-a)2-3Ka(l-a)+3Ka/2]x(n-2) 

+ a I [ ( l + l l K / 6 ) ( l - a ) J - 3 K ( l - a ) J _ 1 

j=3 

+ ( 3 K / 2 ) ( l - a ) h 2 - ( K / 3 ) ( l - a ) j " 3 ] x ( n - j ) (A2.10) 
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A2.3 Modified EMA (MEMA), with a Skip 2 Cubic Velocity 

The output y(n) can be written as 

y(n) = a { x(n) + K [1 lx(n)/6 - 3x(n-2) + 3x(n-4)/2 - x(n-6)/3 ] } 

+ (1-a) y(n-l) (A2.ll) 

where 

n is an integer, 

x(n) is the input price data, 

K = 1/2. 

The response function H(z) will be given by 

w ^ o q + K(11 /6 -3z~ 2 +(3 /2 ) z^ -q /3 ) z - 6 ) ] 
H(z) = - (A2.12) 

1 - (1 - oc)z_1 

By iterating the previously processed y value in Eq (A2.ll), we 
can write y(n) as 

y(n) = (1+11K/6) ax(n) +(l+HK/6) a ( l - a ) x(n-l) 

+[(l+HK/6)a(l-a)2 - 3K a ]x(n-2) 

+[(1+1 IK/6) a (1-a)3 - 3Ka(l-a)]x(n-3) 

+[(l+HK/6)a(l-a)4 - 3Ka(l-a)2 + 3Ka/2]x(n-4) 

+[(l+HK/6)a(l-a)5 - 3Ka(l-a)3 + (3Ka/2)(l-a)]x(n-5) 

+ a I [ ( l + H K / 6 ) ( l - a ) j - 3 K ( l - a ) j ~ 2 

j=6 

+ ( 3 K / 2 ) ( l - a ) j _ 4 - ( K / 3 ) ( l - a ) j ~ 6 ] x ( n - j ) (A2.13) 

http://A2.ll
http://A2.ll
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MA Modified EMA (MEMA), with a Skip 3 Cubic Velocity 

The output y(n) can be written as 

y(n) = a { x(n) + K [1 lx(n)/6 - 3x(n-3) + 3x(n-6)/2 - x(n-9)/3 ] } 

+ (l-oc)y(n-l) (A2.14) 

where 

n is an integer, 

x(n) is the input price data, 

K = 1/3. 

The response function H(z) will be given by 

„ , , oc[l + K( l l / 6 -3z - 3 + (3/2)z~6 - ( l /3)z- 9 ) ] 
H(z) = - (A2.15) 

l - ( l - a ) z _ 1 

By iterating the previously processed y value in Eq (A2.14), we 
can write y(n) as 

y(n) = (1+11K/6) ax(n) +(l+HK/6) a (1-a) x(n-l) 

+(l+HK/6)a(l-a)2x(n-2) 

+[(l+HK/6) a (1-a)3 - 3Ka]x(n-3) 

+[(l+HK/6)a(l-a)4-3Ka(l-a)]x(n-4) 

+[(l+llK/6)a(l-a)5 - 3Ka(l-a)2]x(n-5) 

+[(l+HK/6)a(l-a)6 - 3K(l-a)3 + 3Ka/2]x(n-6) 

+[(l+HK/6)a(l-a)7 - 3K(l-a)4 + (3Ka/2)(l-a)]x(n-7) 
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+[(l+llK/6)a(l-oc)8 - 3K(l-a)5 + (3Ka/2)(l-a)2 ]x(n-8) 

+ a Z[(l + l lK/6) ( l - a ) j -3K(l-a) j~2 

j=9 

+ (3K/2) ( l -a ) h 6 - (K/3) ( l -a ) h 9 ] x(n-j) (A2.16) 



Appendix 3 

Frequency 

A3.1 Derivation of Frequency (4 points) 

The financial market price data will be modeled as a sine wave 
superimposed on a constant level: 

x = A sin (cot + <)>) + D (A3.1) 

where x is the market price, 
A is the amplitude of the sine wave, 
co is the circular frequency of the sine wave, 
(|) is the phase when time t = 0, 
D is the constant level. 

The prices x's would have been given. In order to solve for the 
four unknowns, A, co, ()> and D, four equations are required. From Eqn 
(A3.1), the four equations are chosen as follows: 

t= 0 x0 = Asin<|> + D (A3.2) 
t = -l x_, = Asin(-C0 + (|>) + D (A3.3) 
t = -2 x.2 = A sin (-2co + <)>) + D (A3.4) 
t = -3 x_3 = Asin(-3co + <|)) + D (A3.5) 

where x 0 is the closing price of the current bar, 
x .i is the closing price of one bar ago, 
x _2 is the closing price of two bars ago, 
x .3 is the closing price of three bars ago, 
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Subtracting Eqn (A3.5) from Eqn (A3.2), we get 

x0 - X.3 =A [2cos( -3co/2 + <j)) sin(3co/2 )] 

Subtracting Eqn (A3.4) from Eqn (A3.3), we get 

x_i - x.2 = A [2cos( -3co/2 + §) sin(co/2)] 

Dividing Eqn (A3.6) by Eqn (A3.7) will yield 

sin(3co/2) 
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X n - X _ 

x_, - x . sin(co / 2) 
= 3-4sinz(co/2) 

(A3.6) 

(A3.7) 

(A3.8) 

Therefore, the circular frequency, co, can be solved as 

<B = ±2 sin" 
sV2 

X_i - X i A -2y 
(A3.9) 

The circular frequency can be chosen to be positive or negative. 
Either way, the phase angle, §, can be calculated later to agree with 
the price data. For the sake of convenience, the positive sign is taken in 
Eqn (A3.9). 

Subtracting Eqn (A3.3) from Eqn (A3.2) and after some 
trigonometric manipulation, we will get 

2Acos<|> cos(co/2) sin(co/2) + 2Asin<|> sin(co/2) = x0 - x_i (A3.10) 

Eqn (A3.7) will yield 

2Acos(|) cos(3co/2) sin(co/2) + 2Asin(|) sin(3co/2)sin(co/2) = x.i - x_2 

(A3.11) 

2Acos(|) and 2Asin<|) can be considered to be two unknowns in 
Eqn (A3.10) and (A3.11). Solving the two unknowns, we get 
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2Acos<|> = [(x0 - x_i) sin(co/2) sin(3co/2)- (x.i - x.2) sin
2(co/2)]/D0 

= C (A3.12) 

2Asin<|> = [(x_i - x_2)sin(co/2)cos(o)/2)-(xo - x.i)sin(o)/2)cos(3co/2)]/Do 

= S (A3.13) 

where Do is given by 

- o i „ 2 D0 = sinz(co/2)cos(co/2)sin(3co/2) - sinJ(co/2)cos(co/2) (A3.14) 

The amplitude A can be calculated from Eqn(A3.13) and (A3.14) as 

A = [ (C2 + S2)/4 ]m (A3.15) 

The phase angle, <|), can be calculated from Eqn(A3.13): 

(|) = sin-1[S/(2A)] (A3.16) 

Dividing Eqn (A3.13) by Eqn (A3.12), (|> can also be calculated as 

tan" 
(x_j -x_ 2)cos(co/2)-(x 0 -x_1)cos(3oo/2) 

(x0 -x_!)sin(3co/2)-(x_] -x_2)sin(o)/2) 

= tan" x: 
(A3.17) 

where Y is defined as the numerator of the argument of tan"1 

and X is defined as the denominator of the argument of tan"1 . 

It would be better to use Eqn (A3.16) to calculate <|>, as the 
amplitude A is seldom equal to 0, and we would have avoided division 
by 0. If A is by chance equal to 0, it can easily be written in the 
computer program that the price would equal to the constant level, and co 
and <|) would equal to 0. 
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However, as quite a number of computer would yield <j) only 
between -7t/2 to TI/2, Y and X need to be calculated to determine <|> 
between -71 to 7t. If X > 0, the computer program would yield the correct 
(j). If X < 0, and Y > 0, (j) is calculated by the computer to lie between 0 
and 7i/2 (0 < <|> < %/2) . Our computer program would then set (j) equal to 
n - (j). If X < 0, and Y < 0, <|> is calculated by the computer to lie between 
-7i/2 and 0 (-7t/2 < Cp< 0) . Our computer program would then set <j) equal 
to - (71 + (j)). Thus (j) would be correctly assigned between -7t to %. 

The constant level, D, can be calculated from Eqn (A3.2): 

D = x 0 - Asin<t> = x 0 - S / 2 (A3.18) 

A3.2 Derivation of Frequency (5 points) 

When x .1 - x _2 = 0, Eqn (A3.9) cannot be used to calculate CO as it would 
involve division by 0. One more data point (at t = -4) would be required 
to solve for co. From Eqn (A3.1) 

t = -4 x.4 = Asin(-4co + (|>) + D (A3.19) 

Subtracting Eqn (A3.5) from Eqn (A3.3), we get 

x .1 - x .3 = A [2cos( -2co + <|>) sinco] (A3.20) 

Subtracting Eqn (A3.19) from Eqn(A3.2), we get 

x0 - x A = A [2cos( -2co + <|>) sin( 2co)] (A3.21) 

Dividing Eqn (A3.20) by Eqn (A3.21) will yield 

(x 0 - x _4)/(x .1 - x .3)= 2cosco (A3.22) 

Therefore, co can be solved as 

co = cos 
(X - X ^ 

Vx-i " x - 3 7 
(A3.23) 
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A3.3 Error Calculation of Frequency (4 points) 

Given a function y = f( Xi, X2, xn ), the error of y, 5y, can be 
calculated as [Bevington 1969] 

5y: 
' aO 2 

v 3 x i y 

' 3 f ^ 
( 5 X l ) 2

+ ^ (5x2)2
 + 

v 3 x2y 

' d f ^2 

v 3 x »; 
(8xn)2 

(A3.24) 

where 3f/3xj are partial derivative with respect to Xj , i = 1, 2, n. 
5xi are errors of xj , i = 1, 2, n. 

Calculating the error of co, 8co, in Eqn (A3.9) using Eqn (A3.24), 
we get 

8co=-

i - i 
4 

3--
Xn - X . 

X 1 - X i A - 2 y 
3 — 

Xn - X . 

X _ , - X l A - 2 y 

X 

(A3.25) 

where 

q = 
< 1 ^ 

VX-1 ~ X - 2 . 
[(5x0)

2 +(5x_3)
2]+f ^ 1 K , ) 2

 +(8x_2)
2] 

V x -1 _ X - 2 . 

(A3.26) 
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A3.4 Error Calculation of Frequency (5 points) 

Calculating the error of CO, 8(0, in Eqn (A3.23) using Eqn (A3.24), we get 

5co= — 
2 

1 

Xn - X 
\ 2 

-4 

V x - l L - 3 y 

(A3.27) 

where 

r = 
V X _ ! - X . 

J — ] [(8x0)2
+(5x_4)2]+ 

V.x-1 - X - 3 . 
[(5x_1)

2+(5x_3) 

(A3.28) 

A3.5 Computer Program for Calculating Frequency 

In the EasyLanguage code of Omega Research's TradeStaion2000i, the 
program for calculating the omega function (co, which is the circular 
frequency) and the error of the omega function (8co) using 4 and 5 data 
points can be written as follows: 

{omega(Function)} 
{S = smoothneses} 
Inputs: S(Numeric); 
Variables: 
omega4(0),omega5(0),den(0),denl(0),sqrt(0),arg(0),sqrtarg(0),dx0(0.01), 
dxml(0.01),dxm2(0.01),dxm3(0.01),dxm4(0.01),fl(0),f2(0),domega4(10 
),domega5(10); 
{omega4 and omega5 are the circular frequencies calculated using 4 and 
5 data points respectively} 
{dxO, dxml, dxm2, dxm3, dxm4 are arbitrary errors assigned to financial 
data} 
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{domega4 and domega5, errors of omega4 and omega5 respectively, are 
assigned arbitrary large numbers in the beginning} 

den=(AMAFUNC2(c[l],S)-AMAFUNC2(c[2],S));{Start 
calculating omega4} 

If den=0 Then omega4 = -1; {give omega4 an arbitrary number which 
will be plotted out of range} 

sqrtarg=3-(AMAFUNC2(c,S)-AMAFUNC2(c[3],S))/den; 
If sqrtarg < 0 Then omega4 = -2 {give omega4 an arbitray 

number which will be plotted out of range} 
Else Begin 

sqrt=Squareroot(sqrtarg); 
arg = sqrt/2; 
If arg >= 1 Then omega4 = -3 {give omega4 an arbitray number which 

will be plotted out of range} 
Else 
omega4 = 2*ArcTangent(arg/Squareroot(l-

Square(arg)))*3.14159/180;{omega4 in radians} 
omega = omega4;{Assign omega4 to omega first} 

If (den=0 OR sqrtarg=0 OR l-0.25*sqrtarg=0) Then dornega4 = 
20{Error of omega4 would be large. Arbitrary large error is assigned} 

Else Begin 
fl=l/(l-0.25*sqrtarg)*l/sqrtarg;{Calculate error of omega4} 
f2=Square(l/den)*(dxO*dxO+dxm3*dxm3)+ 

Power((l/den),4)*(dxml*dxml+dxm2*dxm2); 
If fl < 0 Then domega4 = 20 {fl< 0 will yield imaginary number 

in Squareroot below} 
Else 

domega4=0.5*Squareroot(f 1 *f2); 
End; 

End; 
denl=AMAFUNC2(c[l],S)-AMAFUNC2(c[3],S); {Start calculating 
omega5} 

If den 1=0 Then omega5 = -4 {give omega5 an arbitray number 
which will be plotted out of range} 

Else Begin 
arg= 0.5*(AMAFUNC2(c,S)-

AMAFUNC2(c[4],S))/denl; 
If AbsValue(arg) > 1 Then omega5 = -5 {give omega5 an 

arbitray number which will be plotted out of range} 
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Else 
omega5= (90-ArcTangent(arg/Squareroot( 1 -

Square(arg))))*3.14159/180;{omega in radians} 
If (den 1=0 OR 1-Square(arg)=0) Then domega5 = 20{Error 

of omega5 would be large. Arbitrary large error is assigned} 
Else Begin 

fl=l/(l-Square(arg));{Calculate error of omega5} 
f2= Square(l/denl)*(dx0*dx0+dxm4*dxm4)+ 

Power((l/denl),4)*(dxml*dxml+dxm3*dxm3); 
If f 1 < 0 Then domega5 = 20 {fl< 0 will yield imaginary number 

in Squareroot below} 
Else 
domega5=0.5*Squareroot(fl*f2); 

End; 
End; 
If domega4 >= 20 AND domega5 >= 20 Then omega = -7 

{Stringent condition: If domega4 >= 20 OR domega5 >= 20 Then omega 
= -7} 

Else Begin 
If domega5 < domega4 Then omega = omega5;{If error 

of omega5 is less than that of omeg4, assign omega5 to omega} 
End 

c represents the closing price of the current data point (bar). c[l] 
represents the closing price of one bar ago. c[2] represents the closing 
price of two bars ago. c[3] represents the closing price of three bar ago, 
and c[4] represents the closing price of four bars ago. AMAFUNC2 is 
the adaptive moving average function written by Jurik Research. The 
first input parameter of AMAFUNC2 signifies the closing price series to 
be smoothed, while the second input parameter indicates the smoothness 
factor, S, which is arranged to be a variable decided by the user. For 
example, S = 32 and 3 in Fig 6.5 and 6.6 respectively. The larger the 
smoothness factor, the more smoothed the smoothed data will be. 
AMAFUNC2 can be substituted by other smoothing function. For 
example, it can be substituted by XAVERAGE, which is a build-in 
exponential moving average function written by TradeStation2000i. 

The omega function program calculates the value of the circular 
frequency, CO, and its error using 4 points. It also calculates the value of 
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the circular frequency, CO, and its error using 5 points. The two errors are 
compared, the co which has the lesser error will be plotted. For those 4 
and 5 data points that cannot fit into the sine wave model, the error of co 
is arbitrarily set to be 20, which is a large number compared to the usual 
calculated error. The circular frequency, co is then given an arbitrary 
negative number, so that it would not be plotted in the positive scale 
determined by the user (Fig 6.5 and 6.6). The indicator program for 
plotting omega is listed below: 

{omegaplot(Indicator)} 
Inputs: S(3); 
Plotl(omega(S),"Plotl"); 

In the above program, the smoothness parameter, S, is set to be 3 
by default. This input parameter can be changed to other positive 
integer. This indicator program calls the omega function, and plots it as 
dots (or a line if the user so chooses) in the figure (see bottom plots of 
Fig. 6.5 and 6.6). 

A3.6 Computer Programs for Calculating Wave Velocity and 
Wave Acceleration 

To plot the wave velocity and acceleration, the amplitude of the sine 
wave, A, as well as its phase when t = 0, <)), need to be calculated. In the 
EasyLanguage code of Omega Research's TradeStaion2000i, the 
program for calculating the amplitude function, called Ampprice, is 
listed below: 

{Ampprice(function)} 
Inputs: S(Numeric); 
If omega(S) < 0 Then Ampprice=-1 {Ampprice is assigned a negative 
number} 
Else 

Ampprice=Squareroot((Square(TAcosphi(S))+Square(TAsinphi( 
S)))/4) 
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The amplitude is calculated from Eqn (A3.15). The program 
calls two function programs, TAcosphi and TAsinphi, which are listed as 
follows: 

{TAcosphi (function) } 
Inputs: S(Numeric); 
Variables: sin(0),cos(0),sin3(0),cos3(0),DO(0); 

sin=Sine(omega(S)*(180/3.14159)/2); 
cos=Cosine(omega(S)*(180/3.14159)/2); 

sin3=Sine(3*omega(S)*(180/3.14159)/2); 
cos3=Cosine(3 *omega(S)*( 180/3.14159)/2); 
DO=sin*sin*cos*sin3-sin*sin*sin*cos3; 

If D0=0 Then D0=0.00000001;{To avoid dividing by zero} 
TAcosphi=(l/D0)*((AMAFUNC2(c,S)-

AMAFUNC2(c[l],S))*sin*sin3-(AMAFUNC2(c[l],S)-
AMAFUNC2(c[2],S))*sin*sin); 

{TAsinphi (function) } 
Inputs: S(Numeric); 
Variables: sin(0),cos(0),sin3(0),cos3(0),D0(0); 

sin=Sine(omega(S)*(180/3.14159)/2); 
cos=Cosine(omega(S)*(180/3.14159)/2); 

sin3=Sine(3*omega(S)*(180/3.14159)/2); 
cos3=Cosine(3*omega(S)*(180/3.14159)/2); 
DO=sin*sin*cos*sin3-sin*sin*sin*cos3; 

If D0=0 Then D0=0.00000001;{To avoid dividing by zero} 
TAsinphi=(l/D0)*((AMAFUNC2(c[l],S)-

AMAFUNC2(c[2],S))*sin*cos-(AMAFUNC2(c,S)-
AMAFUNC2(c[l],S))*sin*cos3); 

The program for calculating the phase when t = 0, <b, the phi 
function is listed below: 

{phi (function) } 
Inputs: S(Numeric); 
Variables: sin(0),cos(0),sin3(0),cos3(0))Y(0),X(0),phidegree(0); 
If omega(S) < 0 Then phi=-5 { phi assigned a negative number so that it 
can be plotted out of range} 
Else Begin sin=Sine(omega(S)*(180/3.14159)/2); 
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cos=Cosine(omega(S)*(180/3.14159)/2); 
sin3=Sine(3*omega(S)*(180/3.14159)/2); 
cos3=Cosine(3*omega(S)*(180/3.14159)/2); 
Y=( AMAFUNC2(c[ 1 ] ,S)-AMAFUNC2(c[2] ,S)) *cos-

(AMAFUNC2(c,S)-AMAFUNC2(c[l],S))*cos3; 
X=(AMAFUNC2(c,S)-AMAFUNC2(c[l],S))*sin3-

(AMAFUNC2(c[l],S)-AMAFUNC2(c[2],S))*sin; 
If X=0 Then X=0.000000001;{to avoid dividing by zero} 
phidegree=AbsValue(ArcTangent(Y/X)); 
If X < 0 AND Y > 0 Then phidegree = 180-phidegree; 
If X < 0 AND Y < 0 Then phidegree = 180+phidegree; 
If X > 0 AND Y < 0 Then phidegree = 360-phidegree; 

phi=phidegree; 
End 

As described in this Appendix, to calculate <j), it would be more 
accurate to use arcsine instead of arctangent. However, since 
TradeStation2000i does not have a build-in arcsine function, arctangent 
is used instead. In any case, the numerator and denominator of the 
argument in the arctangent function needs to be used to calculate which 
quadrant the phase angle is in. 

Knowing co, A and <j), wave velocity can be calculated and 
plotted. The program for calculating and plotting the wave velocity 
indicator, velfit, is listed below: 

{velfit(Indicator)} 
Inputs: S(3); 
Variables: velfit(O); 
If omega(S) < 0 Then velfit=200 {velfit=200 will be plotted out of 
scale} 
Else Begin 

velfit=Ampprice(S)*omega(S)*Cosine(phi(S)); 
End; 

Plotl(velfit,"Plotl"); 

The smoothness factor, S, is set to 3 by default, but it can be 
changed as it is designed to be an input parameter to the program. 
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Again, knowing GO, A and (j), wave acceleration can be calculated 
and plotted. The program for calculating and plotting the wave 
acceleration indicator, accelfit, is listed below: 

{accelfit(Indicator)} 
Inputs: S(3); 
Variables: accelfit(O); 
If omega(S) < 0 Then accelfit=100 {accelfit=100 will be plotted out of 
scale} 
Else Begin 

accelfit=-Ampprice(S)*Square(omega(S))*Sine(phi(S)); 
End; 

Plotl(accelfit,"Plotl"); 

The constant level, D, can be calculated if necessary and then 
plotted. The function program for calculating the constant level is listed 
below: 

(Dclevel(function) } 
Inputs: S(Numeric); 
If omega(S) < 0 Then Dclevel= -1 
Else 

Dclevel=AMAFUNC2(c,S)-TAsinphi(S)/2 

The function program for plotting the constant level is listed 
below: 

{Dclevelplot(Indicator)} 
Inputs: S(3); 
Plotl(Dclevel(S),"PlotlM); 



Appendix 4 

Higher Order Polynomial High 
Pass Filters 

A4.1 Derivation of Quartic Indicators 

A4.1.1 Quartic Velocity Indicator 

A quartic function is a fourth order polynomial of the form: 

x(t) = at4 + bt3 +ct2 + dt + e (A4.1) 

where t is a continuous variable, 

a, b, c, d and e are constant coefficients. 

For discrete time signals, Eq (A4.1) can be written as 

x(n) = an4 + bn3 +cn2 + dn + e (A4.2) 

where n is an integer. 

We are interested to find the derivative of the quartic function at 
n = 0, which is the most recent data point. 

From Eq (A4.2), we write 

x 0 = x ( 0 ) = e (A4.3a) 

x.i = x(-l)= a - b+ c - d + e (A4.3b) 

x .2 = x(-2) = 16a - 8b + 4c - 2d + e (A4.3c) 

234 
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x .3 = x(-3) = 81a - 27b + 9c - 3d + e (A4.3d) 

x A = x(-4) = 256a - 64b +16c - 4d + e (A4.3e) 

Solving Eq (A4.3a-e) for a, b, c, d and e by using determinants, 
we get 

a = (l/24)x0-(l/6)x., + (l/4)x.2-(l/6)x.3 + (l/24)x^ (A4.4a) 

b = (5/12)x0-(3/2)x.!+ 2x.2-(7/6)x.3 + (l/4)x.4 (A4.4b) 

c = (35/24)x0 - (13/3)x.! + (19/4)x.2- (7/3)x.3 + (l l /24)x^ (A4.4c) 

d = (25/12)x o - 4x., + 3x .2 - (4/3)x _3 + (l/4)x A (A4.4d) 

e = x o (A4.4e) 

Taking the derivative of Eq (A4.1) and then substitute t with n, 
we arrive at 

dx 
— = 4an 3+3bn 2+2cn + d (A4.5) 
dn 

At n = 0, 

dx 

dn 

25 4 1 
= d = — x n - 4 x , +3x , — x , + —x . (A4.6) 

12 -1 -2 3 -3 4 "4 

We will define the unit sample response h of the quartic velocity 
indicator as 

h = (h(0), h(l), h(2), h(3), h(4)) = (25/12, -4, 3, -4/3, 1/4) (A4.7) 

Thus the output response is given by the convolution sum 

y(n) = — x(n) - 4x(n -1) + 3x(n - 2) - - x(n - 3) + - x(n - 4) (A4.8) 
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The frequency response or the Discrete Time Fourier Transform 
(DTFT) of h is given by 

H(co) = 

25/12 - 4exp(-ico) + 3exp(-2ico) - (4/3)exp(-3ico) + (l/4)exp(-4ico) 

(A4.9) 

A4.1.2 Quartic Acceleration Indicator 

Taking the second derivative of Eq (A4.1) and then substitute t with n, 
we arrive at 

d2x 
—r- = 12an2+6bn + 2c (A4.10) 
dn 

At n = 0, 

d2x 

dn2 
o 3 5 2 6 1 9 1 4 n , M i n 

= 2c = — xn x , +— x , x , + — x , (A4.ll) 
12 ° 3 ~l 2 "2 3 ~3 12 "4 

n=0 

We will define the unit sample response h of the quartic 
acceleration indicator as 

h = (h(0), h(l), h(2), h(3), h(4)) 

= (35/12, -26/3, 19/2, -14/3, 11/12) (A4.12) 

Thus the output response is given by the convolution sum 

y(n) = — x ( n ) - — x ( n - l ) + — x ( n - 2 ) - — x ( n - 3 ) + — x(n -4 ) 3 12 3 2 3 12 

(A4.13) 

http://A4.ll
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The frequency response or the Discrete Time Fourier Transform 
(DTFT) of h is given by 

H(eo) = 

35/12 - (26/3)exp(-iw) + (19/2)exp(-2ico) - (14/3)exp(-3ico) + 
(ll/12)exp(-4i(o) 

(A4.14) 

A4.2 Derivation of Quintic Indicators 

A4.2.1 Quintic Velocity Indicator 

A quintic function is a fifth order polynomial of the form: 

x(t) = at5 + bt4 + ct3 +dt2 + et + f (A4.15) 

where t is a continuous variable, 

a, b, c, d, e and f are constant coefficients. 

For discrete time signals, Eq (A4.15) can be written as 

x(n) = an5 + bn4 + en3 +dn2 + en + f (A4.16) 

where n is an integer. 

We are interested to find the derivative of the quintic function at 
n = 0, which is the most recent data point. 

From Eq (A4.16), we write 

x 0 = x ( 0 ) = f (A4.17a) 

x.1 = x(-l)= - a + b - c + d - e + f (A4.17b) 

x.2 = x(-2)= -32a + 16b - 8c + 4 d - 2 e + f (A4.17c) 
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x.3 = x(-3)= -243a + 81b -27c + 9d - 3e +f (A4.17d) 

x^ = x(-4) = -1024a + 256b - 64c + 16d - 4e + f (A4.17e) 

x.5 = x(-5) = -3125a + 625b - 125c + 25d - 5e + f (A4.17f) 

Solving Eq (A4.17a-f) for a, b, c, d, e and f by using 
determinants, we get 

a = (l/120)x0- (l/24)x., + (l/12)x.2-(l/12)x.3 + (V2A)xA 

-(l/120)x_s (A4.18a) 

b = (l/8)x0 - (7/12)x.i + (13/12) x.2 - x .3 + (1 l/24)x^ - (l/12)x_3 

(A4.18b) 

c = (17/24)x0- (71/24)x.i + (59/12)x.2-(49/12)x.3 + (41/24)x^ 

-(l/12)x_5 (A4.18c) 

d = (15/8)x0-(77/12)x.i + (107/12)x.2-(13/2)x.3 + (61/24)x4 

-(5/12)x_s (A4.18d) 

e = (137/60)x0 - 5x.i + 5x.2 - (10/3)x.3 + (5/4)x^ - (l/5)x_5 

(A4.18e) 

f= x0 (A4.18f) 

Taking the derivative of Eq (A4.15) and then substitute t with n, 
we arrive at 

dx 
— = 5an 4 +4bn 3 +3cn 2 +2dn + e (A4.19) 
dn 
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At n = 0, 

dx 

dn n=0 

137 _ _ 10 5 1 , A „ o m 
= e = -xn - 5x , +5x , x , + — x_4 — x _ 5 (A4.20) 

60 ° 3 "3 4 4 5 

We will define the unit sample response h of the quintic velocity 
indicator as 

h = (h(0), h(l), h(2), h(3), h(4), h(5)) 

= (137/60, -5, 5, -10/3, 5/4, -1/5) (A4.21) 

Thus the output response is given by the convolution sum 

137 10 5 
y(n) = — x ( n ) - 5 x ( n - l ) + 5x(n-2) x(n -3 ) + - x ( n - 4 ) 

60 3 4 

x (n-5) (A4.22) 

The frequency response or the Discrete Time Fourier Transform 
(DTFT) of h is given by 

H(co) = 137/60- 5exp(-ico) + 5exp(-2ico) - (10/3)exp(-3ico) 

+(5/4)exp(-4iw) - (l/5)exp(-5iro) (A4.23) 

A4.2.2 Quintic Acceleration Indicator 

Taking the second derivative of Eq (A4.15) and then substitute t with n, 
we arrive at 

d2x 

dn2 
= 20anJ + 12bnz + 6cn + 2d (A4.24) 
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At n = 0, 

d2X 

dn' 
OJ 15 77 107 , , 61 5 

= 2d = — xn x , H x_, -13x , + — x . — x , 
4 ° 6 : 6 2 "3 12 "4 6 "5 

n=0 
(A4.25) 

We will define the unit sample response h of the quintic 
acceleration indicator as 

h = (h(0), h(l), h(2), h(3), h(4), h(5)) 

= (15/4, -77/6, 107/6, -13, 61/12, -5/6) (A4.26) 

Thus the output response is given by the convolution sum 

y ( n ) = ^ x ( n ) - ^ x ( n - l ) + ^ x ( n - 2 ) - 1 3 x ( n - 3 ) + ^ x ( n - 4 ) 
4 6 6 12 

- - x ( n - 5 ) (A4.27) 
6 

The frequency response or the Discrete Time Fourier Transform 
(DTFT) of his given by 

H(o>) = 15/4 - (77/6)exp(-ico) - (107/6)exp(-2ia) - 13exp(-3ico) 

+ (61/12)exp(-4iffl) - (5/6)exp(-5ico) (A4.28) 

A4.3 Derivation of Sextic Indicators 

A4.3.1 Sextic Velocity Indicator 

A sextic function is a sixth order polynomial of the form: 

x(t) = at6 + bt5 + ct4 + dt3 +et2 + ft + g (A4.29) 



Higher Order Polynomial High Pass Filters 241 

where t is a continuous variable, 

a, b, c, d, e, f and g are constant coefficients. 

For discrete time signals, Eq (A4.15) can be written as 

x(n) = an6 + bn5 + en4 + dn3 +en2 + fn + g (A4.30) 

where n is an integer. 

We are interested to find the derivative of the sextic function at n 
= 0, which is the most recent data point. 

From Eq (A4.30), we write 

x 0 = x ( 0 ) = g (A4.31a) 

x.i = x(-l)= a - b + c - d + e - f + g (A4.31b) 

x.2 = x(-2)= 64a- 32b + 16c- 8 d + 4 e - 2 f + g (A4.31c) 

x.3 = x(-3)= 729a- 243b + 81c- 2 7 d + 9 e - 3 f + g (A4.31d) 

x.4 = x(-4) = 4096a - 1024b + 256c - 64d + 16e - 4f + g (A4.31e) 

x.5 = x(-5)= 15625a- 3125b + 625c - 125d + 25e - 5f+g (A4.31f) 

x.6 = x(-6) = 46656a - 7776b + 1296c - 216d + 36e - 6f + g (A4.31g) 

Solving Eq (A4.31a-g) for a, b, c, d, e, f and g by using 
determinants, we get 

a = ( 34560 x0 - 207360 x_, + 518400 x_2 - 691200 x.3 + 518400 x_4 

- 207360 x_5 + 34560 x_e)/24883200 (A4.32a) 
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b = (725760 x0 - 4147200 x_i + 9849600 x.2 - 12441600 x.3 

+ 8812800 x.4 - 3317760 x_5 + 518400 x^ ) / 24883200 

(A4.32b) 

c = ( 6048000 x0 - 32140800 x.i + 71020800 x_2 - 83635200 x.3 

+ 55468800 x.4 - 19699200 x_5 + 2937600 x_6) / 24883200 

(A4.32c) 

d = (25401600 xo - 120268800 x.i + 238982400 x.2 - 257126400x.3 

+ 159148800 x.4 - 53913600 x_5 + 7776000 x^) / 24883200 

(A4.32d) 

e = (56125440 x0 - 216483840 x., + 363916800 x.2 - 351129600x.3 

+ 205286400 x.4 - 67184640 x_5 + 9469440 x^ ) / 24883200 

(A4.32e) 

f = (49/20) xo - 6 x.! + (15/2) x.2 - (20/3) x.3 + (15/4) x.4 - (6/5) x_5 

+ (l/6)x_e (A4.32f) 

g= xo (A4.32g) 

Taking the derivative of Eq (A4.29) and then substitute t with n, 
we arrive at 

Hv 
— = 6an5 + 5bn4 + 4cn3 + 3dn2 + 2en + f (A4.33) 
dn 
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At n = 0, 

dx , 49 , 15 20 15 6 1 
= 1 = X n - O X , H X , X , H X d X_, +—X_ 6 

dnn = 0 20 ° "' 2 ~2 3 3 4 "4 5 5 6 6 

(A4.34) 

We will define the unit sample response h of the sextic velocity 
indicator as 

h = (h(0), h(l), h(2), h(3), h(4), h(5), h(6)) 

= (49/20, -6, 15/2, -20/3, 15/4, -6/5, 1/6) (A4.35) 

Thus the output response is given by the convolution sum 

y(n) = — x ( n ) - 6 x ( n - l ) + — x ( n - 2 ) - — x(n -3 ) + — x ( n - 4 ) ; 20 2 3 4 

- - x ( n - 5 ) + - x ( n - 6 ) (A4.36) 
5 6 

The frequency response or the Discrete Time Fourier Transform 
(DTFT) of h is given by 

H(co) = 49/20 - 6exp(-ico) + (15/2)exp(-2i<o) - (20/3)exp(-3ico) 

+(15/4)exp(-4i(o) - (6/5)exp(-5ico) + (l/6)exp(-6ico) (A4.37) 

A4.3.2 Sextic Acceleration Indicator 

Taking the second derivative of Eq (A4.29) and then substitute t with n, 
we arrive at 

d2x 
— - = 30an4 +20bn3 +12cn2 +6dn + 2e (A4.38) 
dn 
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At n = 0, 

d2x 

dn2 = 2e = 4.5112x0 -17.4x_, +29.25x_2-28.2222x_3 

n=0 

+ 16.5x_4 - 5.4x_5 + 0.7612x_6 (A4.39) 

We will define the unit sample response h of the quintic 
acceleration indicator as 

h = (h(0), h(l), h(2), h(3), h(4), h(5), h(6)) 

= (4.5112, -17.4, 29.25, -28.2222, 16.5, -5.4, 0.7612) (A4.40) 

Thus the output response is given by the convolution sum 

y(n) = 4.5112x(n) - 17.4x(n -1) + 29.25x(n - 2) - 28.2222x(n - 3) 

+ 16.5x(n - 4) - 5.4x(n - 5) + 0.7612x(n - 6) (A4.41) 

The frequency response or the Discrete Time Fourier Transform 
(DTFT) of h is given by 

H(fl>) = 4.5112 - 17.4exp(-ico) - 29.25exp(-2i(fl) - 28.2222exp(-3ico) 

+ 16.5exp(-4ioo) - 5.4exp(-5ico) + 0.7612exp(-6ico) (A4.42) 



Appendix 5 

MATLAB Programs for Money 
Management 

The following two programs are written to calculate probability, 
expected value, total probability, total expected value and total expected 
value/average time of a trade, with a trailing stop-loss or fixed stop-loss. 
They are not necessarily written in the most efficient manner. 

The parameters used in the Levy distribution in the programs 
correspond to the S & P 500 index. Those parameters need to be 
changed for calculation of other markets. 

A5.1 Trailing Stop-Loss Program 

%Trailingstoploss, t = 10 
g, 
"3 

clear 
t=10; 
for I=l:t+1 
%day is only an example of one time unit 

plossvector(I)=0;% probability of that day's 
stopping out by initial stoploss or trailing stoploss 

Exlossvector(I)=0;% expected value of being 
stopped out 

pvaluevector(I)=0;% probability of last day' cash 
out 

Totalp(I)=0;% Total probability of previous days' 
stops and last day cash out 

Totalex(I)=0; 
Expectedt(I)=0; 

end 
deltat=l; 

245 
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interval = .05;% for integral of Eqn (1) in Mantagna 
and Stanley Nature V376 P48 
endpoint = 500;% for integral of Eqn (1) in Mantagna 
and Stanley Nature V376 P48 
q = 0: interval: endpoint; 
zinterval = 0.0125; % can change zinterval 
zendpoint = 0.075;% can change zendpoint 
z = 0: zinterval: zendpoint; 
Nptlevy = round(zendpoint/zinterval) +1 ; 
for J=l:Nptlevy 

for 1=1:endpoint/interval +1 
y(I)= (l/pi)*exp(-

0.00375*deltat*q(I)A1.4)*cos(q(I)*z(J)); 
end 
Lalpha(J)=trapz(q,y); %calculate integral using 

trapezoidal method, 
end 
figure(1) 
plot(z,Lalpha,'k*-') 
xlabeK'Z, Delta t = 1') 
ylabel('Levy distribution') % Eqn (1) in Mantagna 
and Stanley paper, Nature V376 P48 
% To assign numbers to the symmetrical Lalphanegpov 
function 
for J=l: 2*Nptlevy -1 

znegpos(J)=0; 
Lalphanegpos(J)=0; 

end 
for J = 1:Nptlevy - 1 
znegpos(J) = -z(Nptlevy+1 - J); 
Lalphanegpos(J) = Lalpha(Nptlevy+1 - J); 

end 
for J= 1: Nptlevy 

znegpos(J + Nptlevy -1) = z(J); 
Lalphanegpos(J + Nptlevy -1) = Lalpha(J); 

end 
figure(2) 
plot(znegpos,Lalphanegpos,'k*-') 
xlabeK 'Z, Delta t = 1') 
ylabeK'L, Eqn (1) in paper') 
Sumlevy=0;% normalize probability distribution 
for I=l:2*Nptlevy -1 

Sumlevy = Sumlevy + Lalphanegpos(I); 
end 
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for I=l:2*Nptlevy -1 
Lalphanegpos(I) = Lalphanegpos(I)/Sumlevy; 

end 
figure(3) 
plot(znegpos,Lalphanegpos,'k*-') 
xlabel('Z, Delta t = 1') 
ylabel('Normalized Levy distribution') 
title('Normalized probability distribution for S & P 
500') 
%Nptlevy = 2;% for testing only 
%znegpos=[-l 0 1 ];% for testing only 
%Lalphanegpos = [ 0.25 0.5 0.25];% for testing only 
%Nptlevy = 3;% for testing only 
%znegpos=[-2 - 1 0 1 2];% for testing only 
%Lalphanegpos = [0.1 0.2 0.4 0.2 0.1];% for 
testing only 
%Nptlevy = 4;% for testing only 
%znegpos=[-3 - 2 - 1 0 1 2 3];% for testing only 
%Lalphanegpos = [0.1 0.125 .175 .2 .175 .125 
.1];% for testing only 
%Lalphanegpos =[0.05 0.1 0.2 0.3 0.2 0.1 
0.05];% for testing only 
S= -2;% change stoploss S = 0, -1, 
_ 9 * * * * * * * * * * * 

£. f . . . 

% Setting S = -1 will yield a constant TotalexDt with 
respect to t 
znegposno = Nptlevy + S;% this is the number in the 
vector where stoploss is set 
stoploss=znegpos(znegposno); 
% Buy at t = 0, to find the expectation value at 
furture t 
Exvaluevector(1) = 0 ; % at time t=0, buy — 
therefore no gain nor loss 
t=l% t = 1 time unit 
tvector(t) = t; 
totalprobstopioss=0; 
for K = 1:znegposno 

totalprobstoploss = totalprobstoploss + 
Lalphanegpos(K); 
end 
% totalprobstoploss is the sum of the probabilities 
that the trade will be stopped 
Exlossl = totalprobstoploss * znegpos(znegposno) % 
znegpos(znegposno)= stop loss value 
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pvaluel=l;% this is the sum of the normalized 
Lalphanegpo. That is why it is equal to 1 
Exvaluel=Exlossl; 
for K = znegposno+1:2*Nptlevy -1 

Exvaluel = Exvaluel + znegpos(K)*Lalphanegpos(K) 
end 
plossvector(2)=totalprobstoploss;%probloss= 
probalility of being stopped at an initial stoploss 
or trailing stop loss. For a trailing stoploss, 
there can be profit and not loss. 
Exlossvector(t+1) = Exlossl; % expected loss or gain 
at t = 1 
pvaluevector(t+1) = pvaluel;% this number is not used 
Exvaluevector(t+1) = Exvaluel; % expected value at t 
= 1 
t=2 % t = 2 time units 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1% 2*Nptlevy -1 = m 
in Eqn 

Tl = znegpos(Kl); 
ploss2=0; 
Exloss2=0; 
pvalue2=0; 
Exvalue2 = 0; 

for K2 = l:2*Nptlevy -1 % znegposno = -n in Eqn 
T2 = znegpos(Kl)+ znegpos(K2); 
Dr=l ; 
if Tl<= 0, Dr=0; end 
Ds =1; 

if T2 <= stoploss , Ds = 0;end 
Dt=l ; 
if T2 <= Tl +stoploss, Dt=0; end% Dt relates to 

trailing stoploss 
Exvalue2 = Exvalue2 + Lalphanegpos(K2)*((1-

Dr)*stoploss*(1-Dt)+Dr*(Tl+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T2*Dt); 

ploss2 = ploss2 + Lalphanegpos(K2)*((1-Dr)*(1-
Dt)+Dr*(l-Dt)+(1-Ds)*Dt); 
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Exloss2 = Exloss2 + Lalphanegpos(K2)*((1-
Dr)*stoploss*(l-Dt)+Dr*(Tl+stoploss)*(l-Dt)+(l-
Ds)*stoploss*Dt); 

pvalue2 = 1;% pvalue2 adds up to 1 
end 
plossl= plossl+Lalphanegpos(Kl)*ploss2 
Exlossl= Exlossl+Lalphanegpos(Kl)*Exloss2 
pvaluel = pvaluel + Lalphanegpos(Kl)*pvalue2 
Exvaluel = Exvaluel + Lalphanegpos(Kl)*Exvalue2 

end 
plossvector(t+1)=plossl;% probability of the trade 
being stopped out at t=2, and that it is not stopped 
at t=l 
pvaluevector(t+1) = pvaluel;%prob of trader cashing 
out at t=2, and that the trade is not stopped at t=l 
Exlossvector(t+1) = Exlossl;%Expected loss(or maybe 
gain) at t=2 when the trade is stopped out at t=2 
Exvaluevector(t+1) = Exvaluel;%Expected value at 

t=2, given that the trade is not stopped at t=l 
t=3 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2=0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = znegposno +1: 2*Nptlevy -1 
T2 = znegpos(Kl)+ znegpos(K2); 
ploss3=0; 
Exloss3=0; 
pvalue3=0; 
Exvalue3 = 0; 

for K3 = l:2*Nptlevy -1 % znegposno = -n in Eqn 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
Dr=l; 
if T2<= 0, Dr=0; end 
Ds =1; 

if T3 <= stoploss , Ds = 0;end 
Dt=l; 
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if T3 <= T2 +stoploss, Dt=0; end% Dt relates to 
trailing stoploss 

Exvalue3 = Exvalue3 + Lalphanegpos(K3)*((1-
Dr)*stoploss*(l-Dt)+Dr*(T2+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T3*Dt); 

ploss3 = ploss3 + Lalphanegpos(K3)*((1-Dr)*(1-
Dt)+Dr*(l-Dt)+(l-Ds)*Dt); 

Exloss3 = Exloss3 + Lalphanegpos(K3)*((1-
Dr)*stoploss*(1-Dt)+Dr*(T2+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvalue3 = 1; 
end 

D =1; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

plossl = plossl+ Lalphanegpos(Kl)*ploss2 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=4 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 
for K2 = znegposno +1: 2*Nptlevy -1 
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T2 = znegpos(Kl)+ znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 
for K3 = znegposno +1: 2*Nptlevy -1 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
ploss4=0; 
Exloss4 = 0; 
pvalue4=0; 
Exvalue4 = 0; 

for K4 = l:2*Nptlevy -1 % znegposno = -n in Eqn 
T4 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
Dr=l; 
if T3<= 0, Dr=0; end 
Ds =1; 

if T4 <= stoploss , Ds = 0;end 
Dt=l; 
if T4 <= T3 +stoploss, Dt=0; end% Dt relates to 

trailing stoploss 
Exvalue4 = Exvalue4 + Lalphanegpos(K4)*((1-

Dr)*stoploss*(1-Dt)+Dr*(T3+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T4*Dt); 

ploss4 = ploss4 + Lalphanegpos(K4)*((1-Dr)*(1-
Dt)+Dr*(l-Dt)+(l-Ds)*Dt); 

Exloss4 = Exloss4 + Lalphanegpos(K4)*((1-
Dr)*stoploss*(1-Dt)+Dr*(T3+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvalue4 = 1; 
end 

D =1; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * 

Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * 

Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 
D =1; 
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if T2 <= znegpos(znegposno) , D = 0;end 

D 

D 

+ D 

ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 

Lalphanegpos(K2)*Exvalue3; 
end 
plossl = plossl+ Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2; 

end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=5 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 
for K2 = znegposno 
T2 = znegpos(Kl)+ 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 
for K3 = znegposno +1: 2*Nptlevy -1 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 
for K4 = znegposno 
T4 = znegpos(Kl)+ 

znegpos(K4); 

+1: 2*Nptlevy 
znegpos(K2); 

-1 

+1: 2*Nptlevy -1 
znegpos(K2)+ znegpos(K3)+ 
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ploss5=0; 
Exloss5 = 0; 
pvalue5 = 0; 
Exvalue5 = 0; 

for K5 = l:2*Nptlevy -1 % znegposno = -n in 
Eqn 

T5 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 
znegpos(K4)+ znegpos(K5); 

Dr=l; 
if T4<= 0, Dr=0; end 
Ds =1; 

if T5 <= stoploss , Ds = 0;end 
Dt=l; 
if T5 <= T4 +stoploss, Dt=0; end% Dt relates to 

trailing stoploss 
Exvalue5 = Exvalue5 + Lalphanegpos(K5)*((1-

Dr)*stoploss*(1-Dt)+Dr*(T4+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T5*Dt); 

ploss5 = ploss5 + Lalphanegpos(K5)*((1-Dr)*(1-
Dt)+Dr*(l-Dt)+(l-Ds)*Dt); 

Exloss5 = Exloss5 + Lalphanegpos(K5)*((1-
Dr)*stoploss*(1-Dt)+Dr*(T4+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvalue5 = 1; 
end 

D =1; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * 

Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * 

Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 
D =1; 

if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * 

Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * 

Lalphanegpos(K3)*Exloss4; 
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Exvalue3 = Exvalue3 + D * 
Lalphanegpos(K3)*Exvalue4; 

end 
D =1; 
if T2 <= znegpos(znegposno) D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 
plossl = plossl+ Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 

2*Nptlevy -1 

t=6 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 
for K2 = znegposno 
T2 = znegpos(Kl)+ 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 
for K3 = znegposno +1: 2*Nptlevy -1 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 

+1: 2*Nptlevy -1 
znegpos(K2); 
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E x l o s s 4 = 0 ; 
Exvalue4 = 0; 
for K4 = znegposno +1: 2*Nptlevy -1 
T4 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 
for K5 = znegposno +1: 2*Nptlevy -1 
T5 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
Exloss6 = 0; 
pvalue6 = 0; 
Exvalue6 = 0; 

for K6 = l:2*Nptlevy -1 
T6 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
Dr=l; 
if T5<= 0, Dr=0; end 
Ds =1; 

if T6 <= stoploss , Ds = 0;end 
Dt=l; 
if T6 <= T5 +stoploss, Dt=0; end% Dt relates to 

trailing stoploss 
Exvalue6 = Exvalue6 + Lalphanegpos(K6)*((1-

Dr)*stoploss*(1-Dt)+Dr*(T5+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T6*Dt); 

ploss6 = ploss6 + Lalphanegpos(K6)*((1-Dr)*(1-
Dt)+Dr*(l-Dt)+(l-Ds)*Dt); 

Exloss6 = Exloss6 + Lalphanegpos(K6)*((1-
Dr)*stoploss*(1-Dt)+Dr*(T5+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvalue6 = 1; 
end 

D =1; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * 

Lalphanegpos(K5)*pvalue6; 
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Exloss5 = Exloss5 + D * 
Lalphanegpos(K5)*Exloss6; 

Exvalue5 = Exvalue5 + D * 
Lalphanegpos(K5)*Exvalue6; 

end 
D =1; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * 

Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * 

Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D =1; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * 

Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * 

Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D =1; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 
plossl = plossl+ Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
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t=7 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 
for K2 = znegposno +1: 2*Nptlevy -1 
T2 = znegpos(Kl)+ znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 
for K3 = znegposno +1: 2*Nptlevy -1 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 
for K4 = znegposno +1: 2*Nptlevy -1 
T4 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 
for K5 = znegposno +1: 2*Nptlevy -1 
T5 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 
for K6 = znegposno +1: 2*Nptlevy -1 
T6 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
ploss7=0; 
Exloss7 = 0; 
pvalue7 = 0 ; 
Exvalue7 = 0; 
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for K7 = l:2*Nptlevy -1 
T7 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7); 
Dr=l; 
if T6<= 0, Dr=0; end 
Ds =1; 

if T7 <= stoploss , Ds = 0;end 
Dt=l; 
if T7 <= T6 +stoploss, Dt=0; end% Dt relates to 

trailing stoploss 
Exvalue7 = Exvalue7 + Lalphanegpos(K7)*( (1-

Dr)*stoploss*(1-Dt)+Dr*(T6+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T7*Dt); 

ploss7 = ploss7 + Lalphanegpos(K7)*((1-Dr)*(1-
Dt)+Dr*(l-Dt) + (l-Ds)*Dt) ; 

Exloss7 = Exloss7 + Lalphanegpos(K7)*((1-
Dr)*stoploss*(1-Dt)+Dr*(T6+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvalue7 = 1; 
end 

D=l; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * 

Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * 

Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D =1; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * 

Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * 

Lalphanegpos(K5)*Exloss6; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6; 
end 

D =1; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
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pvalue4 = pvalue4 + D * 
Lalphanegpos(K4)*pvalue5; 

Exloss4 = Exloss4 + D * 
Lalphanegpos(K4)*Exloss5; 

Exvalue4 = Exvalue4 + D * 
Lalphanegpos(K4)*Exvalue5; 

end 
D = 1; 

if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * 

Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * 

Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D =1; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 
plossl = plossl+ Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=8 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
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pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 
for K2 = znegposno +1: 2*Nptlevy -1 
T2 = znegpos(Kl)+ znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 
for K3 = znegposno +1: 2*Nptlevy -1 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 
for K4 = znegposno +1: 2*Nptlevy -1 
T4 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 
for K5 = znegposno +1: 2*Nptlevy -1 
T5 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 
for K6 = znegposno +1: 2*Nptlevy -1 
T6 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
ploss7=0; 
pvalue7 = 0; 
Exloss7=0; 
Exvalue7 = 0; 
for K7 = znegposno +1: 2*Nptlevy -1 
T7 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7); 
ploss8=0; 
Exloss8 = 0; 
pvalue8 = 0; 
Exvalue8 = 0; 
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for K8 = l:2*Nptlevy -1 
T8 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8); 

Dr=l; 
if T7<= 0, Dr=0; end 
Ds =1; 

if T8 <= stoploss , Ds = 0;end 
Dt=l; 
if T8 <= T7 +stoploss, Dt=0; end% Dt relates to 

trailing stoploss 
Exvalue8 = Exvalue8 + Lalphanegpos(K8)*((1-

Dr)*stoploss*(1-Dt)+Dr*(T7+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T8*Dt); 

ploss8 = ploss8 + Lalphanegpos(K8)*((1-Dr)*fl­
at)+Dr* (1-Dt) + (1-Ds) *Dt) ; 

Exloss8 = Exloss8 + Lalphanegpos(K8)*((1-
Dr)*stoploss*(1-Dt)+Dr*(T7+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvalue8 = 1; 
end 

D =1; 
if T7 <= znegpos(znegposno) , D = 0;end 
ploss7 = ploss7 + D * Lalphanegpos(K7)*ploss8; 
pvalue7 = pvalue7 + D * 

Lalphanegpos(K7)*pvalue8; 
Exloss7 = Exloss7 + D * 

Lalphanegpos(K7)*Exloss8; 
Exvalue7 = Exvalue7 + D * 

Lalphanegpos(K7)*Exvalue8; 
end 

D =1; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * 

Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * 

Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D =1; 
if T5 <= znegpos(znegposno) , D = 0;end 
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ploss5 = ploss5 + D * 
Lalphanegpos(K5)*ploss6; 

pvalue5 = pvalue5 + D * 
Lalphanegpos(K5)*pvalue6; 

Exloss5 = Exloss5 + D * 
Lalphanegpos(K5)*Exloss6; 

Exvalue5 = Exvalue5 + D * 
Lalphanegpos(K5)*Exvalue6; 

end 
D =1; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * 

Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * 

Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D =1; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * 

Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * 

Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D =1; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 
plossl = plossl+ Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2; 
end 
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plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=9 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 
for K2 = znegposno +1: 2*Nptlevy -1 
T2 = znegpos(Kl)+ znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 
for K3 = znegposno +1: 2*Nptlevy -1 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 
for K4 = znegposno +1: 2*Nptlevy -1 
T4 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 
for K5 = znegposno +1: 2*Nptlevy -1 
T5 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 
for K6 = znegposno +1: 2*Nptlevy -1 
T6 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
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ploss7=0; 
pvalue7 = 0; 
Exloss7=0; 
Exvalue7 = 0; 
for K7 = znegposno +1: 2*Nptlevy -1 
T7 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7); 
ploss8=0; 
pvalue8 = 0; 
Exloss8=0; 
Exvalue8 = 0; 
for K8 = znegposno +1: 2*Nptlevy -1 
T8 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8); 

ploss9=0; 
Exloss9 = 0; 
pvalue9 = 0; 
Exvalue9 = 0; 

for K9 = l:2*Nptlevy -1 
T9 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8)+ znegpos(K9); 

Dr=l; 
if T8<= 0, Dr=0; end 
Ds =1; 

if T9 <= stoploss , Ds = 0;end 
Dt=l; 
if T9 <= T8 +stoploss, Dt=0; end% Dt relates to 

trailing stoploss 
Exvalue9 = Exvalue9 + Lalphanegpos(K9)*((1-

Dr)*stoploss*(1-Dt)+Dr*(T8+stoploss)*(1-Dt)+(1-
Ds) *stoploss*Dt+Ds*T9*Dt); 

ploss9 = ploss9 + Lalphanegpos(K9)*((1-Dr)*(1-
Dt)+Dr*(l-Dt)+(l-Ds)*Dt); 

Exloss9 = Exloss9 + Lalphanegpos(K9)*((1-
Dr)*stoploss*(l-Dt)+Dr*(T8+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvalue9 = 1; 
end 

D =1; 
if T8 <= znegpos(znegposno) , D = 0;end 
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ploss8 = ploss8 + D * Lalphanegpos(K8)*ploss9; 
pvalue8 = pvalue8 + D * 

Lalphanegpos(K8)*pvalue9; 
Exloss8 = Exloss8 + D * 

Lalphanegpos(K8)*Exloss9; 
Exvalue8 = Exvalue8 + D * 

Lalphanegpos(K8)*Exvalue9; 
end 

D =1; 
if T7 <= znegpos(znegposno) , D = 0;end 
ploss7 = ploss7 + D * Lalphanegpos(K7)*ploss8; 
pvalue7 = pvalue7 + D * 

Lalphanegpos(K7)*pvalue8; 
Exloss7 = Exloss7 + D * 

Lalphanegpos(K7)*Exloss8; 
Exvalue7 = Exvalue7 + D * 

Lalphanegpos(K7)*Exvalue8; 
end 

D =1; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * 

Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * 

Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D =1; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * 

Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * 

Lalphanegpos(K5)*Exloss6; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6; 
end 

D =1; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * 

Lalphanegpos(K4)*pvalue5; 
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Exloss4 = Exloss4 + D * 
Lalphanegpos(K4)*Exloss5; 

Exvalue4 = Exvalue4 + D * 
Lalphanegpos(K4)*Exvalue5; 

end 
D =1; 

if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * 

Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * 

Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D =1; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 
plossl = plossl+ Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=10 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = znegposno +1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
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Exvalue2 = 0; 
for K2 = znegposno 
T2 = znegpos(Kl)+ 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 
for K3 = znegposno 
T3 = znegpos(Kl)+ 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 
for K4 = znegposno 
T4 = znegpos(Kl)+ 

znegpos(K4) ; 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 
for K5 = znegposno 
T5 = znegpos(Kl)+ 

znegpos(K4)+ znegpos(K5) 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 
for K6 = znegposno 
T6 = znegpos(Kl)+ 

znegpos(K4)+ znegpos(K5) 
ploss7=0; 
pvalue7 = 0; 
Exloss7=0; 
Exvalue7 = 0; 
for K7 = znegposno 
T7 = znegpos(Kl)+ 

znegpos(K4)+ znegpos(K5) 
ploss8=0; 
pvalue8 = 0; 
Exloss8=0; 
Exvalue8 = 0; 
for K8 = znegposn 

+1: 2*Nptlevy -1 
znegpos(K2); 

+1: 2*Nptlevy -1 
znegpos(K2)+ znegpos(K3); 

+1: 2*Nptlevy -1 
znegpos(K2)+ znegpos(K3)+ 

+1: 2*Nptlevy -1 
znegpos(K2)+ znegpos(K3)+ 

+1: 2*Nptlevy -1 
znegpos(K2)+ znegpos(K3)+ 

+ znegpos(K6); 

+1: 2*Nptlevy -1 
znegpos(K2)+ znegpos(K3)+ 

+ znegpos(K6)+ znegpos(K7); 

o +1: 2*Nptlevy -1 
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T8 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 
znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8); 

ploss9=0; 
pvalue9 = 0; 
Exloss9=0; 
Exvalue9 = 0; 
for K9 = znegposno +1: 2*Nptlevy -1 
T9 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8)+ znegpos(K9); 

plossl0=0; 
ExlosslO = 0; 
pvaluelO = 0; 
ExvaluelO = 0; 

for K10 = l:2*Nptlevy -1 
T10 = znegpos(Kl)+ znegpos(K2)+ 

znegpos(K3)+ znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ 
znegpos(K7)+ znegpos(K8)+ znegpos(K9)+ znegpos(K10); 

Dr=l ; 
if T9<= 0, Dr=0; end 
Ds =1; 

if T10 <= stoploss , Ds = 0;end 
Dt=l ; 
if T10 <= T9 +stoploss, Dt=0; end% Dt relates 

to trailing stoploss 
ExvaluelO = ExvaluelO + Lalphanegpos(K10)*((1-

Dr)*stoploss*(1-Dt)+Dr*(T9+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt+Ds*T10*Dt); 

plosslO = plosslO + Lalphanegpos(K10)*((1-
Dr)*(1-Dt)+Dr*(1-Dt) + (1-Ds)*Dt) ; 

ExlosslO = ExlosslO + Lalphanegpos(K10)*((1-
Dr)*stoploss*(1-Dt)+Dr*(T9+stoploss)*(1-Dt)+(1-
Ds)*stoploss*Dt); 

pvaluelO = 1; 
end 

D =1; 
if T9 <= znegpos(znegposno) , D = 0;end 
ploss9 = ploss9 + D * 

Lalphanegpos(K9)*plossl0; 
pvalue9 = pvalue9 + D * 

Lalphanegpos(K9)*pvaluel0; 
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Exloss9 = Exloss9 + D * 
Lalphanegpos(K9)*ExlosslO; 

Exvalue9 = Exvalue9 + D * 
Lalphanegpos(K9)*ExvaluelO; 

end 
D =1; 
if T8 <= znegpos(znegposno) , D = 0;end 
ploss8 = ploss8 + D * Lalphanegpos(K8)*ploss9; 
pvalue8 = pvalue8 + D * 

Lalphanegpos(K8)*pvalue9; 
Exloss8 = Exloss8 + D * 

Lalphanegpos(K8)*Exloss9; 
Exvalue8 = Exvalue8 + D * 

Lalphanegpos(K8)*Exvalue9; 
end 

D =1; 
if T7 <= znegpos(znegposno) , D = 0;end 
ploss7 = ploss7 + D * Lalphanegpos(K7)*ploss8; 
pvalue7 = pvalue7 + D * 

Lalphanegpos(K7)*pvalue8; 
Exloss7 = Exloss7 + D * 

Lalphanegpos(K7)*Exloss8; 
Exvalue7 = Exvalue7 + D * 

Lalphanegpos(K7)*Exvalue8; 
end 

D =1; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * 

Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * 

Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D =1; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * 

Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * 

Lalphanegpos(K5)*Exloss6 ; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6; 
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end 
D =1; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * 

Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * 

Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D =1; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * 

Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * 

Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D =1; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * 

Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * 

Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 
plossl = plossl+ Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel+ Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl+ Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel+ Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 

for I =l:t+l 
time(I) = 1-1; 
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end 
figure(4) 
plot(time,Exvaluevector,'k*-') 
xlabelC t ') 
ylabel('Expected value at time t, with trailing 
stop-loss') 
title('S & P 500') 

Totalp(2)=1;% As Lalphanegpos is normalized. The 
total probability is 1 at t=l 
Totalex(2)=Exvaluevector(2); 
plosssum=0; 
Exlosssum=0; 
for I=3:t+1 

plosssum = plosssum + plossvector(1-1);% add up 
prob of stopping out in previous days, 35M142 

Exlosssum = Exlosssum+Exlossvector(1-1);% add up 
expected values of stopping out for previous days 

Totalp(I)=plosssum+pvaluevector(I);% Totalp is the 
sum of the probability of previous days losses and 
last day's cshing out 

Totalex(I)=Exlosssum+Exvaluevector(I);%Totalex is 
the expected value of previous days losses and last 
day's gain 
end 

Expectedt(2)=1;%Expectedt is the average number of 
t units of the trade when the trader chooses to cash 
out on the t th unit 
for I=3:t+1 

Sum=0; 
for J=2:I-1 

Sum =Sum + plossvector(J)*(J-l); 
end 
Expectedt(I)= Sum +pvaluevector(I)*(1-1); 

end 
for I=2:t+1 

TotalexDt(I)=Totalex(I)/Expectedt(I); 
end 
figure(5) 
plot(time(2:t + l),Exlossvector(2:t + 1) , 'k*-')% last 
point of Exlossvector actually not used in 
calculation. It is calculated for plotting purpose 
only. 
xlabelC t ') 
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ylabel('Expected loss at time t, with trailing stop 
loss ') 
title('S & P 500') 
figure(6) 
plot(time(2:t+l),Totalex(2:t+1),'k*-') 
xlabelC t ' ) 
ylabel('Total expected value, with trailing stop 
loss') 
title('S & P 500' ) 
figure(7) 
plot(time(2:t+1),plossvector(2:t+l),'k*-') 
xlabel(» t ') 
ylabel('plossvector') 
title('S & P 500' ) 
figure(8) 
plot(time(2:t + l),pvaluevector(2:t + l),'k*-') 
xlabelC t ') 
ylabel('pvaluevector, with trailing stop loss') 
title('S & P 500') 
figure(9) 
plot(time(2:t + 1),Totalp(2:t + 1), 'k*-' ) 
xlabel(' t ' ) 
ylabel('Totalp, with trailing stop loss') 
title('S & P 500') 
figure(10) 
plot(time(2:t+l),Expectedt(2:t+l),'k*-') 
xlabelC t ') 
ylabel('Average time, with trailing stop loss') 
title('S & P 500') 
figure(11) 
plot(time(2:t + 1),TotalexDt(2:t + 1) , 'k*-') 
xlabel(' t ') 
ylabel('Total expected value/Average time , with 
trailing stop-loss') 
title('S & P 500') 
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A5.2 Fixed Stop-Loss Program 

%Fixedstoploss 
% 
clear 
t=10; 
for I=l:t+1 

%day is only an example of one time unit 
plossvector(I)=0;% probability of that day's 

stopping out by initial stoploss or trailing stoploss 
Exlossvector(I)=0;% expected value of being 

stopped out 
pvaluevector(I)=0;% probability of last day' cash 

out 
Totalp(I)=0;% Total probability of previous days' 

stops and last day cash out 
Totalex(I)=0; 
Expectedt(I)=0; 

end 
deltat=l; 
interval = .05;%for calculating the integral 
endpoint = 500;% for calculating the integral 
q = 0: interval: endpoint; 
zinterval = 0.025; % 
zendpoint = 0.075;%0.075 
z = 0: zinterval: zendpoint; 
Nptlevy = round(zendpoint/zinterval) +1 ; 
for J=l:Nptlevy 

for 1=1:endpoint/interval +1 
y(I)= (l/pi)*exp(-

0.00375*deltat*q(I)Al.4)*cos(q(I)*z(J));% calculate 
Levy distribution 

end 
Lalpha(J)=trapz(q, y); %using trapezoidal approx to 

calculate the integral 
end 
figure (1) 
plot(z,Lalpha,'k*-') 
xlabeK'Z, Delta t = 1') 
ylabelf'Levy distribution') 
titleC ') 
% To assign numbers to the symmetrical Levy function 
for J=l: 2*Nptlevy -1 

znegpos(J)=0; 
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Lalphanegpos(J)=0; 
end 

for J = l:Nptlevy - 1 
znegpos(J) = -z(Nptlevy+1 - J); 
Lalphanegpos(J) = Lalpha(Nptlevy+1 - J); 

end 
for J= 1: Nptlevy 

znegpos(J + Nptlevy -1) = z(J); 
Lalphanegpos(J + Nptlevy -1) = Lalpha(J); 

end 
figure(2) 
plot(znegpos,Lalphanegpos, 'k*- ') 
xlabel('Z, Delta t = 1') 
ylabel('Levy distribution ') 
title('') 
Sumlevy=0;% Normalize the Levy dist. 
for I=l:2*Nptlevy -1 

Sumlevy = Sumlevy + Lalphanegpos(I); 
end 
for I=l:2*Nptlevy -1 

Lalphanegpos(I) = Lalphanegpos(I)/Sumlevy; 
end 
figure(3) 
plot(znegpos,Lalphanegpos,'k*-') 
xlabel('Z, Delta t = 1') 
ylabel('Normalized Levy distribution') 
title('Normalized prob dist') 
%Nptlevy = 2;% for testing only 
%znegpos=[-l 0 1 ];% for testing only 
%Lalphanegpos = [ 0.25 0.5 0.25];% for testing only 
%Nptlevy = 3;% for testing only 
%znegpos=[-2 -1 0 1 2];% for testing only 
%Lalphanegpos = [0.1 0.2 0.4 0.2 0.1];% for 
testing only 
S= -1;% change stoploss S = 0, -1, 
_o *********** 

i. t . . . 

znegposno = Nptlevy + S;% this is the number in the 
vector where stoploss is set 
% Buy at t = 0, find the expectation value at furture 
t, stoploss is fixed 
stoplossvalue=znegpos(znegposno);% stoploss value is 
fixed thru out 
Exvaluevector(1) = 0 ; % at time t=0, buy — 
therefore no gain or loss 
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t=l% t = 1 time unit 
plossl=0; 
pvaluel = 0; 
Exlossl=0; 
Exvaluel = 0; 

for Kl = l:2*Nptlevy -1 % znegposno = -n in 
35M107 

Tl = znegpos(Kl); 
D =1; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + Lalphanegpos(Kl)*(1-D); 
pvaluel = pvaluel + Lalphanegpos(Kl)*((1-

D)+D);%pvaluel will add up to 1 
Exlossl = Exlossl + 

Lalphanegpos(Kl)*stoplossvalue*(1-D); 
Exvaluel = Exvaluel + 

Lalphanegpos(Kl)*(stoplossvalue*(1-D)+T1*D); 
end 

plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=2 
plossl=0; 
pvaluel = 0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2 = 0; 
pvalue2 = 0; 
Exloss2 = 0; 
Exvalue2 = 0; 

for K2 = l:2*Nptlevy -1 
T2 = znegpos(Kl)+ znegpos(K2); 
D =1; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + Lalphanegpos(K2)*(1-D); 
pvalue2 =pvalue2 + Lalphanegpos(K2)*((1-D)+D); 
Exloss2 = Exloss2 + 

Lalphanegpos(K2)*stoplossvalue*(1-D); 
Exvalue2 = Exvalue2 + 

Lalphanegpos(K2)*(stoplossvalue*(1-D)+T2*D) ; 
end 
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D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=3 
plossl=0; 
pvaluel = 0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = l:2*Nptlevy -1 
T3 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3); 
D =1; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + Lalphanegpos(K3)*(1-D); 
pvalue3 = pvalue3 + Lalphanegpos(K3)*((1-D)+D); 
Exloss3 = Exloss3 + 

Lalphanegpos(K3)*stoplossvalue*(1-D); 
Exvalue3 = Exvalue3 + 

Lalphanegpos(K3)*(stoplossvalue*(1-D)+T3*D); 
end 
D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
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Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=4 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = 1: 2*Nptlevy -1 
T3 = znegpos(Kl)+znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 

for K4 = l:2*Nptlevy -1 
T4 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
D =1; 
if T4 <= znegpos(znegposno) , D = 0;end 
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ploss4 = ploss4 + Lalphanegpos(K4)*(1-D); 
pvalue4 = pvalue4 + Lalphanegpos(K4)*((1-

D)+D);% pvalue4 should add up to be 1 
Exloss4 = Exloss4 + 

Lalphanegpos(K4)*stoplossvalue*(1-D); 
Exvalue4 = Exvalue4 + 

Lalphanegpos(K4)*(stoplossvalue*(1-D)+T4*D); 
end 
D=l; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=5 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
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pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = 1: 2*Nptlevy -1 
T3 = znegpos(Kl)+znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 

for K4 = 1: 2*Nptlevy -1 
T4 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 

for K5 = l:2*Nptlevy -1 
T5 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
D =1; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + Lalphanegpos(K5)*(1-D); 
pvalue5 = pvalue5 + Lalphanegpos(K5)*((1-D)+D); 
Exloss5 = Exloss5 + 

Lalphanegpos(K5)*stoplossvalue*(1-D); 
Exvalue5 = Exvalue5 + 

Lalphanegpos(K5)*(stoplossvalue*(1-D)+T5*D); 
end 
D=l; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D=l; 
if T3 <= znegpos(znegposno) , D = 0;end 
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ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=6 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = 1: 2*Nptlevy -1 
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T3 = znegpos(Kl)+znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 

for K4 = 1: 2*Nptlevy -1 
T4 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 

for K5 = 1: 2*Nptlevy -1 
T5 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 

for K6 = l:2*Nptlevy -1 
T6 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
D =1; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + Lalphanegpos(K6)*(1-D); 
pvalue6 = pvalue6 + Lalphanegpos(K6)*((1-D)+D); 
Exloss6 = Exloss6 + 

Lalphanegpos(K6)*stoplossvalue*(1-D); 
Exvalue6 = Exvalue6 + 

Lalphanegpos(K6)*(stoplossvalue*(1-D)+T6*D); 
end 
D=l; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * Lalphanegpos(K5)*Exloss6; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6; 
end 

D=l; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * Lalphanegpos(K4)*Exloss5; 
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Exvalue4 = Exvalue4 + D * 
Lalphanegpos(K4)*Exvalue5; 
end 

D=l; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector (t + 1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=7 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
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ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = 1: 2*Nptlevy -1 
T3 = znegpos(Kl)+znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 

for K4 = 1: 2*Nptlevy -1 
T4 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 

for K5 = 1: 2*Nptlevy -1 
T5 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 

for K6 = 1: 2*Nptlevy -1 
T6 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
ploss7=0; 
pvalue7 = 0; 
Exloss7=0; 
Exvalue7 = 0; 

for K7 = l:2*Nptlevy -1 
T7 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7); 
D =1; 
if T7 <= znegpos(znegposno) , D = 0;end 
ploss7 = ploss7 + Lalphanegpos(K7)*(1-D); 
pvalue7 = pvalue7 + Lalphanegpos(K7)*((1-D)+D); 
Exloss7 = Exloss7 + 

Lalphanegpos(K7)*stoplossvalue*(1-D); 
Exvalue7 = Exvalue7 + 

Lalphanegpos(K7)*(stoplossvalue*(1-D)+T7*D); 
end 
D=l; 
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if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D=l; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * Lalphanegpos(K5)*Exloss6; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6; 
end 

D=l; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D=l; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2 
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Exvaluel = Exvaluel + D * 
Lalphanegpos(Kl)*Exvalue2 
end 
plossvector(t+1) = plossl; 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl; 
Exvaluevector(t+1) = Exvaluel; 
t=8 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = 1: 2*Nptlevy -1 
T3 = znegpos(Kl)+znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 

for K4 = 1: 2*Nptlevy -1 
T4 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 

for K5 = 1: 2*Nptlevy -1 
T5 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 
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for K6 = 1: 2*Nptlevy -1 
T6 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
ploss7=0; 
pvalue7 = 0; 
Exloss7=0; 
Exvalue7 = 0; 

for K7 = 1: 2*Nptlevy -1 
T7 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7); 
ploss8=0; 
pvalue8 = 0; 
Exloss8=0; 
Exvalue8 = 0; 

for K8 = l:2*Nptlevy -1 
T8 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8); 

D =1; 
if T8 <= znegpos(znegposno) , D = 0;end 
ploss8 = ploss8 + Lalphanegpos(K8)*(1-D); 
pvalue8 = pvalue8 + Lalphanegpos(K8)*((1-D)+D); 
Exloss8 = Exloss8 + 

Lalphanegpos(K8)*stoplossvalue*(1-D) ; 
Exvalue8 = Exvalue8 + 

Lalphanegpos(K8)*(stoplossvalue*(1-D)+T8*D); 
end 
D=l; 
if T7 <= znegpos(znegposno) , D = 0;end 
ploss7 = ploss7 + D * Lalphanegpos(K7)*ploss8; 
pvalue7 = pvalue7 + D * Lalphanegpos(K7)*pvalue8; 
Exloss7 = Exloss7 + D * Lalphanegpos(K7)*Exloss8; 
Exvalue7 = Exvalue7 + D * 

Lalphanegpos(K7)*Exvalue8; 
end 

D=l; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D=l; 
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if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * Lalphanegpos(K5)*Exloss6; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6; 
end 

D=l; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D=l; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2 ; 
end 
plossvector(t+1) = plossl;% not used in calculation, 
for plotting only 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl;% not used in 
calculation, for plotting only 
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Exvaluevector(t+1) = Exvaluel; 

t=9 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = 1: 2*Nptlevy -1 
T3 = znegpos(Kl)+znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 

for K4 = 1: 2*Nptlevy -1 
T4 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 

for K5 = 1: 2*Nptlevy -1 
T5 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 

for K6 = 1: 2*Nptlevy -1 
T6 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
ploss7=0; 
pvalue7 = 0; 
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Exloss7=0; 
Exvalue7 = 0; 

for K7 = 1: 2*Nptlevy -1 
T7 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7); 
ploss8=0; 
pvalue8 = 0; 
Exloss8=0; 
Exvalue8 = 0; 

for K8 = 1: 2*Nptlevy -1 
T8 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8); 

ploss9=0; 
pvalue9 = 0; 
Exloss9=0; 
Exvalue9 = 0; 

for K9 = l:2*Nptlevy -1 
T9 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8)+ znegpos(K9); 

D =1; 
if T9 <= znegpos(znegposno) , D = 0;end 
ploss9 = ploss9 + Lalphanegpos(K9)*(1-D); 
pvalue9 = pvalue9 + Lalphanegpos(K9)*((1-D)+D); 
Exloss9 = Exloss9 + 

Lalphanegpos(K9)*stoplossvalue*(1-D); 
Exvalue9 = Exvalue9 + 

Lalphanegpos(K9)*(stoplossvalue*(1-D)+T9*D); 
end 
D=l; 
if T8 <= znegpos(znegposno) , D = 0;end 
ploss8 = ploss8 + D * Lalphanegpos(K8)*ploss9; 
pvalue8 = pvalue8 + D * Lalphanegpos(K8)*pvalue9; 
Exloss8 = Exloss8 + D * Lalphanegpos(K8)*Exloss9; 
Exvalue8 = Exvalue8 + D * 

Lalphanegpos(K8)*Exvalue9; 
end 
D=l; 
if T7 <= znegpos(znegposno) , D = 0;end 
ploss7 = ploss7 + D * Lalphanegpos(K7)*ploss8; 
pvalue7 = pvalue7 + D * Lalphanegpos(K7)*pvalue8; 
Exloss7 = Exloss7 + D * Lalphanegpos(K7)*Exloss8; 
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Exvalue7 = Exvalue7 + D * 
Lalphanegpos(K7)*Exvalue8; 
end 

D=l; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D=l; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
pvalue5 = pvalue5 + D * Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * Lalphanegpos(K5)*Exloss6; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6 ; 
end 

D=l; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D=l; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
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if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2 ; 
end 
plossvector(t+1) = plossl;% not used in calculation, 
for plotting only 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl;% not used in 
calculation, for plotting only 
Exvaluevector(t+1) = Exvaluel; 

t=10 
plossl=0; 
pvaluel=0; 
Exlossl=0; 
Exvaluel=0; 
for Kl = 1: 2*Nptlevy -1 

Tl = znegpos(Kl); 
ploss2=0; 
pvalue2 = 0; 
Exloss2=0; 
Exvalue2 = 0; 

for K2 = 1: 2*Nptlevy -1 
T2 = znegpos(Kl)+znegpos(K2); 
ploss3=0; 
pvalue3 = 0; 
Exloss3=0; 
Exvalue3 = 0; 

for K3 = 1: 2*Nptlevy -1 
T3 = znegpos(Kl)+znegpos(K2)+ znegpos(K3); 
ploss4=0; 
pvalue4 = 0; 
Exloss4=0; 
Exvalue4 = 0; 

for K4 = 1: 2*Nptlevy -1 
T4 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4); 
ploss5=0; 
pvalue5 = 0; 
Exloss5=0; 
Exvalue5 = 0; 
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for K5 = 1: 2*Nptlevy -1 
T5 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5); 
ploss6=0; 
pvalue6 = 0; 
Exloss6=0; 
Exvalue6 = 0; 

for K6 = 1: 2*Nptlevy -1 
T6 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6); 
ploss7=0; 
pvalue7 = 0; 
Exloss7=0; 
Exvalue7 = 0; 

for K7 = 1: 2*Nptlevy -1 
T7 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7); 
ploss8=0; 
pvalue8 = 0; 
Exloss8=0; 
Exvalue8 = 0; 

for K8 = 1: 2*Nptlevy -1 
T8 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8); 

ploss9=0; 
pvalue9 = 0; 
Exloss9=0; 
Exvalue9 = 0; 

for K9 = 1: 2*Nptlevy -1 
T9 = znegpos(Kl)+znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8)+ znegpos(K9); 

plossl0=0; 
pvaluelO = 0; 
Exlossl0=0; 
ExvaluelO = 0; 

for K10 = l:2*Nptlevy -1 
T10 = znegpos(Kl)+ znegpos(K2)+ znegpos(K3)+ 

znegpos(K4)+ znegpos(K5)+ znegpos(K6)+ znegpos(K7)+ 
znegpos(K8)+ znegpos(K9)+ znegpos(K10); 

D =1; 
if T10 <= znegpos(znegposno) , D = 0;end 
plosslO = plosslO + Lalphanegpos(KlO)*(1-D); 
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pvaluelO = pvaluelO + Lalphanegpos(KIO)*((1-
D)+D); 

ExlosslO = ExlosslO + 
Lalphanegpos(KIO)*stoplossvalue*(1-D); 

ExvaluelO = ExvaluelO + 
Lalphanegpos(KIO)*(stoplossvalue*(1-D)+T10*D); 

end 
D=l; 
if T9 <= znegpos(znegposno) , D = 0;end 
ploss9 = ploss9 + D * Lalphanegpos(K9)*plossl0; 
pvalue9 = pvalue9 + D * 

Lalphanegpos(K9)*pvaluelO; 
Exloss9 = Exloss9 + D * 

Lalphanegpos(K9)*Exlossl0; 
Exvalue9 = Exvalue9 + D * 

Lalphanegpos(K9)*Exvaluel0; 
end 
D=l; 
if T8 <= znegpos(znegposno) , D = 0;end 
ploss8 = ploss8 + D * Lalphanegpos(K8)*ploss9; 
pvalue8 = pvalue8 + D * Lalphanegpos(K8)*pvalue9; 
Exloss8 = Exloss8 + D * Lalphanegpos(K8)*Exloss9; 
Exvalue8 = Exvalue8 + D * 

Lalphanegpos(K8)*Exvalue9; 
end 
D=l; 
if T7 <= znegpos(znegposno) , D = 0;end 
ploss7 = ploss7 + D * Lalphanegpos(K7)*ploss8; 
pvalue7 = pvalue7 + D * Lalphanegpos(K7)*pvalue8; 
Exloss7 = Exloss7 + D * Lalphanegpos(K7)*Exloss8; 
Exvalue7 = Exvalue7 + D * 

Lalphanegpos(K7)*Exvalue8; 
end 

D=l; 
if T6 <= znegpos(znegposno) , D = 0;end 
ploss6 = ploss6 + D * Lalphanegpos(K6)*ploss7; 
pvalue6 = pvalue6 + D * Lalphanegpos(K6)*pvalue7; 
Exloss6 = Exloss6 + D * Lalphanegpos(K6)*Exloss7; 
Exvalue6 = Exvalue6 + D * 

Lalphanegpos(K6)*Exvalue7; 
end 

D=l; 
if T5 <= znegpos(znegposno) , D = 0;end 
ploss5 = ploss5 + D * Lalphanegpos(K5)*ploss6; 
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pvalue5 = pvalue5 + D * Lalphanegpos(K5)*pvalue6; 
Exloss5 = Exloss5 + D * Lalphanegpos(K5)*Exloss6; 
Exvalue5 = Exvalue5 + D * 

Lalphanegpos(K5)*Exvalue6; 
end 

D=l; 
if T4 <= znegpos(znegposno) , D = 0;end 
ploss4 = ploss4 + D * Lalphanegpos(K4)*ploss5; 
pvalue4 = pvalue4 + D * Lalphanegpos(K4)*pvalue5; 
Exloss4 = Exloss4 + D * Lalphanegpos(K4)*Exloss5; 
Exvalue4 = Exvalue4 + D * 

Lalphanegpos(K4)*Exvalue5; 
end 

D=l; 
if T3 <= znegpos(znegposno) , D = 0;end 
ploss3 = ploss3 + D * Lalphanegpos(K3)*ploss4; 
pvalue3 = pvalue3 + D * Lalphanegpos(K3)*pvalue4; 
Exloss3 = Exloss3 + D * Lalphanegpos(K3)*Exloss4; 
Exvalue3 = Exvalue3 + D * 

Lalphanegpos(K3)*Exvalue4; 
end 

D=l; 
if T2 <= znegpos(znegposno) , D = 0;end 
ploss2 = ploss2 + D * Lalphanegpos(K2)*ploss3; 
pvalue2 = pvalue2 + D * Lalphanegpos(K2)*pvalue3; 
Exloss2 = Exloss2 + D * Lalphanegpos(K2)*Exloss3; 
Exvalue2 = Exvalue2 + D * 

Lalphanegpos(K2)*Exvalue3; 
end 

D=l; 
if Tl <= znegpos(znegposno) , D = 0;end 
plossl = plossl + D * Lalphanegpos(Kl)*ploss2; 
pvaluel = pvaluel + D * Lalphanegpos(Kl)*pvalue2; 
Exlossl = Exlossl + D * Lalphanegpos(Kl)*Exloss2; 
Exvaluel = Exvaluel + D * 

Lalphanegpos(Kl)*Exvalue2; 
end 
plossvector(t+1) = plossl;% not used in calculation, 
for plotting only 
pvaluevector(t+1) = pvaluel; 
Exlossvector(t+1) = Exlossl;% not used in 
calculation, for plotting only 
Exvaluevector(t+1) = Exvaluel; 
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for I =l:t+l 
time(I) = 1-1; 

end 
figure(4) 
plot(time,Exvaluevector,'k*-') 
xlabel(' t ') 
ylabel('Expected value at t, with fixed stop-loss') 
title('S & P 500' ) 
Totalp(2)=l;% As Lalphanegpos is normalized. The 
total probability is 1 at t=l 
Totalex(2)=Exvaluevector(2) ; 
plosssum=0; 
Exlosssum=0; 
for I=3:t+1 

plosssum = plosssum + plossvector(1-1);% add up 
prob of stopping out in previous days, 35M142 

Exlosssum = Exlosssum+Exlossvector(1-1);% add up 
expected values of stopping out for previous days 

Totalp(I)=plosssum+pvaluevector(I);% Totalp is the 
sum of the probability of previous days losses and 
last day's cshing out 

Totalex(I)=Exlosssum+Exvaluevector(I);%Totalex is 
the expected value of previous days losses and last 
day's gain 
end 

Expectedt(2)=1;%Expectedt is the average number of 
t units of the trade when the trader chooses to cash 
out on the t th unit 
for I=3:t+1 

Sum=0; 
for J=2:I-1 

Sum =Sum + plossvector(J)*(J-l); 
end 
Expectedt(I)= Sum +pvaluevector(I)*(1-1); 

end 
for I=2:t+1 

TotalexDt(I)=Totalex(I)/Expectedt(I); 
end 
figure(5) 
plot(time(2:t+1),Exlossvector(2:t+l),'k*-')% last 
point of Exlossvector actually not used in 
calculation. It is calculated for plotting purpose 
only. 



296 Mathematical Techniques in Financial Market Trading 

xlabel(' t ') 
ylabel('Expected loss at time t, with fixed stop loss 
') 
title('S & P 500') 
figure(6) 
plot(time(2:t + l),Totalex(2:t + 1),'k*-') 
xlabel(' t ' ) 
ylabel('Total expected value, with fixed stop-loss') 
title('S & P 500' ) 
figure(7) 
plot(time(2:t+1),plossvector(2:t+l),'k*-') 
xlabel(' t ') 
ylabel('plossvector') 
title('S & P 500') 
figure(8) 
plot(time(2:t + 1),pvaluevector(2:t + 1), 'k*-' ) 
xlabel(' t ') 
ylabel('pvaluevector, with fixed stop-loss') 
title( 'S & P 500' ) 
figure(9) 
plot(time(2:t + 1),Totalp(2:t + 1), 'k*-' ) 
xlabel (' t ') 
ylabel('Totalp, with fixed stop-loss') 
title('S & P 500') 
figure(10) 
plot(time(2:t + 1),Expectedt(2:t + l), 'k*-') 
xlabel(' t ') 
ylabel('Average time, with fixed stop-loss') 
title('S & P 500') 
figure(11) 
plot(time(2:t + l),TotalexDt(2:t + l) , 'k*-') 
xlabel (' t ') 
ylabel('Total expected value/Average time , with 
fixed stop-loss ') 
title('S & P 500') 
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MATHEMATICAL TECHNIQUES 
in 

FINANCIAL MARKET TRADING 

The present book contains much more materials than the author's previous 
book The Science of Financial Market Trading. Spectrum analysis is again 
emphasized for the characterization of technical indicators employed by 
trader$ and investors. New indicators are created. Mathematical analysis 
is applied to evaluate the trading methodologies practiced by traders to 
execute a trade transaction. In addition, probability theory is employed to 
appraise the utility of money management techniques. 

Key Features 
• Indentifies the faultiness of some of the indicators used by traders and 

accentuates the potential of wavelets as a trading tool 
• Describes the scientific evidences that the market is non-random, and that 

the non-randomness can vary with respect to time 
• Demonstrates the validity of the claim by some traders that, with good money 

management techniques, the market is still profitable even if it were random 
• Analyzes why a popular trading tactic has a good probability of success and 

how it can be improved 
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